Skip to main content

Microbial Biopolymers: The Exopolysaccharides

  • Chapter
Microbial Factories

Abstract

Microorganisms produce several biopolymers. Of these, intracellularly produced polyhydroxyalkanoates (PHAs) and extracellularly produced exopolysaccharides (EPS) are gaining importance over the other biopolymers. These naturally produced polymers can replace plant-based or petroleum-derived polymers. There are innumerable reports and reviews on the production of PHA and EPS by several bacteria, fungi, actinomycetes, and algae. This chapter briefly gives an introduction to PHA and provides recent developments in the genetic and metabolic pathways for the synthesis of microbial EPS. Different strategies used for fermentative production and various means of downstream processing are discussed. Possible ways to minimize the cost of production and downstream processing are covered in this chapter. Applications of these EPS in various fields such as agriculture, cosmetics, foods, medical and healthcare industry, mining, oil recovery, packaging, pharmaceuticals, printing and textile industry, wastewater treatment, etc., are presented. The potential of these polymers indicates that these microbial cell factories can be exploited for the better of mankind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad NH, Mustafa S, Man YBC (2015) Microbial polysaccharides and their modification approaches: a review. Int J Food Prop 18:332–347. doi:10.1080/10942912.2012.693561

    Article  CAS  Google Scholar 

  • Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743. doi:10.1002/jctb.2392

    Article  CAS  Google Scholar 

  • Anil Kumar PK, Shamala TR, Lakshman K, Halami PM, Joshi GJ, Chandrashekar A, LathaKumari KS, Divyashree MS (2007) Bacterial synthesis of poly(hydroxybutyrate-co-hydroxyvalerate) using carbohydrate-rich mahua (Madhuca sp.) flowers. J Appl Microbiol 103:204–209. doi:10.1111/j.1365-2672.2006.03221.x

    Article  CAS  PubMed  Google Scholar 

  • Ateş Ö, Arga KY, Öner EO (2013) The stimulatory effect of mannitol on levan biosynthesis: lessons from metabolic systems analysis of Halomonas smyrnensis AAD6T. Biotechnol Prog 29:1386–1397. doi:10.1002/btpr.1823

    Article  PubMed  CAS  Google Scholar 

  • Ayala-Hernández I, Hassan A, Goff HD, Mira de Orduña R, Corredig M (2008) Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins: effect of pH and media composition. Int Dairy J 18:1109–1118. doi:10.1016/j.idairyj.2008.06.008

    Article  CAS  Google Scholar 

  • Badel S, Bernardi T, Michaud P (2011) New perspectives for lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66. doi:10.1016/j.biotechadv.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  • Bahl MA, Schultheis E, Hempel DC, Nörtemann B, Franco-Lara E (2010) Recovery and purification of the exopolysaccharide PS-EDIV from Sphingomonas pituitosa DSM 13101. Carbohydr Polym 80:1037–1041. doi:10.1016/j.carbpol.2010.01.021

    Article  CAS  Google Scholar 

  • Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:341–354

    CAS  Google Scholar 

  • Balaji S, Gopi K, Bhaskaran M (2013) A review on production of poly β-hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res 2:278–285. doi:10.1016/j.algal.2013.03.002

    Article  Google Scholar 

  • Benny IS, Gunasekar V, Ponnusami V (2014) Review on application of xanthan gum in drug delivery. Int J PharmTech Res 6:1322–1326

    CAS  Google Scholar 

  • Chakraborty T, Pal R (2014) An overview of cyanobacterial exopolysaccharides: features, composition and effects of stress exposure. Int J Life Sci 8(4):1–9. doi:10.3126/ijls.v814.10891

    Article  Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124

    CAS  Google Scholar 

  • Chen G, Qiana W, Lia J, Xua Y, Chena K (2015) Exopolysaccharide of Antarctic bacterium Pseudoaltermonas sp. S-5 induces apoptosis in K562 cells. Carbohydr Polym 121:107–114. doi:10.1016/j.carbpol.2014.12.045

    Article  CAS  PubMed  Google Scholar 

  • Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44. doi:10.1007/s00253-011-3477-y

    Article  CAS  PubMed  Google Scholar 

  • Choudhury AR, Bhattacharjee P, Prasad GS (2013) Development of suitable solvent system for downstream processing of biopolymer pullulan using response surface methodology. PLoS One 8(10), e77071. doi:10.1371/journal.pone.0077071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Costa LAS, Campos MI, Druzian JI, de Oliveira AM, de Oliveira Jr EN (2014) Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity. Int J Polymer Sci 2014, 273650. doi:10.1155/2014/273650

    Google Scholar 

  • Dhiya C, Benny IS, Gunasekar V, Ponnusami V (2014) A review on development of fermentative production of curdlan. Int J ChemTech Res 6:2769–2773

    Google Scholar 

  • Divyasri D, Gunasekar V, Benny IS, Ponnusami V (2014) A review on industrial applications of curdlan. Int J ChemTech Res 6:3000–3003

    CAS  Google Scholar 

  • DomInguez L, RodrIguez M, Prats D (2010) Effect of different extraction methods on bound EPS from MBR sludges. Part I: influence of extraction methods over three-dimensional EEM fluorescence spectroscopy fingerprint. Desalination 261:19–26. doi:10.1016/j.desal.2010.05.054

    Article  CAS  Google Scholar 

  • Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962. doi:10.1016/j.carbpol.2011.08.083

    Article  CAS  Google Scholar 

  • Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25. doi:10.2174/2212796811206010014

    CAS  Google Scholar 

  • Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024. doi:10.3390/md12053005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398. doi:10.1016/j.tibtech.2011.03.008

    Article  CAS  PubMed  Google Scholar 

  • Freitas F, Alves VD, Reis MA, Crespo JG, Coelhoso IM (2014) Microbial polysaccharide-based membranes: current and future applications. J Appl Polym Sci 40047. doi:10.1002/APP.40047

  • Galindo E, Albiter V (1996) High-yield recovery of xanthan by precipitation with isopropyl alcohol in a stirred tank. Biotechnol Prog 12:540–547. doi:10.1021/bp9600445

    Article  CAS  Google Scholar 

  • Galle S, Arendt EK (2014) Exopolysaccharides from sourdough lactic acid bacteria. Cri Rev Food Sci Nutr 54:891–901. doi:10.1080/10408398.2011.617474

    Article  CAS  Google Scholar 

  • García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579. doi:10.1016/S0734-9750(00)00050-1

    Article  PubMed  Google Scholar 

  • Gaur R, Singh R, Gupta M, Gaur MK (2010) Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan. Afr J Biotechnol 9:7989–7997. doi:10.5897/AJB10.948

    CAS  Google Scholar 

  • Gauri SS, Mandal SM, Pati BR (2012) Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 95:331–338. doi:10.1007/s00253-012-4159-0

    Article  CAS  PubMed  Google Scholar 

  • Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Cri Rev Biotechnol 20:177–211

    Article  CAS  Google Scholar 

  • Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21:580–605. doi:10.1007/s10924-012-0527-1

    Article  CAS  Google Scholar 

  • Gupta SK, Das P, Singh SK, Akhtar MS, Meena DK, Mandal SC (2011) Microbial levan, an ideal prebiotic and immunonutrient in aquaculture. World Aquacult 42(61):63, 66

    Google Scholar 

  • Halami PM (2008) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24:805–812. doi:10.1007/s11274-007-9543-z

    Article  CAS  Google Scholar 

  • Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbuchel A, Maier UG (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Fact 10:81. doi:10.1186/1475-2859-10-81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedoa P (2014) Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol 80:9–18. doi:10.1128/AEM.02977-13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang MY, Lee CF, Ho ST, Lin KJ, Pan CL (2013) High-yield levan produced by Bacillus licheniformis FRI MY-55 in high-sucrose medium and its prebiotic effect. J Pure Appl Microbiol 7:1585–1599

    CAS  Google Scholar 

  • Kabilan S, Ayyasamy M, Jayavel S, Paramasamy G (2012) Pseudomonas sp. as a source of medium chain length polyhydroxyalkanoates for controlled drug delivery: perspective. Int J Microbiol 317828. doi:10.1155/2012/317828

  • Kalyanasundaram GT, Doble M, Gummadi SN (2012) Production and downstream processing of (1-3)-β-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750. AMB Express 2:31. doi:10.1186/2191-0855-2-31

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kang KS, Veeder GT, Cottrell IW (1983) Some novel bacterial polysaccharides of recent development. Prog Ind Microbiol 18:231–253

    CAS  Google Scholar 

  • Kang JX, Chen XJ, Chen WR, Li MS, Fang Y, Li DS, Ren YZ, Liu DQ (2011) Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling. Process Biochem 46:792–795. doi:10.1016/j.procbio.2010.11.004

    Article  CAS  Google Scholar 

  • Kaur V, Bera MB, Panesar PS, Kumar H, Kennedy JF (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65:454–461. doi:10.1016/j.ijbiomac.2014.01.061

    Article  CAS  PubMed  Google Scholar 

  • Kocharin K, Nielsen J (2013) Specific growth rate and substrate dependent polyhydroxybutyrate production in Saccharomyces cerevisiae. AMB Express 3:18. doi:10.1186/2191-0855-3-18

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kreyenschulte D, Krull R, Margaritis A (2014) Recent advances in microbial biopolymer production and purification. Crit Rev Biotechnol 34:1–15. doi:10.3109/07388551.2012.743501

    Article  CAS  PubMed  Google Scholar 

  • Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides – a perception. J Basic Microbiol 47:103–117. doi:10.1002/jobm.200610203

    Article  CAS  PubMed  Google Scholar 

  • Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625. doi:10.1016/S0734-9750(01)00084-2

    Article  CAS  PubMed  Google Scholar 

  • Laycock B, Halleya P, Pratt S, Werkerc A, Lanta P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583. doi:10.1016/j.progpolymsci.2013.06.008

    Article  CAS  Google Scholar 

  • Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473. doi:10.1007/s00253-003-l386-4

    Article  CAS  PubMed  Google Scholar 

  • Li H, Xu H, Xu H, Li S, Ouyang PK (2010a) Biosynthetic pathway of sugar nucleotides essential for welan gum production in Alcaligenes sp. CGMCC2428. Appl Microbiol Biotechnol 86:295–303. doi:10.1007/s00253-009-2298-8

    Article  CAS  PubMed  Google Scholar 

  • Li S, Xu H, Li H, Guo C (2010b) Optimizing the production of welan gum by Alcaligenes faecalis NX-3 using statistical experiment design. Afr J Biotechnol 9:1024–1030. doi:10.5897/AJB09.042

    CAS  Google Scholar 

  • Li N, Wang Y, Zhu P, Liu Z, Guo B, Ren J (2015) Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol Res 171:73–77. doi:10.1016/j.micres.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Luo J, Ye H, Zeng X (2012) Preparation, antioxidant and antitumor activities in vitro of different derivatives of Levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem Toxicol 50:767–772. doi:10.1016/j.fct.2011.11.016

    Article  CAS  PubMed  Google Scholar 

  • Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Cur Opin Microbiol 6:251–260. doi:10.1016/S1369-5274(03)00040-7

    Article  CAS  Google Scholar 

  • Madhuri KV, Vidya Prabhakar K (2014) Microbial exopolysaccharides: biosynthesis and potential applications. Oriental J Chem 30:1401–1410, doi:10.13005/ojc/300362

    Article  CAS  Google Scholar 

  • Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16. doi:10.4137/MBI.S10957

    PubMed Central  CAS  PubMed  Google Scholar 

  • Malang SK, Maina NH, Schwab C, Tenkanen M, Lacroix C (2015) Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiol 46:418–427. doi:10.1016/j.fm.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  • Mishra B, Vuppu S (2013) A study on downstream processing for the production of pullulan by Aureobasidium pullulans-SB-01 from the fermentation broth. Res J Recent Sci 2:16–19

    CAS  Google Scholar 

  • Moshaf S, Hamidi-Esfahani Z, Azizi MH (2014) Statistical optimization of xanthan gum production and influence of airflow rates in lab-scale fermentor. Appl Food Biotechnol 1:15–22

    Google Scholar 

  • Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158. doi:10.1080/09593330903552094

    Article  CAS  PubMed  Google Scholar 

  • Osmałek T, Froelich A, Tasarek S (2014) Application of gellan gum in pharmacy and medicine. Int J Pharm 466:328–340. doi:10.1016/j.ijpharm.2014.03.038

    Article  PubMed  CAS  Google Scholar 

  • Pace GW, Righelato RC (1980) Production of extracellular microbial polysaccharides. Adv Biochem Eng 15:41–70. doi:10.1007/3540096868_2

    Article  CAS  Google Scholar 

  • Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12. doi:10.1016/j.jfoodeng.2011.03.035

    Article  CAS  Google Scholar 

  • Patel A, Prajapati JB (2013) Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res 1:2. doi:10.4172/2329-888X.1000107

    Google Scholar 

  • Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52:3–12. doi:10.1007/s12088-011-0148-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patten DA, Laws AP (2014) Lactobacillus-produced exopolysaccharides and their health benefits: a review. Beneficial Microbes (in-press). doi:10.3920/BM2014.0117

  • Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 693253. doi:10.1155/2011/693253

  • Popescua I, Pelina IM, Butnarub M, Fundueanua G, Suflet DM (2013) Phosphorylated curdlan microgels. Preparation, characterization, and in vitro drug release studies. Carbohydr Polym 94:889–898. doi:10.1016/j.carbpol.2013.02.014

    Article  CAS  Google Scholar 

  • Prajapati VD, Jani GK, Khanda SM (2013) Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95:540–549. doi:10.1016/j.carbpol.2013.02.082

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar R, Vijayendra SVN, Prasad MS (2003) Optimization of exopolysaccharides from Alcaligenes eutrophus. In: Soni PL (ed) Trends in carbohydrate chemistry. Surya International Publishers, Dehra Dun, pp 212–217

    Google Scholar 

  • Razack SA, Velayutham V, Thangavelu V (2014) Medium optimization and in vitro antioxidant activity of exopolysaccharide produced by Bacillus subtilis. Korean J Chem Eng 31:296–303. doi:10.1007/s11814-013-0217-2

    Article  CAS  Google Scholar 

  • Rehm BHA (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, Poole, p 293

    Google Scholar 

  • Rehm BHA, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48:281–288. doi:10.1007/s002530051051

    Article  CAS  PubMed  Google Scholar 

  • Remminghorst U, Rehm BHA (2009) Microbial production of alginate: biosynthesis and applications. In: Microbial production of biopolymers and polymer precursor: applications and perspectives. Caister Academic Press, Palmerston North

    Google Scholar 

  • Salah RB, Chaari K, Besbes S, Blecker C, Attia H (2011) Production of xanthan gum from Xanthomonas campestris NRRL B-1459 by fermentation of date juice palm by-products (Phoenix dactylifera L.). J Food Process Eng 34:457–474. doi:10.1111/j.1745-4530.2009.00369.x

    Article  CAS  Google Scholar 

  • Saranya Devi E, Vijayendra SVN, Shamala TR (2012) Exploration of rice bran, an agroindustry residue, for the production of intra and extra cellular polymers by Sinorhizobium meliloti MTCC 100. Biocatal Agric Biotechnol 1:80–84. doi:10.1016/j.bcab.2011.08.014

    Google Scholar 

  • Seviour RJ, Stasinopoulos SJ, Auer DPF, Gibbs PA (1992) Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol 12:279–298. doi:10.3109/07388559209069196

    Article  CAS  Google Scholar 

  • Seviour RJ, McNeil B, Fazenda ML, Harvey LM (2011) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31:170–185. doi:10.3109/07388551.2010.505909

    Article  CAS  PubMed  Google Scholar 

  • Shamala TR, Prasad MS (2001) Fed-batch fermentation for rapid production of xanthan by Xanthomonas campestris. Food Biotechnol 15:169–177. doi:10.1081/FBT-100107628

    Article  CAS  Google Scholar 

  • Shamala TR, Chandrashekar A, Vijayendra SVN, Kshama L (2003) Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J Appl Microbiol 94:369–374

    Article  CAS  PubMed  Google Scholar 

  • Shamala TR, Divyashree MS, Davis R, Latha Kumari KS, Vijayendra SVN, Raj B (2009) Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian J Microbiol 49:251–258. doi:10.1007/s12088-009-0031-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shamala TR, Vijayendra SVN, Joshi GJ (2012) Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus SP. CFR-67. Braz J Microbiol 43:1094–1102. doi:10.1590/S1517-83822012000300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shamala TR, Rohinishree YS, Vijayendra SVN (2014) Biosynthesis of multiple biopolymers by Sinorhizobium meliloti CFR 14 in high cell density cultures through fed batch fermentation. Biocatal Agric Biotechnol 3:316–322. doi:10.1016/j.bcab.2014.05.00

    Google Scholar 

  • Shehni SA, Soudi MR, Hosseinkhani S, Behzadipour N (2011) Improvement of xanthan gum production in batch culture using stepwise acetic acid stress. Afr J Biotechnol 10:19425–19428. doi:10.5897/AJB11.1794

    CAS  Google Scholar 

  • Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894. doi:10.5897/AJB11.1794

    Article  CAS  PubMed  Google Scholar 

  • Shivakumar S, Vijayendra SVN (2006) Production of exopolysaccharides by Agrobacterium sp. CFR-24 using coconut water-a byproduct of food industry. Lett Appl Microbiol 42:477–482. doi:10.1111/j.1472-765X.2006.01881.x

    Article  CAS  PubMed  Google Scholar 

  • Singh RS, Saini GK (2012) Biosynthesis of pullulan and its applications in food and pharmaceutical industry. In: Satyanarayana T, Jori BN, Prakash A (eds) Microorganisms in sustainable agricultural biotechnology, part 2. Springer, India, pp 509–553

    Google Scholar 

  • Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531. doi:10.1016/j.carbpol.2008.01.003

    Article  CAS  PubMed  Google Scholar 

  • Singha TK (2012) Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharm 2:276–281. doi:10.9790/3013-0220276281

    Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Factor 5:7. doi:10.1186/1475-2859-5-7

    Article  CAS  Google Scholar 

  • Smith JH, Pace GW (1982) Recovery of microbial polysaccharides. J Chem Technol Biotechnol 32:119–129. doi:10.1002/jctb.5030320116

    Article  CAS  Google Scholar 

  • Sreekanth MS, Vijayendra SVN, Joshi GJ, Shamala TR (2013) Effect of carbon and nitrogen sources on simultaneous production of α-amylase and green food packaging polymer by Bacillus sp. CFR 67. J Food Sci Technol 50:404–408. doi:10.1007/s13197-012-0639-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srikanth R, Reddy CHSSS, Siddartha G, Ramaiah MJ, Uppuluri KB (2015) Review on production, characterization and applications of microbial levan. Carbohydr Polym 120:102–114. doi:10.1016/j.carbpol.2014.12.003

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A (2005) A commentary on “Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids” by Doi Y, Tamaki A, Kunioka M, Soga K (Makromol Chem Rapid Commun 1987, 8:631–635). Macromol Rapid Commun 26:1025–1031. doi:10.1002/marc.200500262

  • Survase SA, Saudagar PS, Bajaj IB, Singhal RS (2007) Scleroglucan: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:107–118

    CAS  Google Scholar 

  • Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv 12:393–448. doi:10.1016/0734-9750(94)90018-3

    Article  CAS  PubMed  Google Scholar 

  • Torrestiana-Sanchez B, Balderas-Luna L, Brito-De la Fuente E, Lencki RW (2007) The use of membrane-assisted precipitation for the concentration of xanthan gum. J Membr Sci 294:84–92. doi:10.1016/j.memsci.2007.02.014

    Article  CAS  Google Scholar 

  • Ullrich M (2009) Bacterial polysaccharides: current innovations and future trends. Caister Academic Press, Poole, p 358. ISBN 978-1-904455-45-5

    Google Scholar 

  • Vandamme E, de Baets S, Steinbuchel A (2002) Biopolymers: polysaccharides I -polysaccharides from prokaryotes. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  • Vijayendra SVN, Shamala TR (2014) Film forming microbial biopolymers for commercial applications – a review. Crit Rev Biotechnol 34:338–357. doi:10.3109/07388551.2013.798254

    Article  CAS  PubMed  Google Scholar 

  • Vijayendra SVN, Sharat Babu RS (2008) Optimization of a new hetero-polysaccharide production by a native isolate of Leuconostoc sp. CFR-2181. Lett Appl Microbiol 46:643–648. doi:10.1111/j.1472-765X.2008.02361.x

    Article  CAS  PubMed  Google Scholar 

  • Vijayendra SVN, Bansal D, Prasad MS, Nand K (2001) Jaggery: a novel substrate for pullulan production by Aureobasidium pullulans CFR-77. Process Biochem 37:359–364. PII: S0032-9592(01)00214-X

    Article  CAS  Google Scholar 

  • Vijayendra SVN, Yamini D, Sudhamani SR, Prasad MS (2003) Effect of hexose sugars on exopolysaccharide production by selected bacterial cultures. J Food Sci Technol 40:611–614

    CAS  Google Scholar 

  • Vijayendra SVN, Rastogi NK, Shamala TR, Anil Kumar PK, Kshama L, Joshi GJ (2007) optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J Microbiol 47:170–175

    Google Scholar 

  • Vijayendra SVN, Veeramani S, Shamala TR (2008a) Optimization of polyhydroxy-butyrate production by β-carotene producing strain of Micrococcus sp. J Food Sci Technol 45:506–509

    CAS  Google Scholar 

  • Vijayendra SVN, Palanivel G, Mahadevamma S, Tharanathan RN (2008b) Physico-chemical characterization of an exopolysaccharide produced by a non-ropy strain of Leuconostoc sp. CFR 2181 isolated from dahi, an Indian traditional fermented milk product. Carbohydr Polym 72:300–307. doi:10.1016/j.carbpol.2007.08.016

    Article  CAS  Google Scholar 

  • Vijayendra SVN, Palanivel G, Mahadevamma S, Tharanathan RN (2009) Partial characterization of a new heteropolysaccharide produced by a native isolate of heterofermentative Lactobacillus sp. CFR-2182. Arch Microbiol 191:301–310. doi:10.1007/s00203-008-0453-8

    Article  CAS  Google Scholar 

  • Wang X, Xu P, Yuan Y, Liu C, Zhang D, Yang Z, Yang C, Ma C (2006) Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl Environ Microbiol 72:3367–3374. doi:10.1128/AEM.72.5.3367-3374.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Yuan Y, Wang K, Zhang D, Yang Z, Xu P (2007) Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461. J Biotechnol 128:403–407. doi:10.1016/j.jbiotec.2006.09.019

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Tao F, Gai Z, Tang H, Xu P (2012) Genome sequence of the welan gum producing strain Sphingomonas sp. ATCC 31555. J Bacteriol 194:5989–5990. doi:10.1128/JB.01486-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolfaardt GM, Lawrence JR, Korbe DR (1999) Function of EPS. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances: characterization, structure and function. Springer, New York, pp 171–200

    Chapter  Google Scholar 

  • Yadav V, Prapulla SG, Jha A, Poonia A (2011) A novel exopolysaccharide from probiotic Lactobacillus fermentum CFR 2195: production, purification and characterization. Biotechnol Bioinform Bioeng 1:415–421

    Google Scholar 

  • Yatmaz E, Turhan I (2012) Pullulan production by fermentation and usage in food industry. GIDA J Food 37:95–102

    Google Scholar 

  • Zhan XB, Lin CC, Zhang HT (2012) Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol 93:525–531. doi:10.1007/s00253-011-3740-2

    Article  CAS  PubMed  Google Scholar 

  • Zinn M, Hany R (2005) Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater 7:408–411. doi:10.1002/adem.200500053

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Director of CSIR-CFTRI, for providing necessary funds and facilities. Angelina is thankful to UGC for granting Maulana Azad National Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. N. Vijayendra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Angelina, Vijayendra, S.V.N. (2015). Microbial Biopolymers: The Exopolysaccharides. In: Kalia, V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2595-9_8

Download citation

Publish with us

Policies and ethics