Microbial Biopolymers: The Exopolysaccharides

  • Angelina
  • S. V. N. VijayendraEmail author


Microorganisms produce several biopolymers. Of these, intracellularly produced polyhydroxyalkanoates (PHAs) and extracellularly produced exopolysaccharides (EPS) are gaining importance over the other biopolymers. These naturally produced polymers can replace plant-based or petroleum-derived polymers. There are innumerable reports and reviews on the production of PHA and EPS by several bacteria, fungi, actinomycetes, and algae. This chapter briefly gives an introduction to PHA and provides recent developments in the genetic and metabolic pathways for the synthesis of microbial EPS. Different strategies used for fermentative production and various means of downstream processing are discussed. Possible ways to minimize the cost of production and downstream processing are covered in this chapter. Applications of these EPS in various fields such as agriculture, cosmetics, foods, medical and healthcare industry, mining, oil recovery, packaging, pharmaceuticals, printing and textile industry, wastewater treatment, etc., are presented. The potential of these polymers indicates that these microbial cell factories can be exploited for the better of mankind.


Lactic Acid Bacterium Bacterial Cellulose Xanthomonas Campestris Pullulan Production Curdlan Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Director of CSIR-CFTRI, for providing necessary funds and facilities. Angelina is thankful to UGC for granting Maulana Azad National Fellowship.


  1. Ahmad NH, Mustafa S, Man YBC (2015) Microbial polysaccharides and their modification approaches: a review. Int J Food Prop 18:332–347. doi: 10.1080/10942912.2012.693561 CrossRefGoogle Scholar
  2. Akaraonye E, Keshavarz T, Roy I (2010) Production of polyhydroxyalkanoates: the future green materials of choice. J Chem Technol Biotechnol 85:732–743. doi: 10.1002/jctb.2392 CrossRefGoogle Scholar
  3. Anil Kumar PK, Shamala TR, Lakshman K, Halami PM, Joshi GJ, Chandrashekar A, LathaKumari KS, Divyashree MS (2007) Bacterial synthesis of poly(hydroxybutyrate-co-hydroxyvalerate) using carbohydrate-rich mahua (Madhuca sp.) flowers. J Appl Microbiol 103:204–209. doi: 10.1111/j.1365-2672.2006.03221.x PubMedCrossRefGoogle Scholar
  4. Ateş Ö, Arga KY, Öner EO (2013) The stimulatory effect of mannitol on levan biosynthesis: lessons from metabolic systems analysis of Halomonas smyrnensis AAD6T. Biotechnol Prog 29:1386–1397. doi: 10.1002/btpr.1823 PubMedCrossRefGoogle Scholar
  5. Ayala-Hernández I, Hassan A, Goff HD, Mira de Orduña R, Corredig M (2008) Production, isolation and characterization of exopolysaccharides produced by Lactococcus lactis subsp. cremoris JFR1 and their interaction with milk proteins: effect of pH and media composition. Int Dairy J 18:1109–1118. doi: 10.1016/j.idairyj.2008.06.008 CrossRefGoogle Scholar
  6. Badel S, Bernardi T, Michaud P (2011) New perspectives for lactobacilli exopolysaccharides. Biotechnol Adv 29:54–66. doi: 10.1016/j.biotechadv.2010.08.011 PubMedCrossRefGoogle Scholar
  7. Bahl MA, Schultheis E, Hempel DC, Nörtemann B, Franco-Lara E (2010) Recovery and purification of the exopolysaccharide PS-EDIV from Sphingomonas pituitosa DSM 13101. Carbohydr Polym 80:1037–1041. doi: 10.1016/j.carbpol.2010.01.021 CrossRefGoogle Scholar
  8. Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:341–354Google Scholar
  9. Balaji S, Gopi K, Bhaskaran M (2013) A review on production of poly β-hydroxybutyrates from cyanobacteria for the production of bio plastics. Algal Res 2:278–285. doi: 10.1016/j.algal.2013.03.002 CrossRefGoogle Scholar
  10. Benny IS, Gunasekar V, Ponnusami V (2014) Review on application of xanthan gum in drug delivery. Int J PharmTech Res 6:1322–1326Google Scholar
  11. Chakraborty T, Pal R (2014) An overview of cyanobacterial exopolysaccharides: features, composition and effects of stress exposure. Int J Life Sci 8(4):1–9. doi: 10.3126/ijls.v814.10891 CrossRefGoogle Scholar
  12. Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124Google Scholar
  13. Chen G, Qiana W, Lia J, Xua Y, Chena K (2015) Exopolysaccharide of Antarctic bacterium Pseudoaltermonas sp. S-5 induces apoptosis in K562 cells. Carbohydr Polym 121:107–114. doi: 10.1016/j.carbpol.2014.12.045 PubMedCrossRefGoogle Scholar
  14. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44. doi: 10.1007/s00253-011-3477-y PubMedCrossRefGoogle Scholar
  15. Choudhury AR, Bhattacharjee P, Prasad GS (2013) Development of suitable solvent system for downstream processing of biopolymer pullulan using response surface methodology. PLoS One 8(10), e77071. doi: 10.1371/journal.pone.0077071 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Costa LAS, Campos MI, Druzian JI, de Oliveira AM, de Oliveira Jr EN (2014) Biosynthesis of xanthan gum from fermenting shrimp shell: yield and apparent viscosity. Int J Polymer Sci 2014, 273650. doi: 10.1155/2014/273650 Google Scholar
  17. Dhiya C, Benny IS, Gunasekar V, Ponnusami V (2014) A review on development of fermentative production of curdlan. Int J ChemTech Res 6:2769–2773Google Scholar
  18. Divyasri D, Gunasekar V, Benny IS, Ponnusami V (2014) A review on industrial applications of curdlan. Int J ChemTech Res 6:3000–3003Google Scholar
  19. DomInguez L, RodrIguez M, Prats D (2010) Effect of different extraction methods on bound EPS from MBR sludges. Part I: influence of extraction methods over three-dimensional EEM fluorescence spectroscopy fingerprint. Desalination 261:19–26. doi: 10.1016/j.desal.2010.05.054 CrossRefGoogle Scholar
  20. Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962. doi: 10.1016/j.carbpol.2011.08.083 CrossRefGoogle Scholar
  21. Du C, Sabirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25. doi: 10.2174/2212796811206010014 Google Scholar
  22. Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024. doi: 10.3390/md12053005 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398. doi: 10.1016/j.tibtech.2011.03.008 PubMedCrossRefGoogle Scholar
  24. Freitas F, Alves VD, Reis MA, Crespo JG, Coelhoso IM (2014) Microbial polysaccharide-based membranes: current and future applications. J Appl Polym Sci 40047. doi: 10.1002/APP.40047
  25. Galindo E, Albiter V (1996) High-yield recovery of xanthan by precipitation with isopropyl alcohol in a stirred tank. Biotechnol Prog 12:540–547. doi: 10.1021/bp9600445 CrossRefGoogle Scholar
  26. Galle S, Arendt EK (2014) Exopolysaccharides from sourdough lactic acid bacteria. Cri Rev Food Sci Nutr 54:891–901. doi: 10.1080/10408398.2011.617474 CrossRefGoogle Scholar
  27. García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579. doi: 10.1016/S0734-9750(00)00050-1 PubMedCrossRefGoogle Scholar
  28. Gaur R, Singh R, Gupta M, Gaur MK (2010) Aureobasidium pullulans, an economically important polymorphic yeast with special reference to pullulan. Afr J Biotechnol 9:7989–7997. doi: 10.5897/AJB10.948 Google Scholar
  29. Gauri SS, Mandal SM, Pati BR (2012) Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 95:331–338. doi: 10.1007/s00253-012-4159-0 PubMedCrossRefGoogle Scholar
  30. Giavasis I, Harvey LM, McNeil B (2000) Gellan gum. Cri Rev Biotechnol 20:177–211CrossRefGoogle Scholar
  31. Gumel AM, Annuar MSM, Chisti Y (2013) Recent advances in the production, recovery and applications of polyhydroxyalkanoates. J Polym Environ 21:580–605. doi: 10.1007/s10924-012-0527-1 CrossRefGoogle Scholar
  32. Gupta SK, Das P, Singh SK, Akhtar MS, Meena DK, Mandal SC (2011) Microbial levan, an ideal prebiotic and immunonutrient in aquaculture. World Aquacult 42(61):63, 66Google Scholar
  33. Halami PM (2008) Production of polyhydroxyalkanoate from starch by the native isolate Bacillus cereus CFR06. World J Microbiol Biotechnol 24:805–812. doi: 10.1007/s11274-007-9543-z CrossRefGoogle Scholar
  34. Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbuchel A, Maier UG (2011) Microalgae as bioreactors for bioplastic production. Microb Cell Fact 10:81. doi: 10.1186/1475-2859-10-81 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedoa P (2014) Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol 80:9–18. doi: 10.1128/AEM.02977-13 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Huang MY, Lee CF, Ho ST, Lin KJ, Pan CL (2013) High-yield levan produced by Bacillus licheniformis FRI MY-55 in high-sucrose medium and its prebiotic effect. J Pure Appl Microbiol 7:1585–1599Google Scholar
  37. Kabilan S, Ayyasamy M, Jayavel S, Paramasamy G (2012) Pseudomonas sp. as a source of medium chain length polyhydroxyalkanoates for controlled drug delivery: perspective. Int J Microbiol 317828. doi: 10.1155/2012/317828
  38. Kalyanasundaram GT, Doble M, Gummadi SN (2012) Production and downstream processing of (1-3)-β-D-glucan from mutant strain of Agrobacterium sp. ATCC 31750. AMB Express 2:31. doi: 10.1186/2191-0855-2-31 PubMedCentralPubMedCrossRefGoogle Scholar
  39. Kang KS, Veeder GT, Cottrell IW (1983) Some novel bacterial polysaccharides of recent development. Prog Ind Microbiol 18:231–253Google Scholar
  40. Kang JX, Chen XJ, Chen WR, Li MS, Fang Y, Li DS, Ren YZ, Liu DQ (2011) Enhanced production of pullulan in Aureobasidium pullulans by a new process of genome shuffling. Process Biochem 46:792–795. doi: 10.1016/j.procbio.2010.11.004 CrossRefGoogle Scholar
  41. Kaur V, Bera MB, Panesar PS, Kumar H, Kennedy JF (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65:454–461. doi: 10.1016/j.ijbiomac.2014.01.061 PubMedCrossRefGoogle Scholar
  42. Kocharin K, Nielsen J (2013) Specific growth rate and substrate dependent polyhydroxybutyrate production in Saccharomyces cerevisiae. AMB Express 3:18. doi: 10.1186/2191-0855-3-18 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Kreyenschulte D, Krull R, Margaritis A (2014) Recent advances in microbial biopolymer production and purification. Crit Rev Biotechnol 34:1–15. doi: 10.3109/07388551.2012.743501 PubMedCrossRefGoogle Scholar
  44. Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides – a perception. J Basic Microbiol 47:103–117. doi: 10.1002/jobm.200610203 PubMedCrossRefGoogle Scholar
  45. Laws A, Gu Y, Marshall V (2001) Biosynthesis, characterisation, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnol Adv 19:597–625. doi: 10.1016/S0734-9750(01)00084-2 PubMedCrossRefGoogle Scholar
  46. Laycock B, Halleya P, Pratt S, Werkerc A, Lanta P (2013) The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 38:536–583. doi: 10.1016/j.progpolymsci.2013.06.008 CrossRefGoogle Scholar
  47. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473. doi: 10.1007/s00253-003-l386-4 PubMedCrossRefGoogle Scholar
  48. Li H, Xu H, Xu H, Li S, Ouyang PK (2010a) Biosynthetic pathway of sugar nucleotides essential for welan gum production in Alcaligenes sp. CGMCC2428. Appl Microbiol Biotechnol 86:295–303. doi: 10.1007/s00253-009-2298-8 PubMedCrossRefGoogle Scholar
  49. Li S, Xu H, Li H, Guo C (2010b) Optimizing the production of welan gum by Alcaligenes faecalis NX-3 using statistical experiment design. Afr J Biotechnol 9:1024–1030. doi: 10.5897/AJB09.042 Google Scholar
  50. Li N, Wang Y, Zhu P, Liu Z, Guo B, Ren J (2015) Improvement of exopolysaccharide production in Lactobacillus casei LC2W by overexpression of NADH oxidase gene. Microbiol Res 171:73–77. doi: 10.1016/j.micres.2014.12.006 PubMedCrossRefGoogle Scholar
  51. Liu J, Luo J, Ye H, Zeng X (2012) Preparation, antioxidant and antitumor activities in vitro of different derivatives of Levan from endophytic bacterium Paenibacillus polymyxa EJS-3. Food Chem Toxicol 50:767–772. doi: 10.1016/j.fct.2011.11.016 PubMedCrossRefGoogle Scholar
  52. Luengo JM, Garcia B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Cur Opin Microbiol 6:251–260. doi: 10.1016/S1369-5274(03)00040-7 CrossRefGoogle Scholar
  53. Madhuri KV, Vidya Prabhakar K (2014) Microbial exopolysaccharides: biosynthesis and potential applications. Oriental J Chem 30:1401–1410, doi:10.13005/ojc/300362CrossRefGoogle Scholar
  54. Mahapatra S, Banerjee D (2013) Fungal exopolysaccharide: production, composition and applications. Microbiol Insights 6:1–16. doi: 10.4137/MBI.S10957 PubMedCentralPubMedGoogle Scholar
  55. Malang SK, Maina NH, Schwab C, Tenkanen M, Lacroix C (2015) Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiol 46:418–427. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  56. Mishra B, Vuppu S (2013) A study on downstream processing for the production of pullulan by Aureobasidium pullulans-SB-01 from the fermentation broth. Res J Recent Sci 2:16–19Google Scholar
  57. Moshaf S, Hamidi-Esfahani Z, Azizi MH (2014) Statistical optimization of xanthan gum production and influence of airflow rates in lab-scale fermentor. Appl Food Biotechnol 1:15–22Google Scholar
  58. Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158. doi: 10.1080/09593330903552094 PubMedCrossRefGoogle Scholar
  59. Osmałek T, Froelich A, Tasarek S (2014) Application of gellan gum in pharmacy and medicine. Int J Pharm 466:328–340. doi: 10.1016/j.ijpharm.2014.03.038 PubMedCrossRefGoogle Scholar
  60. Pace GW, Righelato RC (1980) Production of extracellular microbial polysaccharides. Adv Biochem Eng 15:41–70. doi: 10.1007/3540096868_2 CrossRefGoogle Scholar
  61. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12. doi: 10.1016/j.jfoodeng.2011.03.035 CrossRefGoogle Scholar
  62. Patel A, Prajapati JB (2013) Food and health applications of exopolysaccharides produced by lactic acid bacteria. Adv Dairy Res 1:2. doi: 10.4172/2329-888X.1000107 Google Scholar
  63. Patel S, Majumder A, Goyal A (2012) Potentials of exopolysaccharides from lactic acid bacteria. Indian J Microbiol 52:3–12. doi: 10.1007/s12088-011-0148-8 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Patten DA, Laws AP (2014) Lactobacillus-produced exopolysaccharides and their health benefits: a review. Beneficial Microbes (in-press). doi: 10.3920/BM2014.0117
  65. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea 693253. doi: 10.1155/2011/693253
  66. Popescua I, Pelina IM, Butnarub M, Fundueanua G, Suflet DM (2013) Phosphorylated curdlan microgels. Preparation, characterization, and in vitro drug release studies. Carbohydr Polym 94:889–898. doi: 10.1016/j.carbpol.2013.02.014 CrossRefGoogle Scholar
  67. Prajapati VD, Jani GK, Khanda SM (2013) Pullulan: an exopolysaccharide and its various applications. Carbohydr Polym 95:540–549. doi: 10.1016/j.carbpol.2013.02.082 PubMedCrossRefGoogle Scholar
  68. Rajkumar R, Vijayendra SVN, Prasad MS (2003) Optimization of exopolysaccharides from Alcaligenes eutrophus. In: Soni PL (ed) Trends in carbohydrate chemistry. Surya International Publishers, Dehra Dun, pp 212–217Google Scholar
  69. Razack SA, Velayutham V, Thangavelu V (2014) Medium optimization and in vitro antioxidant activity of exopolysaccharide produced by Bacillus subtilis. Korean J Chem Eng 31:296–303. doi: 10.1007/s11814-013-0217-2 CrossRefGoogle Scholar
  70. Rehm BHA (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, Poole, p 293Google Scholar
  71. Rehm BHA, Valla S (1997) Bacterial alginates: biosynthesis and applications. Appl Microbiol Biotechnol 48:281–288. doi: 10.1007/s002530051051 PubMedCrossRefGoogle Scholar
  72. Remminghorst U, Rehm BHA (2009) Microbial production of alginate: biosynthesis and applications. In: Microbial production of biopolymers and polymer precursor: applications and perspectives. Caister Academic Press, Palmerston NorthGoogle Scholar
  73. Salah RB, Chaari K, Besbes S, Blecker C, Attia H (2011) Production of xanthan gum from Xanthomonas campestris NRRL B-1459 by fermentation of date juice palm by-products (Phoenix dactylifera L.). J Food Process Eng 34:457–474. doi: 10.1111/j.1745-4530.2009.00369.x CrossRefGoogle Scholar
  74. Saranya Devi E, Vijayendra SVN, Shamala TR (2012) Exploration of rice bran, an agroindustry residue, for the production of intra and extra cellular polymers by Sinorhizobium meliloti MTCC 100. Biocatal Agric Biotechnol 1:80–84. doi: 10.1016/j.bcab.2011.08.014 Google Scholar
  75. Seviour RJ, Stasinopoulos SJ, Auer DPF, Gibbs PA (1992) Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol 12:279–298. doi: 10.3109/07388559209069196 CrossRefGoogle Scholar
  76. Seviour RJ, McNeil B, Fazenda ML, Harvey LM (2011) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31:170–185. doi: 10.3109/07388551.2010.505909 PubMedCrossRefGoogle Scholar
  77. Shamala TR, Prasad MS (2001) Fed-batch fermentation for rapid production of xanthan by Xanthomonas campestris. Food Biotechnol 15:169–177. doi: 10.1081/FBT-100107628 CrossRefGoogle Scholar
  78. Shamala TR, Chandrashekar A, Vijayendra SVN, Kshama L (2003) Identification of polyhydroxyalkanoate (PHA)-producing Bacillus spp. using the polymerase chain reaction (PCR). J Appl Microbiol 94:369–374PubMedCrossRefGoogle Scholar
  79. Shamala TR, Divyashree MS, Davis R, Latha Kumari KS, Vijayendra SVN, Raj B (2009) Production and characterization of bacterial polyhydroxyalkanoate copolymers and evaluation of their blends by fourier transform infrared spectroscopy and scanning electron microscopy. Indian J Microbiol 49:251–258. doi: 10.1007/s12088-009-0031-z PubMedCentralPubMedCrossRefGoogle Scholar
  80. Shamala TR, Vijayendra SVN, Joshi GJ (2012) Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus SP. CFR-67. Braz J Microbiol 43:1094–1102. doi: 10.1590/S1517-83822012000300 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Shamala TR, Rohinishree YS, Vijayendra SVN (2014) Biosynthesis of multiple biopolymers by Sinorhizobium meliloti CFR 14 in high cell density cultures through fed batch fermentation. Biocatal Agric Biotechnol 3:316–322. doi: 10.1016/j.bcab.2014.05.00 Google Scholar
  82. Shehni SA, Soudi MR, Hosseinkhani S, Behzadipour N (2011) Improvement of xanthan gum production in batch culture using stepwise acetic acid stress. Afr J Biotechnol 10:19425–19428. doi: 10.5897/AJB11.1794 Google Scholar
  83. Sheng GP, Yu HQ, Li XY (2010) Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnol Adv 28:882–894. doi: 10.5897/AJB11.1794 PubMedCrossRefGoogle Scholar
  84. Shivakumar S, Vijayendra SVN (2006) Production of exopolysaccharides by Agrobacterium sp. CFR-24 using coconut water-a byproduct of food industry. Lett Appl Microbiol 42:477–482. doi: 10.1111/j.1472-765X.2006.01881.x PubMedCrossRefGoogle Scholar
  85. Singh RS, Saini GK (2012) Biosynthesis of pullulan and its applications in food and pharmaceutical industry. In: Satyanarayana T, Jori BN, Prakash A (eds) Microorganisms in sustainable agricultural biotechnology, part 2. Springer, India, pp 509–553Google Scholar
  86. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531. doi: 10.1016/j.carbpol.2008.01.003 PubMedCrossRefGoogle Scholar
  87. Singha TK (2012) Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharm 2:276–281. doi: 10.9790/3013-0220276281 Google Scholar
  88. Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Factor 5:7. doi: 10.1186/1475-2859-5-7 CrossRefGoogle Scholar
  89. Smith JH, Pace GW (1982) Recovery of microbial polysaccharides. J Chem Technol Biotechnol 32:119–129. doi: 10.1002/jctb.5030320116 CrossRefGoogle Scholar
  90. Sreekanth MS, Vijayendra SVN, Joshi GJ, Shamala TR (2013) Effect of carbon and nitrogen sources on simultaneous production of α-amylase and green food packaging polymer by Bacillus sp. CFR 67. J Food Sci Technol 50:404–408. doi: 10.1007/s13197-012-0639-6 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Srikanth R, Reddy CHSSS, Siddartha G, Ramaiah MJ, Uppuluri KB (2015) Review on production, characterization and applications of microbial levan. Carbohydr Polym 120:102–114. doi: 10.1016/j.carbpol.2014.12.003 PubMedCrossRefGoogle Scholar
  92. Steinbüchel A (2005) A commentary on “Biosynthesis of terpolyesters of 3-hydroxybutyrate, 3-hydroxyvalerate, and 5-hydroxyvalerate in Alcaligenes eutrophus from 5-chloropentanoic and pentanoic acids” by Doi Y, Tamaki A, Kunioka M, Soga K (Makromol Chem Rapid Commun 1987, 8:631–635). Macromol Rapid Commun 26:1025–1031. doi: 10.1002/marc.200500262
  93. Survase SA, Saudagar PS, Bajaj IB, Singhal RS (2007) Scleroglucan: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:107–118Google Scholar
  94. Sutherland IW (1994) Structure-function relationships in microbial exopolysaccharides. Biotechnol Adv 12:393–448. doi: 10.1016/0734-9750(94)90018-3 PubMedCrossRefGoogle Scholar
  95. Torrestiana-Sanchez B, Balderas-Luna L, Brito-De la Fuente E, Lencki RW (2007) The use of membrane-assisted precipitation for the concentration of xanthan gum. J Membr Sci 294:84–92. doi: 10.1016/j.memsci.2007.02.014 CrossRefGoogle Scholar
  96. Ullrich M (2009) Bacterial polysaccharides: current innovations and future trends. Caister Academic Press, Poole, p 358. ISBN 978-1-904455-45-5Google Scholar
  97. Vandamme E, de Baets S, Steinbuchel A (2002) Biopolymers: polysaccharides I -polysaccharides from prokaryotes. Wiley-VCH Verlag GmbH, WeinheimGoogle Scholar
  98. Vijayendra SVN, Shamala TR (2014) Film forming microbial biopolymers for commercial applications – a review. Crit Rev Biotechnol 34:338–357. doi: 10.3109/07388551.2013.798254 PubMedCrossRefGoogle Scholar
  99. Vijayendra SVN, Sharat Babu RS (2008) Optimization of a new hetero-polysaccharide production by a native isolate of Leuconostoc sp. CFR-2181. Lett Appl Microbiol 46:643–648. doi: 10.1111/j.1472-765X.2008.02361.x PubMedCrossRefGoogle Scholar
  100. Vijayendra SVN, Bansal D, Prasad MS, Nand K (2001) Jaggery: a novel substrate for pullulan production by Aureobasidium pullulans CFR-77. Process Biochem 37:359–364. PII: S0032-9592(01)00214-XCrossRefGoogle Scholar
  101. Vijayendra SVN, Yamini D, Sudhamani SR, Prasad MS (2003) Effect of hexose sugars on exopolysaccharide production by selected bacterial cultures. J Food Sci Technol 40:611–614Google Scholar
  102. Vijayendra SVN, Rastogi NK, Shamala TR, Anil Kumar PK, Kshama L, Joshi GJ (2007) optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J Microbiol 47:170–175Google Scholar
  103. Vijayendra SVN, Veeramani S, Shamala TR (2008a) Optimization of polyhydroxy-butyrate production by β-carotene producing strain of Micrococcus sp. J Food Sci Technol 45:506–509Google Scholar
  104. Vijayendra SVN, Palanivel G, Mahadevamma S, Tharanathan RN (2008b) Physico-chemical characterization of an exopolysaccharide produced by a non-ropy strain of Leuconostoc sp. CFR 2181 isolated from dahi, an Indian traditional fermented milk product. Carbohydr Polym 72:300–307. doi: 10.1016/j.carbpol.2007.08.016 CrossRefGoogle Scholar
  105. Vijayendra SVN, Palanivel G, Mahadevamma S, Tharanathan RN (2009) Partial characterization of a new heteropolysaccharide produced by a native isolate of heterofermentative Lactobacillus sp. CFR-2182. Arch Microbiol 191:301–310. doi: 10.1007/s00203-008-0453-8 CrossRefGoogle Scholar
  106. Wang X, Xu P, Yuan Y, Liu C, Zhang D, Yang Z, Yang C, Ma C (2006) Modeling for gellan gum production by Sphingomonas paucimobilis ATCC 31461 in a simplified medium. Appl Environ Microbiol 72:3367–3374. doi: 10.1128/AEM.72.5.3367-3374.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  107. Wang X, Yuan Y, Wang K, Zhang D, Yang Z, Xu P (2007) Deproteinization of gellan gum produced by Sphingomonas paucimobilis ATCC 31461. J Biotechnol 128:403–407. doi: 10.1016/j.jbiotec.2006.09.019 PubMedCrossRefGoogle Scholar
  108. Wang X, Tao F, Gai Z, Tang H, Xu P (2012) Genome sequence of the welan gum producing strain Sphingomonas sp. ATCC 31555. J Bacteriol 194:5989–5990. doi: 10.1128/JB.01486-12 PubMedCentralPubMedCrossRefGoogle Scholar
  109. Wolfaardt GM, Lawrence JR, Korbe DR (1999) Function of EPS. In: Wingender J, Neu TR, Flemming HC (eds) Microbial extracellular polymeric substances: characterization, structure and function. Springer, New York, pp 171–200CrossRefGoogle Scholar
  110. Yadav V, Prapulla SG, Jha A, Poonia A (2011) A novel exopolysaccharide from probiotic Lactobacillus fermentum CFR 2195: production, purification and characterization. Biotechnol Bioinform Bioeng 1:415–421Google Scholar
  111. Yatmaz E, Turhan I (2012) Pullulan production by fermentation and usage in food industry. GIDA J Food 37:95–102Google Scholar
  112. Zhan XB, Lin CC, Zhang HT (2012) Recent advances in curdlan biosynthesis, biotechnological production, and applications. Appl Microbiol Biotechnol 93:525–531. doi: 10.1007/s00253-011-3740-2 PubMedCrossRefGoogle Scholar
  113. Zinn M, Hany R (2005) Tailored material properties of polyhydroxyalkanoates through biosynthesis and chemical modification. Adv Eng Mater 7:408–411. doi: 10.1002/adem.200500053 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Microbiology and Fermentation TechnologyCSIR-Central Food Technological Research InstituteMysoreIndia

Personalised recommendations