Innovations in Microalgal Harvesting Using Biopolymer-Based Approach

  • Chiranjib Banerjee
  • Rajib Bandopadhyay
  • Puneet Kumar Singh
  • Harsh Kumar Agrawal
  • Pratyoosh Shukla


Green unicellular microalgae increase their biomass content by the capability of entrapping CO2 for photosynthesis and are crucial for important value product. Negative zeta value is imparted the presence of COOH and NH2 groups. This review will give a detailing toward the forces that are responsible for making alga stable in a solution phase. Beside this, it also explains the various possibilities toward the recent advancement of bioharvesting in terms of technological aspects.


Algal Biomass Calcium Hydroxide Phaeodactylum Tricornutum Scenedesmus Obliquus Flocculate Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Dr. Chiranjib Banerjee highly acknowledges Department of Science and Technology (DST), Government of India for providing financial support as well as project grant from INSPIRE Faculty award scheme.


  1. Agbakpe M, Ge S, Zhang W, Zhang X, Kobylarz P (2014) Algae harvesting for biofuel production: influences of UV irradiation and polyethylenimine (PEI) coating on bacterial biocoagulation. Bioresour Technol 166:266–272CrossRefPubMedGoogle Scholar
  2. Ahmad AL, Mat Yasin NH, Derek CJC, Lim JK (2011) Optimization of microalgae coagulation process using Chitosan. Chem Eng J 173:879–882CrossRefGoogle Scholar
  3. Ayoub GM, Lee SL, Koopman B (1986) Seawater induced algal flocculation. Water Res 20:1265–1271CrossRefGoogle Scholar
  4. Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P et al (2013) Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydr Polym 92:675–681CrossRefPubMedGoogle Scholar
  5. Barrut B, Blancheton JP, Muller Feuga A, Rene F, Narvaez C et al (2013) Separation efficiency of a vacuum gas lift for microalgae harvesting. Bioresour Technol 128:235–240CrossRefPubMedGoogle Scholar
  6. Beach ES, Eckelman MJ, Cui Z, Brentner L, Zimmerman JB (2012) Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour Technol 121:445–449CrossRefPubMedGoogle Scholar
  7. Bilad MR, Vandamme D, Foubert I, Muylaert K, Vankelecom IF (2012) Harvesting microalgal biomass using submerged microfiltration membranes. Bioresour Technol 111:343–352CrossRefPubMedGoogle Scholar
  8. Blanchemain A, Grizeau D (1999) Increased production of eicosapentaenoic acid by Skeletonema costatum cells after decantation at low temperature. Biotechnol Tech 13:497–501CrossRefGoogle Scholar
  9. Boisvert JP, To TC, Berrak A, Jolicoeur C (1998) Phosphate adsorption in flocculation processes of aluminium sulphate and poly-aluminium-silicate-sulphate. Water Res 31:1939–1946CrossRefGoogle Scholar
  10. Brostow W, Pal S, Singh RP (2007) A model of flocculation. Mater Lett 61:4381–4384CrossRefGoogle Scholar
  11. Castrillo M, Lucas-Salas LM, Rodríguez-Gil C, Martínez D (2013) High pH-induced flocculation-sedimentation and effect of supernatant reuse on growth rate and lipid productivity of Scenedesmus obliquus and Chlorella vulgaris. Bioresour Technol 128:324–329CrossRefPubMedGoogle Scholar
  12. Cerff M, Morweiser M, Dillschneider R, Michel A, Menzel K et al (2012) Harvesting fresh water and marine algae by magnetic separation: screening of separation parameters and high gradient magnetic filtration. Bioresour Technol 118:289–295CrossRefPubMedGoogle Scholar
  13. Chen YM, Liu JC, Ju YH (1998) Flotation removal of algae from water. Colloids Surf B Biointerfaces 12:49–55CrossRefGoogle Scholar
  14. Cheng YL, Juang YC, Liao GY, Tsai PW, Ho SH et al (2011) Harvesting of Scenedesmus obliquus FSP-3 using dispersed ozone flotation. Bioresour Technol 102:82–87CrossRefPubMedGoogle Scholar
  15. Craggs R, Sutherland D, Campbell H (2012) Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol 24:329–337CrossRefGoogle Scholar
  16. Davis NS, Foust OJ (1969) Flocculation of suspensions. US Patent 3,431,200, 1969Google Scholar
  17. De Godos I, Guzman HO, Soto R, García-Encina PA, Becares E et al (2011) Coagulation/flocculation-based removal of algal-bacterial biomass from piggery wastewater treatment. Bioresour Technol 102:923–927CrossRefPubMedGoogle Scholar
  18. Deryagin BV, Landau LD (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Phys Chim URSS 14:633–662Google Scholar
  19. Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14:419–422CrossRefGoogle Scholar
  20. Farid MS, Shariati A, Badakhshan A, Anvaripour B (2013) Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol 131:555–559CrossRefPubMedGoogle Scholar
  21. Farooq W, Lee YC, Han JI, Darpito CH, Choi M et al (2013) Efficient microalgae harvesting by organo-building blocks of nanoclays. Green Chem 15:749–755CrossRefGoogle Scholar
  22. Fast SA, Gude VG (2014) Ultrasound-chitosan enhanced flocculation of low algal turbid waters. J Ind Eng Chem. doi: 10.1016/j.jiec.2014.09.023 Google Scholar
  23. Gao S, Yang J, Tian J, Ma F, Tu G, Du M (2010) Electro-coagulation–flotation process for algae removal. J Hazard Mater 177:336–343CrossRefPubMedGoogle Scholar
  24. Garg S, Li Y, Wang L, Schenk PM (2012) Flotation of marine microalgae: effect of algal hydrophobicity. Bioresour Technol 121:471–474CrossRefPubMedGoogle Scholar
  25. Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74:6041–6052PubMedCentralCrossRefPubMedGoogle Scholar
  26. Grima ME, Belarbi EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv 20:491–515CrossRefGoogle Scholar
  27. Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL et al (2013) Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol 145:285–289CrossRefPubMedGoogle Scholar
  28. Gutzeit G, Lorch D, Weber A, Engels M, Neis U (2005) Bioflocculent algal-bacterial biomass improves low-cost wastewater treatment. Water Sci Technol 52:9–18PubMedGoogle Scholar
  29. Henderson RK, Parsons SA, Jefferson B (2008a) Successful removal of algae through control of the zeta potential. Sep Sci Technol 43:1653–1666CrossRefGoogle Scholar
  30. Henderson RK, Parsons SA, Jefferson B (2008b) The impact of algal properties and pre-oxidation on solid–liquid separation of algae. Water Res 42:1827–1845CrossRefPubMedGoogle Scholar
  31. Jonathan TC, Lee GM, Caldwell GS (2014) Harvesting microalgae by CTAB-aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics. Biomass Bioenergy 67:354–362CrossRefGoogle Scholar
  32. Kim DG, La HJ, Ahn CY, Park YH, Oh HM (2011) Harvest of Scenedesmus sp. with bioflocculant and reuse of culture medium for subsequent high-density cultures. Bioresour Technol 102:3163–3168CrossRefPubMedGoogle Scholar
  33. Kim J, Ryu BG, Kim BK, Han JI, Yang JW (2012) Continuous microalgae recovery using electrolysis with polarity exchange. Bioresour Technol 111:268–275CrossRefPubMedGoogle Scholar
  34. Knuckey RM, Brown MR, Robert R, Frampton DMF (2006) Production of microalgal concentrates by flocculation and their assessment as aquaculture feeds. Aquac Eng 35:300–313CrossRefGoogle Scholar
  35. Koopman B, Lincoln EP (1983) Autoflotation harvesting of algae from high-rate pond effluents. Agric Wastes 5:231–246CrossRefGoogle Scholar
  36. Kurniawati HA, Ismadji S, Liu JC (2014) Microalgae harvesting by flotation using natural saponin and chitosan. Bioresour Technol 166:429–434CrossRefPubMedGoogle Scholar
  37. Larsson A, Wall S (1998) Flocculation of cationic amylopectin starch and colloidal silicic acid. The effect of various kinds of salt. Colloids Surf A Physicochem Eng Asp 139:259–270CrossRefGoogle Scholar
  38. Lee SJ, Kim SB, Kim JE, Kwon GS, Yoon BD et al (1998) Effects of harvesting method and growth stage on the flocculation of the green alga Botryococcus braunii. Lett Appl Microbiol 27:14–18CrossRefGoogle Scholar
  39. Lee AK, Lewis DM, Ashman PJ (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J Appl Phycol 21:559–567CrossRefGoogle Scholar
  40. Mabire F, Audebert R, Quivoron C (1984) Flocculation properties of some water-soluble cationic copolymers toward silica suspensions: a semiquantitative interpretation of the role of molecular weight and cationicity through a “patchwork” model. J Colloid Interface Sci 97:120–136CrossRefGoogle Scholar
  41. McCausland MA, Braun MR, Barrett SM, Diemar JA, Heasman MP (1999) Evaluation of live microalgae and microbial pastes as supplementary food for Pacific oysters. Aquaculture 174:323–342CrossRefGoogle Scholar
  42. Millamena OM, Aujero EJ, Borlongan IG (1990) Techniques on algae harvesting and reservation for use in culture and a larval food. Aquac Eng 9:295–304CrossRefGoogle Scholar
  43. Pal S, Sen G, Karmakar NC, Mal D, Singh RP (2008) High performance flocculating agents based on cationic polysaccharides in relation to coal fine suspension. Carbohydr Polym 74:590–596CrossRefGoogle Scholar
  44. Pal S, Ghosh S, Sen G, Jha U, Singh RP (2009) Cationic tamarind kernel polysaccharide (Cat TKP): a novel polymeric flocculant for the treatment of textile industry wastewater. Int J Biol Macromol 45:518–523CrossRefPubMedGoogle Scholar
  45. Petrusevski B, Bolier G, Van Breemen AN, Alaerts GJ (1995) Tangential flow filtration: a method to concentrate freshwater algae. Water Res 29:1419–1424CrossRefGoogle Scholar
  46. Poleman E, DePauw N, Jeurissen B (1997) Potential of electrolytic flocculation for recovery of micro-algae. Resour Conserv Recycl 19:1–10CrossRefGoogle Scholar
  47. Renault F, Sancey B, Badot PM, Crini G (2009) Chitosan for coagulation/flocculation processes – an eco-friendly approach. Eur Polym J 45:1337–1348CrossRefGoogle Scholar
  48. Rios SD, Salvado J, Farriol X, Torras C (2012) Antifouling microfiltration strategies to harvest microalgae for biofuel. Bioresour Technol 119:406–418CrossRefPubMedGoogle Scholar
  49. Rubio J, Souza ML, Smith RW (2002) Overview of flotation as a wastewater treatment technique. Miner Eng 15:139–155CrossRefGoogle Scholar
  50. Ruehrwein RA, Ward DW (1952) Mechanism of clay aggregation by polyelectrolytes. Soil Sci 73:485–492CrossRefGoogle Scholar
  51. Singh RP, Karmakar GP, Rath SK, Karmakar NC, Tripathy T et al (2000) Biodegradable drag reducing agents and flocculants based on polysaccharides: materials and applications. Polym Eng Sci 40:46–60CrossRefGoogle Scholar
  52. Singh RP, Pal S, Rana VK, Ghorai S (2013) Amphoteric amylopectin: a novel polymeric flocculant. Carbohydr Polym 91:294–299CrossRefPubMedGoogle Scholar
  53. Smellie RH Jr, La Mer VK (1958) Flocculation, subsidence and filtration of phosphate slimes: VI. A quantitative theory of filtration of flocculated suspensions. J Colloid Sci 13:589–599CrossRefGoogle Scholar
  54. Spilling K, Seppälä J, Tamminen T (2010) Inducing autoflocculation in the diatom Phaeodactylum tricornutum through CO2 regulation. J Appl Phycol 23:959–966. doi: 10.1007/s10811-010-9616-5 CrossRefGoogle Scholar
  55. Sukenik A, Shelef G (1984) Algal autoflocculation – verification and proposed mechanism. Biotechnol Bioeng 26:142–147CrossRefPubMedGoogle Scholar
  56. Taylor RL, Rand JD, Caldwell GS (2012) Treatment with algae extracts promotes flocculation, and enhances growth and neutral lipid content in Nannochloropsis oculata – a candidate for biofuel production. Marine Biotechnol 14:774–781CrossRefGoogle Scholar
  57. Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A (2010) Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renewable Sustainable Energy 2:012701CrossRefGoogle Scholar
  58. Vandamme D, Foubert I, Meesschaert B, Muylaert K (2010) Flocculation of microalgae using cationic starch. J Appl Phycol 22:525–530CrossRefGoogle Scholar
  59. Vandamme D, Pontes SC, Goiris K, Foubert I, Pinoy LJ et al (2011) Evaluation of electro-coagulation-flocculation for harvesting marine and freshwater microalgae. Biotechnol Bioeng 108:2320–2329CrossRefPubMedGoogle Scholar
  60. Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K (2012) Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol 105:114–119CrossRefPubMedGoogle Scholar
  61. Vandamme D, Foubert I, Koenraad M (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol 31:233–239CrossRefPubMedGoogle Scholar
  62. Veloso V, Reis A, Gouveia L, Fernandes HL, Empis JA et al (1991) Lipid production in Phaeodactylum tricornutum. Bioresour Technol 38:115–119CrossRefGoogle Scholar
  63. Wilde EW, Benemann JR, Weissman JC, Tillett DM (1991) Cultivation of algae and nutrient removal in a waste heat utilization process. J Appl Phycol 3:159–167CrossRefGoogle Scholar
  64. Wu Z, Zhu Y, Huang W, Zhang C, Li T et al (2012) Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol 110:496–502CrossRefPubMedGoogle Scholar
  65. Xu L, Wang F, Li HZ, Hu ZM, Guo C et al (2010) Development of an efficient electroflocculation technology integrated with dispersed-air flotation for harvesting microalgae. J Chem Technol Biotechnol 85:1504–1507Google Scholar
  66. Xu L, Guo C, Wang F, Zheng S, Liu CZ (2011) A simple and rapid harvesting method for microalgae by in situ magnetic separation. Bioresour Technol 102:10047–10051CrossRefPubMedGoogle Scholar
  67. Xu Y, Purton S, Baganz F (2013) Chitosan flocculation to aid the harvesting of the microalga Chlorella sorokiniana. Bioresour Technol 129:296–301CrossRefPubMedGoogle Scholar
  68. Yahi H, Elmaleh S, Coma J (1994) Algal flocculation–sedimentation by pH increase in a continuous reactor. Water Sci Technol 30:259–267Google Scholar
  69. Yoon RH, Luttrell GH (1989) The effect of bubble size on fine particle flotation. Miner Process Extr Metall Rev 5:101–122CrossRefGoogle Scholar
  70. Zamalloa C, Boon N, Verstraete W (2013) Decentralized two-stage sewage treatment by chemical-biological flocculation combined with microalgae biofilm for nutrient immobilization in a roof installed parallel plate reactor. Bioresour Technol 130:152–160CrossRefPubMedGoogle Scholar
  71. Zhang J, Hu B (2012) A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol 114:529–535CrossRefPubMedGoogle Scholar
  72. Zheng H, Gao Z, Yin J, Tang X, Ji X et al (2012) Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol 112:212–220CrossRefPubMedGoogle Scholar
  73. Zhou WG, Cheng YL, Li Y, Wan YQ, Liu YH et al (2012) Novel fungal pelletization-assisted technology for algae harvesting and wastewater treatment. Appl Biochem Biotechnol 167:214–228Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Chiranjib Banerjee
    • 1
  • Rajib Bandopadhyay
    • 2
  • Puneet Kumar Singh
    • 3
  • Harsh Kumar Agrawal
    • 5
  • Pratyoosh Shukla
    • 4
  1. 1.Department of Bio-EngineeringBirla Institute of TechnologyRanchiIndia
  2. 2.Department of BotanyThe University of BurdwanGolapbag, BardhamanIndia
  3. 3.Department of Microbiology, Enzyme Technology and Protein Bioinformatics LaboratoryMaharshi Dayanand UniversityRohtakIndia
  4. 4.Professor and Head, Department of MicrobiologyMaharshi Dayanand UniversityRohtakIndia
  5. 5.Microbiology Lab, Department of Bio-EngineeringBirla Institute of Technology, MesraRanchiIndia

Personalised recommendations