Frontiers in Biomedical Engineering: PHA-Fabricated Implants

  • Lalit K. Singh
  • Neha Dhasmana
  • Shashank S. Kamble
  • Aditya K. Sharma
  • Yogendra Singh


Polyhydroxyalkonoates (PHAs) are biological in origin, organic polyesters comprising the industrial and biomedical interest. This chapter summarizes the current advances, applications, limitations, and challenges of biopolymers in medicine. Biopolymers not only substitute the existing polymers, but novel combinations of diverse PHAs broaden the applicability and utility. The PHA-based implants are new dimensions of future in biomedical engineering.


Tissue Engineering Bone Tissue Engineering Enhance Cell Proliferation Pericardial Patch Cartilage Tissue Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the director of CSIR-Institute of Genomics and Integrative Biology (IGIB) and Defence Research and Development Establishment (DRDE), Jhansi Road, Gwalior (LSRB-268/BTB/2013 and BSC0123), Government of India, for providing the necessary funds and facilities. Authors are also thankful to the Academy of Scientific and Innovative Research (AcSIR), New Delhi. Lalit K Singh, Shashank S Kamble, and Aakriti Gangwal are thankful to UGC, and Neha Dhasmana is thankful to CSIR, for granting Senior Research Fellowships. We highly acknowledge Dr. V. C. Kalia and Mr. Prasun Kumar, from CSIR-IGIB, Delhi, and Ms. Aakriti Gangwal from UDSC New Delhi, India, for their critical comments in the manuscript.


  1. Adamus G, Sikorska W, Janeczek H, Kwiecień M, Sobota M, Kowalczuk M (2012) Novel block copolymers of atactic PHB with natural PHA for cardiovascular engineering: synthesis and characterization. Eur Polym J 48:621–631. doi: 10.1016/j.eurpolymj.2011.12.017 CrossRefGoogle Scholar
  2. Armstrong SJ, Wiberg M, Terenghi G, Kingham PJ (2007) ECM molecules mediate both Schwann cell proliferation and activation to enhance neurite outgrowth. Tissue Eng 13:2863–2870. doi: 10.1089/ten.2007.0055 CrossRefPubMedGoogle Scholar
  3. Baek JY, Xing ZC, Kwak G, Yoon KB, Park SY, Park LS, Kang IK (2012) Fabrication and characterization of collagen-immobilized porous PHBV/HA nanocomposite scaffolds for bone tissue engineering. J Nanomater 171804:1–11. doi: 10.1155/2012/171804 Google Scholar
  4. Bian YZ, Wang Y, Guli S, Chen GQ, Wu Q (2009) Evaluation of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials 30:217–225. doi: 10.1016/j.biomaterials.2008.09.036 CrossRefPubMedGoogle Scholar
  5. Bruder SP, Fox BS (1999) Tissue engineering of bone cell based strategies. Clin Orthop Relat Res 367:68–83, PMID:10546637CrossRefGoogle Scholar
  6. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio and materials industry. Chem Soc Rev 38:2434–2446. doi: 10.1039/b812677c CrossRefPubMedGoogle Scholar
  7. Chen W, Tong YW (2012) PHBV microspheres as neural tissue engineering scaffold support neuronal cell growth and axon–dendrite polarization. Acta Biomater 8:540–548. doi: 10.1016/j.actbio.2011.09.026 CrossRefPubMedGoogle Scholar
  8. Chen GQ, Wu Q (2005) Polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036 CrossRefPubMedGoogle Scholar
  9. Chen GQ, Zhang G, Park SJ, Lee SJ (2001) Industrial production of poly(hydroxybutyrate-co-hydroxyhexanoate). Appl Microbiol Biotechnol 57:50–55, PMID: 11693933CrossRefPubMedGoogle Scholar
  10. Cool SM, Kenny B, Wu A, Nurcombe V, Trau M, Cassady AI, Grøndahl L (2007) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration, in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage pro-inflammatory response. J Biomed Mater Res A 82A:599–610. doi: 10.1002/jbm.a.31174 CrossRefGoogle Scholar
  11. Dai ZW, Zou XH, Chen GQ (2009) Poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) as an injectable implant system for prevention of post-surgical tissue adhesion. Biomaterials 30:3075–3083. doi: 10.1016/j.biomaterials.2009.02.015 CrossRefPubMedGoogle Scholar
  12. Du DJ, Furukawa KS, Ushida T (2009) 3-D culture of osteoblast-like cells by unidirectional or oscillatory flow for bone tissue engineering. Biotechnol Bioeng 102:1670–1678. doi: 10.1002/bit.22214 CrossRefPubMedGoogle Scholar
  13. Duvernoy O, Malm T, Ramström J, Bowald S (1995) A biodegradable patch used as a pericardial substitute after cardiac surgery: 6- and 24-month evaluation with CT. Thorac Cardiovasc Surg 43:271–274. doi: 10.1055/s-2007-1013226 CrossRefPubMedGoogle Scholar
  14. Francis L, Meng D, Knowles J, Keshavarz T, Boccaccini AR, Roy I (2011) Controlled delivery of gentamicin using poly(3-hydroxybutyrate) microspheres. Int J Mol Sci 12:4294–4314. doi: 10.3390/ijms12074294 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Fu P, Sodian R, Lüders C, Lemke T, Kraemer L, Hübler M, Weng Y, Hoerstrup SP, Meyer R, Hetzer R (2004) Effects of basic fibroblast growth factor and transforming growth factor-beta on maturation of human pediatric aortic cell culture for tissue engineering of cardiovascular structures. ASAIO J 50:9–14, PMID: 14763486CrossRefPubMedGoogle Scholar
  16. Fujimoto KL, Guan J, Oshima H, Sakai T, Wagner WR (2007) In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann Thorac Surg 83:648–654. doi: 10.1016/j.athoracsur.2006.06.085 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Gao Y, Kong L, Zhang L, Gong Y, Chen G, Zhao N, Zhang X (2006) Improvement of mechanical properties of poly(DL-lactide) films by blending of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Eur Polym J 42:764–775. doi: 10.1016/j.eurpolymj.2005.09.028 CrossRefGoogle Scholar
  18. Gaudio CD, Fioravanzo L, Folin M, Marchi F, Ercolani E, Bianco A (2012) Electrospun tubular scaffolds: on the effectiveness of blending poly(ε-caprolactone) with poly(3-hydroxybutyrate-co-3-hydroxyvalerate). J Biomed Mater Res B Appl Biomater 100:1883–1898. doi: 10.1002/jbm.b.32756 CrossRefPubMedGoogle Scholar
  19. Hayati AN, Hosseinalipour SM, Rezaie HR, Shokrgozar MA (2012) Characterization of poly(3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds fabricated without the use of organic solvents for bone tissue engineering application. Mater Sci Eng C 32:416–422. doi: 10.1016/j.msec.2011.11.013 CrossRefGoogle Scholar
  20. Ihssen J, Magnani D, Thony-Meyer L, Ren Q (2009) Use of extracellular medium chain length polyhydroxyalkanoate depolymerase for targeted binding of proteins to artificial poly[(3-hydroxyoctanoate)-co-(3-hydroxy-hexanoate)] granules. Biomacromol 10:1854–1864. doi: 10.1021/bm9002859 CrossRefGoogle Scholar
  21. Ji Y, Li XT, Chen GQ (2008) Interactions between a poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials 29:3807–3814. doi: 10.1016/j.biomaterials.2008.06.008 CrossRefPubMedGoogle Scholar
  22. Kalia VC, Raizada N, Sonakya V (2000) Bioplastics. J Sci Ind Res 59:433–445Google Scholar
  23. Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi: 10.1038/nbt0803-845 CrossRefPubMedGoogle Scholar
  24. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi: 10.1016/j.gene.2006.09.010 CrossRefPubMedGoogle Scholar
  25. Karageorgiou V, Kaplan D (2005) Porosity of 3-D biomaterial scaffolds and osteogenesis. Biomaterials 26:5474–5491. doi: 10.1016/j.biomaterials.2005.02.002 CrossRefPubMedGoogle Scholar
  26. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. To produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi: 10.1111/j.1365-2672.2009.04160.x CrossRefPubMedGoogle Scholar
  27. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 CrossRefPubMedGoogle Scholar
  28. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  30. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015b) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2015.03.046 Google Scholar
  31. Kuppan P, Vasanthan KS, Sundaramurthi D, Krishnan UM, Sethuraman S (2011) Development of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fibers for skin tissue engineering: effects of topography, mechanical, and chemical stimuli. Biomacromolecules 12:3156–3165. doi: 10.1021/bm200618w CrossRefPubMedGoogle Scholar
  32. Li Z, Lin H, Ishii N, Chen GQ, Inoue Y (2007) Study of enzymatic degradation of microbial copolyesters consisting of 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates. Polym Degrad Stab 92:1708–1714. doi: 10.1016/j.polymdegradstab.2007.06.001 CrossRefGoogle Scholar
  33. Li XT, Zhang Y, Chen GQ (2008) Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials 29:3720–3728. doi: 10.1016/j.biomaterials.2008.06.004 CrossRefPubMedGoogle Scholar
  34. Li C, Zhang J, Li Y, Moran S, Khang G, Ge Z (2013) Poly(L-lactide-co-caprolactone) scaffolds enhanced with poly(3-hydroxybutyrate-co-hydroxyvalerate) microspheres for cartilage regeneration. Biomed Mater 8025005:1–8. doi: 10.1088/1748-6041/8/2/025005 Google Scholar
  35. Liu J, Zhao B, Zhang Y, Lin Y, Hu P, Ye C (2010) PHBV and pre-differentiated human adipose-derived stem cells for cartilage tissue engineering. J Biomed Mater Res Part A 94A:603–610. doi: 10.1002/jbm.a.32730 Google Scholar
  36. Madhavan K, Elliott WH, Bonani W, Monnet E, Tan W (2013) Mechanical and biocompatible characterizations of a readily available multilayer vascular graft. J Biomed Mater Res B Appl Biomater 101:506–519. doi: 10.1002/jbm.b.32851 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Malm T, Bowald S, Bylock A, Busch C (1992) Prevention of postoperative pericardial adhesions by closure of the pericardium with absorbable polymer patches. An experimental study. J Thorac Cardiovasc Surg 104:600–607, PMID: 1513149PubMedGoogle Scholar
  38. Marois Y, Zhang Z, Vert M, Beaulieu L, Lenz RW, Guidoin R (1999) In vivo biocompatibility and degradation studies of polyhydroxyoctanoate in the rat: a new sealant for the polyester arterial prosthesis. Tissue Eng 5:369–386, PMID: 10477858CrossRefPubMedGoogle Scholar
  39. Masaeli E, Morshed M, Nasr-Esfahani MH, Sadri S, Hilderink J, van Apeldoorn A, van Blitterswijk CA, Moroni L (2013) Fabrication, characterization and cellular compatibility of poly(hydroxy alkanoate) composite nanofibrous scaffolds for nerve tissue engineering. PLoS ONE 8(2), e57157. doi: 10.1371/ journal.pone.0057157 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Masood F, Yasin T, Hameed A (2014) Polyhydroxyalkanoates–what are the uses? Current challenges and perspectives. Crit Rev Biotechnol. doi: 10.3109/07388551.2014.913548 PubMedGoogle Scholar
  41. Merolli A, Rocchi L, Wang XM, Cui FZ (2014) Peripheral nerve regeneration inside collagen-based artificial nerve guides in humans. J Appl Biomater Funct Mater. doi: 10.5301/jabfm.5000188 Google Scholar
  42. Misra SK, Valappil SP, Roy I, Boccaccini AR (2006) Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications. Biomacromolecules 7:2249–2258. doi: 10.1021/bm060317c CrossRefPubMedGoogle Scholar
  43. Misra SK, Ansari TI, Valappil SP, Mohn D, Philip SE, Stark WJ, Roy I, Knowles JC, Salih V, Boccaccini AR (2010) Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications. Biomaterials 31:2806–2815. doi: 10.1016/j.biomaterials.2009.12.045 CrossRefPubMedGoogle Scholar
  44. Mohanna PN, Young RC, Wiberg M, Terenghi G (2003) A composite poly-hydroxybutyrate–glial growth factor conduit for long nerve gap repairs. J Anat 203:553–565. doi: 10.1046/j.1469-7580.2003.00243.x PubMedCentralCrossRefPubMedGoogle Scholar
  45. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomas Bioenerg 36:218–225. doi: 10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  46. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  47. Peschel G, Dahse HM, Konrad A, Wieland GD, Mueller PJ, Martin DP, Roth M (2008) Growth of keratinocytes on porous films of poly(3-hydroxybutyrate) and poly(4-hydroxybutyrate) blended with hyaluronic acid and chitosan. J Biomed Mater Res A 85:1072–1081. doi: 10.1002/jbm.a.31666 CrossRefPubMedGoogle Scholar
  48. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi: 10.1016/j.biortech.2007.11.011 CrossRefPubMedGoogle Scholar
  49. Prabhakaran MP, Vatankhah E, Ramakrishna S (2013) Electrospun aligned PHBV/collagen nanofibers as substrates for nerve tissue engineering. Biotechnol Bioeng 110:2775–2784. doi: 10.1002/ bit.24937 CrossRefPubMedGoogle Scholar
  50. Qu XH, Wu Q, Chen GQ (2006) In vitro study on hemocompatibility and cytocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhex-anoate). J Biomater Sci 17:1107–1121. doi: 10.1163/156856206778530704 CrossRefGoogle Scholar
  51. Reddy CSK, Ghai R, Kalia V (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. doi: 10.1016/S0960-8524(02)00212-2 CrossRefPubMedGoogle Scholar
  52. Sankar D, Chennazhi KP, Nair SV, Jayakumar R (2012) Fabrication of chitin/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hydrogel scaffold. Carbohyd Polym 90:725–729. doi: 10.1016/j.carbpol.2012.05.041 CrossRefGoogle Scholar
  53. Shum-Tim D, Stock U, Hrkach J, Shinoka T, Lien J, Moses MA, Stamp A, Taylor G, Moran AM, Landis W, Langer R, Vacanti JP, Mayer JE (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68:2298–2304. doi: 10.1016/S0003-4975(99)01055-3 CrossRefPubMedGoogle Scholar
  54. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38 PubMedCentralCrossRefPubMedGoogle Scholar
  55. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi: 10.1007/s12088-012-0294-7 PubMedCentralCrossRefPubMedGoogle Scholar
  56. Singh LK, Dhasmana N, Sajid A, Kumar P, Bhaduri A, Bharadwaj M, Gandotra S, Kalia VC, Das TK, Goel AK, Pomerantsev AP, Misra R, Gerth U, Leppla SH, Singh Y (2015a) ClpC operon regulates cell architecture and sporulation in Bacillus anthracis. Environ Microbiol 17:854–864. doi: 10.1111/1462-2920.12548 CrossRefGoogle Scholar
  57. Singh M, Kumar P, Ray S, Kalia VC (2015b) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:234. doi: 10.1007/s12088-015-0528-6 CrossRefGoogle Scholar
  58. Sultana N, Wang M (2012) PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation. Biofabrication 4:015003. doi: 10.1088/1758-5082/4/1/015003 CrossRefPubMedGoogle Scholar
  59. Sun JY, Wu J, Li HY, Chang J (2005) Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for cartilage tissue engineering. Eur Polym J 41:2443–2449. doi: 10.1016/j.eurpolymj.2005.04.039 CrossRefGoogle Scholar
  60. Tang HY, Ishii D, Mahara A, Murakami S, Tetsuji Y, Kumar S, Razip S, Masahiro F, Mizuo M, Tadahisa I (2008) Scaffolds from electrospun polyhydroxyalkanoate copolymers: fabrication, characterization, bioabsorption and tissue response. Biomaterials 29:1307–1317. doi: 10.1016/j.biomaterials.2007.11.031 CrossRefGoogle Scholar
  61. Veleirinho B, Coelho DS, Dias PF, Maraschin M, Ribeiro-do-Valle RM, Lopes-da-Silva JA (2012) Nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/chitosan scaffolds for skin regeneration. Int J Biol Macromol 51:343–350. doi: 10.1016/j.ijbiomac.2012.05.023 CrossRefPubMedGoogle Scholar
  62. Wang Y, Wu Q, Chen GQ (2004) Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydro-xybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials 25:669–675. doi: 10.1016/S0142-9612(03)00561-1 CrossRefPubMedGoogle Scholar
  63. Wang Y, Bian YZ, Wu Q, Chen GQ (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29:2858–2868. doi: 10.1016/j.biomaterials.2008.03.021 CrossRefPubMedGoogle Scholar
  64. Wang N, Zhou Z, Xia L, Dai Y, Liu H (2013) Fabrication and characterization of bioactive β-Ca2SiO4/PHBV composite scaffolds. Mater Sci Eng C 33:2294–2301. doi: 10.1016/j.msec.2013.01.059 CrossRefGoogle Scholar
  65. Wu S, Liu YL, Cui B, Qu XH, Chen GQ (2007) Study on decellularized porcine aortic valve/poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) hybrid heart valve in sheep model. Artif Organs 31:689–697. doi: 10.1111/j.1525-1594.2007.00442.x CrossRefPubMedGoogle Scholar
  66. Wu S, Liu YL, Cui B, Tang Y, Wang Q, Qu XH, Chen GQ (2008) Intravascular biocompatibility of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) for cardiovascular tissue engineering. Chinese J Biotechnol 24:610–616. doi: 10.1016/S1872-2075(08)60030-8 CrossRefGoogle Scholar
  67. Xiao XQ, Zhao Y, Chen GQ (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616. doi: 10.1016/j.biomaterials.2007.04.046 CrossRefPubMedGoogle Scholar
  68. Yang Q, Wang J, Zhang S, Tang X, Shang G, Peng Q, Wang Rand Cai X (2014) The properties of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and its applications in tissue engineering. Curr Stem Cell Res Ther 9:215–222CrossRefPubMedGoogle Scholar
  69. Young RC, Wiberg M, Terenghi G (2002) Poly-3-hydroxybutyrate (PHB): a resorbable conduit for long-gap repair in peripheral nerves. Br J Plast Surg 55:235–240. doi: 10.1054/bjps.2002.3798 CrossRefPubMedGoogle Scholar
  70. Yu GH, Fan YB (2008) Preparation of poly(D, L-lactic acid) scaffolds using alginate particles. J Biomater Sci-Polym Ed 19:87–98. doi: 10.1163/156856208783227703 CrossRefPubMedGoogle Scholar
  71. Yucel D, Kose GT, Hasirci V (2010) Polyester based nerve guidance conduit design. Biomaterials 31:1596–1603. doi: 10.1016/j.biomaterials.2009.11.013 CrossRefPubMedGoogle Scholar
  72. Zhang L, Zheng Z, Xi J, Gao Y, Aob Q, Gong Y, Zhao N, Zhang X (2007) Improved mechanical property and biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for blood vessel tissue engineering by blending with poly(propylene carbonate). Europ Polym J 43:2975–2978. doi: 10.1016/j.eurpolymj.2007.04.007 CrossRefGoogle Scholar
  73. Zhu XH, Gan SK, Wang CH, Tong YW (2007a) Proteins combination on PHBV microsphere scaffold to regulate Hep3B cells activity and functionality: a model of liver tissue engineering system. J Biomed Mater Res 83A:606–616. doi: 10.1002/jbm.a.31257 CrossRefGoogle Scholar
  74. Zhu XH, Wang CH, Tong YW (2007b) Growing tissue-like constructs with Hep3B/HepG2 liver cells on PHBV microspheres of different sizes. J Biomed Mater Res B 82B:7–16. doi: 10.1002/jbm.b.30698 CrossRefGoogle Scholar
  75. Zhu XH, Wang CH, Tong YW (2009) In vitro characterization of hepatocyte growth factor release from PHBV/PLGA microsphere scaffold. Biomed Mater Res 89A:411–423. doi: 10.1002/jbm.a.31978 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Lalit K. Singh
    • 1
  • Neha Dhasmana
    • 2
  • Shashank S. Kamble
    • 2
  • Aditya K. Sharma
    • 2
  • Yogendra Singh
    • 3
  1. 1.CSIR-Institute of Genomics and Integrative BiologyAllergy and Infectious DiseasesDelhiIndia
  2. 2.Allergy and Infectious DiseasesCSIR-Institute of Genomics and Integrative BiologyDelhiIndia
  3. 3.Allergy and Infectious DiseasesCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations