Sporulation, a Pitfall in the Path of PHB Production

  • Neha Dhasmana
  • Lalit K. Singh
  • Shashank S. Kamble
  • Nishant Kumar
  • Yogendra Singh


The concept of bioplastic is fascinating to our world, because of its potentiality to deal with one of the major global problems like plastic pollution (Kalia et al. J Sci Ind Res 59:433–445, 2000; Kalia et al. Nat Biotechnol 21:845–846, 2003). Polyhydroxybutyrates (PHB) are the best example for the polymers by plant or microorganisms from a wide range of habitats (Reddy et al. Bioresour Technol 87:137–146, 2003; Porwal et al. Bioresour Technol 99:5444–5451, 2008; Singh. Environ Microbiol 17:854–864, 2015). PHB refers to the polyesters of 3-hydroxybutyrate and can be extracted from various species like Ralstonia, Bacillus, Streptomyces, Pseudomonas, etc., which are extensively discussed in published reviews (Singh et al. Microb Cell Fact 8:38, 2009; Jendrossek and Pfeiffer. Environ Microbiol 16:2357–2373, 2014). Bioplastic has the distinct feature of being biodegradable. Further, the use of biowaste as substratum for bioplastic-producing organisms presents an interesting concept to deal with another global problem of waste management (Kumar et al. J Appl Microbiol 106:2017–2023, 2009; Kumar et al. Indian J Microbiol 55:1–7, 2015; Kumar et al. Int J Biol Macromol, 2015; Patel et al. Biomas Bioenerg 36:218–225, 2012; Patel et al. Bioresour Technol 176:136–141, 2015). Both Gram-positive and Gram-negative bacteria are reported to produce polyhydroxyalkanoates (PHA); among them Gram-negative bacteria, Ralstonia eutropha is the most extensively studied organism (Brigham et al. Appl Environ Microbiol 78:8033–8044, 2012). One major rationale to investigate the Gram-positive bacteria for their ability to produce PHB is the absence of immunogenic lipopolysaccharide which co-purifies with the PHB when Gram-negative organisms are employed, making PHB non-appealing for the use in medical purposes like various human tissue grafts (Valappil et al. Antonie Van Leeuwenhoek 91:1–17, 2007; Singh et al. Microb Cell Fact 8:38, 2009). Additional appeal for using Gram-positive bacteria, specifically Bacillus spp., is its ability to produce copolymers which are superior to their counterparts, that is, homopolymers given their enhanced characteristics like elasticity, etc. (Patel et al. Indian J Microbiol 51:418–423, 2011; Kumar et al. Indian J Microbiol 54:151–157, 2014; Kumar et al. Int J Biol Macromol, 2015). Gram-positive bacteria exist in two alternative phases in its life cycle, that is, vegetative cells and sporulation. The adverse environmental conditions drive the Bacillus vegetative cells into their transition to spores. Sporulation is an intrinsic characteristic of the Bacillus species and is mainly regulated by a master regulator of sporulation, namely, Spo0A (Slepecky and Law. J Bacteriol 82:37–42, 1961; Singh et al. Indian J Microbiol 55:234, 2015).


Corn Steep Liquor Bacillus Megaterium Sporulation Process Tamarind Kernel Powder Catabolite Control Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), Government of India, for providing the necessary funds and facilities (LSRB-268/BTB/2013 and BSC0123). Authors are also thankful to the Academy of Scientific and Innovative Research (AcSIR), New Delhi. ND is Shyama Prasad Mukherjee-Senior Research Fellow supported by CSIR, India. LKS and SSK are Senior Research Fellows supported by University Grant Commission, India. NK is Junior Research Fellow. We highly acknowledge Dr. V. C. Kalia from CSIR-IGIB, Delhi, India, for the inspiration and critical comments in the manuscript.


  1. Antunes A, Camiade E, Monot M, Courtois E, Barbut F, Sernova NV, Rodionov DA, Martin-Verstraete I, Dupuy B (2012) Global transcriptional control by glucose and carbon regulator CcpA in Clostridium difficile. Nucleic Acid Res 40:10701–10718. doi: 10.1093/nar/gks864 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Brigham CJ, Speth DR, Rha C, Sinskey AJ (2012) Whole-genome microarray and gene deletion studies reveal regulation of the polyhydroxyalkanoate production cycle by the stringent response in Ralstonia eutropha H16. Appl Environ Microbiol 78:8033–8044. doi: 10.1128/AEM.01693-12 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Chen HJ, Tsai TK, Pan SC, Lin JS, Tseng CL, Shaw GC (2010) The master transcription factor Spo0A is required for poly(3-hydroxybutyrate) (PHB) accumulation and expression of genes involved in PHB biosynthesis in Bacillus thuringiensis. FEMS Microbiol Lett 304:74–81. doi: 10.1111/j.1574-6968.2010.01888.x CrossRefPubMedGoogle Scholar
  4. Eggers J, Steinbüchel A (2014) Impact of Ralstonia eutropha’s poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 80:7702–7709. doi: 10.1128/AEM.02666-14 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Emeruwa AC, Hawirko RZ (1973) Poly-beta-hydroxybutyrate metabolism during growth and sporulation of Clostridium botulinum. J Bacteriol 116:989–993PubMedCentralPubMedGoogle Scholar
  6. Gao P, Pinkston KL, Bourgogne A, Cruz MR, Garsin DA, Murray BE, Harvey BR (2013) Library screen identifies Enterococcus faecalis CcpA, the catabolite control protein A, as an effector of Ace, a collagen adhesion protein linked to virulence. J Bacteriol 195:4761–4768. doi: 10.1128/JB.00706-13 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Hiroe A, Hyakutake M, Thomson NM, Sivaniah E, Tsuge T (2013) Endogenous ethanol affects biopolyester molecular weight in recombinant Escherichia coli. ACS Chem Biol 8:2568–2576. doi: 10.1021/cb400465p CrossRefPubMedGoogle Scholar
  8. Holmes, Christopher A (1984) An intracellular polysaccharide that serves as a carbon and energy source for sporulation in “Bacillus cereus” Strain T.
  9. Jendrossek D, Pfeiffer D (2014) New insights in the formation of polyhydroxyalkanoate granules (carbonosomes) and novel functions of poly(3-hydroxybutyrate). Environ Microbiol 16:2357–2373. doi: 10.1111/1462-2920.12356 CrossRefPubMedGoogle Scholar
  10. Kalia VC, Raizada N, Sonakya V (2000) Bioplastics. J Sci Ind Res 59:433–445Google Scholar
  11. Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi: 10.1038/nbt0803-845 CrossRefPubMedGoogle Scholar
  12. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi: 10.1016/j.gene.2006.09.010 CrossRefPubMedGoogle Scholar
  13. Kanjanachumpol P, Kulpreecha S, Tolieng V, Thongchul N (2013) Enhancing polyhydroxybutyrate production from high cell density fed-batch fermentation of Bacillus megaterium BA-019. Bioprocess Biosyst Eng 36:1463–1474. doi: 10.1007/s00449-013-0885-7 CrossRefPubMedGoogle Scholar
  14. Kuchta K, Chi L, Fuchs H, Pötter M, Steinbüchel A (2007) Studies on the influence of phasins on accumulation and degradation of PHB and nanostructure of PHB granules in Ralstonia eutropha H16. Biomacromolecules 8:657–662. doi: 10.1021/bm060912e CrossRefPubMedGoogle Scholar
  15. Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng 107:240–245. doi: 10.1016/j.jbiosc.2008.10.006 CrossRefPubMedGoogle Scholar
  16. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi: 10.1111/j.1365-2672.2009.04160.x CrossRefPubMedGoogle Scholar
  17. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotech adv.2013.08.007 CrossRefPubMedGoogle Scholar
  18. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  20. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015b) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2015.03.046 Google Scholar
  21. Liu Y, Huang S, Zhang Y, Xu F (2014) Isolation and characterization of a thermophilic Bacillus shackletonii K5 from a biotrickling filter for the production of polyhydroxybutyrate. J Environ Sci (China) 26:1453–1462. doi: 10.1016/j.jes.2014.05.011 CrossRefGoogle Scholar
  22. Lopes MS, Steinert N, Rojas JD, Hillen W, Gomez JG, Silva LF (2011) Role of CcpA in polyhydroxybutyrate biosynthesis in a newly isolated Bacillus sp. MA3.3. J Mol Microbiol Biotechnol 20:63–69. doi: 10.1159/000324502 CrossRefPubMedGoogle Scholar
  23. Mezzina MP, Wetzler DE, de Almeida A, Dinjaski N, Prieto MA, Pettinari MJ (2014) A phasin with extra talents: a polyhydroxyalkanoate granule-associated protein has chaperone activity. Environ Microbiol. doi: 10.1111/1462-2920.12636 PubMedGoogle Scholar
  24. Miyake M, Miyamoto C, Schnackenberg J, Kurane R, Asada Y (2000) Phosphotransacetylase as a key factor in biological production of polyhydroxybutyrate. Appl Biochem Biotechnol 84–86:1039–1044CrossRefPubMedGoogle Scholar
  25. Nakata HM (1963) Effect of pH on intermediates produced during growth and sporulation of Bacillus cereus. J Bacteriol 86:577–581PubMedCentralPubMedGoogle Scholar
  26. Narayanan A, Ramana KV (2012) Polyhydroxybutyrate production in Bacillus mycoides DFC1 using response surface optimization for physico-chemical process parameters. 3 Biotech 2:287–296. doi: 10.1007/s13205-012-0054-8 PubMedCentralCrossRefGoogle Scholar
  27. Obruca S, Marova I, Stankova M, Mravcova L, Svoboda Z (2010) Effect of ethanol and hydrogen peroxide on poly(3-hydroxybutyrate) biosynthetic pathway in Cupriavidus necator H16. World J Microbiol Biotechnol 26:1261–1267. doi: 10.1007/s11274-009-0296-8 CrossRefPubMedGoogle Scholar
  28. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. doi: 10.1007/s12088-011-0236-9 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomas Bioenerg 36:218–225. doi: 10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  30. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  31. Pfeiffer D, Jendrossek D (2012) Localization of poly(3-hydroxybutyrate) (PHB) granule-associated proteins during PHB granule formation and identification of two new phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. J Bacteriol 194:5909–5921. doi: 10.1128/JB.00779-12 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi: 10.1016/j.biortech.2007.11.011 CrossRefPubMedGoogle Scholar
  33. Ramadas NV, Soccol CR, Pandey A (2010) A statistical approach for optimization of polyhydroxybutyrate production by Bacillus sphaericus NCIM 5149 under submerged fermentation using central composite design. Appl Biochem Biotechnol 162:996–1007. doi: 10.1007/s12010-009-8807-5 CrossRefPubMedGoogle Scholar
  34. Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. doi: 10.1016/S0960-8524(02)00212-2 CrossRefPubMedGoogle Scholar
  35. Sadykov MR, Hartmann T, Mattes TA, Hiatt M, Jann NJ, Zhu Y, Ledala N, Landmann R, Herrmann M, Rohde H, Bischoff M, Somerville GA (2011) CcpA coordinates central metabolism and biofilm formation in Staphylococcus epidermidis. Microbiology 157:3458–3468. doi: 10.1099/mic.0.051243-0 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Salgaonkar BB, Mani K, Braganca JM (2013) Characterization of polyhydroxyalkanoates accumulated by a moderately halophilic salt pan isolate Bacillus megaterium strain H16. J Appl Microbiol 114:1347–1356. doi: 10.1111/jam.12135 CrossRefPubMedGoogle Scholar
  37. Sathiyanarayanan G, Saibaba G, Seghal Kiran G, Selvin J (2013a) Process optimization and production of polyhydroxybutyrate using palm jaggery as economical carbon source by marine sponge-associated Bacillus licheniformis MSBN12. Bioprocess Biosyst Eng 36:1817–1827. doi: 10.1007/s00449-013-0956-9 CrossRefPubMedGoogle Scholar
  38. Sathiyanarayanan G, Saibaba G, Seghal Kiran G, Selvin J (2013b) A statistical approach for optimization of polyhydroxybutyrate production by marine Bacillus subtilis MSBN17. Int J Biol Macromol 59:170–177. doi: 10.1016/j.ijbiomac.2013.04.040 CrossRefPubMedGoogle Scholar
  39. Shamala TR, Vijayendra SV, Joshi GJ (2012) Agro-industrial residues and starch for growth and co-production of polyhydroxyalkanoate copolymer and α-amylase by Bacillus sp. CFR-67. Braz J Microbiol 43:1094–1102. doi: 10.1590/S1517-838220120003000036 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as a potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Singh LK, Dhasmana N, Singh Y (2014) Quorum sensing systems in Bacillus. Quorum sensing Vs Quorum Quenching: a battle with no end in sight. Springer, New Delhi. ISBN 978-81-322-1981-1Google Scholar
  42. Singh LK, Dhasmana N, Sajid A, Kumar P, Bhaduri A, Bharadwaj M, Gandotra S, Kalia VC, Das TK, Goel AK, Pomerantsev AP, Misra R, Gerth U, Leppla SH, Singh Y (2015a) clpC operon regulates cell architecture and sporulation in Bacillus anthracis. Environ Microbiol 17:854–864. doi: 10.1111/1462-2920.12548 CrossRefGoogle Scholar
  43. Singh M, Kumar P, Ray S, Kalia VC (2015b) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:234. doi: 10.1007/s12088-015-0528-6 CrossRefGoogle Scholar
  44. Slepecky RA, Law JH (1961) Synthesis and degradation of poly-beta-hydroxybutyric acid in connection with sporulation of Bacillus megaterium. J Bacteriol 82:37–42PubMedCentralPubMedGoogle Scholar
  45. Strauch MA, Ballar P, Rowshan AJ, Zoller KL (2005) The DNA-binding specificity of the Bacillus anthracis AbrB protein. Microbiology 151:1751–1759. doi: 10.1099/mic.0.27803-0 CrossRefPubMedGoogle Scholar
  46. Supono, Hutabarat J, Prayitno SB, Darmanto YS (2013) The effect of different C:N and C:P ratio of media on the content of polyhydroxybutyrate in biofloc inoculated with bacterium Bacillus cereus. J Coast Dev 16:114–120Google Scholar
  47. Thomson NM, Saika A, Ushimaru K, Sangiambut S, Tsuge T, Summers DK, Sivaniah E (2013) Efficient production of active polyhydroxyalkanoate synthase in Escherichia coli by coexpression of molecular chaperones. Appl Environ Microbiol 79:1948–1955. doi: 10.1128/AEM.02881-12 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Ushimaru K, Motoda Y, Numata K, Tsuge T (2014) Aeromonas caviae polyhydroxyalkanoate synthase is activated by phasin proteins: a comparative study with Ralstonia eutropha synthase. Appl Environ Microbiol 80:2867–2873. doi: 10.1128/AEM.04179-13 PubMedCentralCrossRefPubMedGoogle Scholar
  49. Valappil SP, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates in Gram-positive bacteria: insights from the genera Bacillus and Streptomyces. Antonie Van Leeuwenhoek 91:1–17. doi: 10.1007/s10482-006-9095-5 CrossRefPubMedGoogle Scholar
  50. Vazquez GJ, Pettinari MJ, Méndez BS (2003) Evidence of an association between poly (3-hydroxybutyrate) accumulation and phosphotransbutyrylase expression in Bacillus megaterium. Int Microbiol 6:127–129CrossRefPubMedGoogle Scholar
  51. Vijayendra SV, Rastogi NK, Shamala TR, Anil Kumar PK, Kshama L, Joshi GJ (2007) Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J Microbiol 47:170–175. doi: 10.1007/s12088-007-0033-7 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Wu Q, Huang H, Hu G, Chen J, Ho KP, Chen GQ (2001) Production of poly-3-hydroxybutyrate by Bacillus sp. JMa5 cultivated in molasses media. Antonie Van Leeuwenhoek 80:111–118CrossRefPubMedGoogle Scholar
  53. York GM, Stubbe J, Sinskey AJ (2001) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397. doi: 10.1128/JB.183.7.2394-2397.2001 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Yoshida K, Takemoto Y, Sotsuka T, Tanaka K, Takenaka S (2013) PhaP phasins play a principal role in poly-β-hydroxybutyrate accumulation in free-living Bradyrhizobium japonicum. BMC Microbiol 13:290. doi: 10.1186/1471-2180-13-290 PubMedCentralCrossRefPubMedGoogle Scholar
  55. Zhang Y, Sun W, Wang H, Geng A (2013) Polyhydroxybutyrate production from oil palm empty fruit bunch using Bacillus megaterium R11. Bioresour Technol 147:307–314. doi:  10.1016/j.biortech.2013.08.029 CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Allergy and Infectious DiseasesCSIR-Institute of Genomics and Integrative BiologyDelhiIndia
  2. 2.CSIR-Institute of Genomics and Integrative BiologyAllergy and Infectious DiseasesDelhiIndia
  3. 3.Allergy and Infectious DiseasesCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations