Advertisement

Synthetic Biology Strategies for Polyhydroxyalkanoate Synthesis

  • Gunjan Arora
  • Andaleeb Sajid
  • Parijat Kundu
  • Mritunjay Saxena

Abstract

Synthetic biologists are trying to apply engineering principles in biology to create an artificial world with unlimited possibilities. The guiding principle is to look beyond finding the solutions and to create new ones. Synthetic biologists are now routinely designing synthetic genetic circuits in bacteria and yeast. The major aim is to use microbes as cell factories for the production of bioactive compounds with a particular focus on drugs, biofuels, and biopolymers. In this chapter, we emphasize on understanding the synthetic biology approaches and their role in creating polyhydroxyalkanoate (PHA)-producing microbial factories.

Keywords

Polylactic Acid Synthetic Biology Genetic Circuit Genetic Switch Synthetic Biologist 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors wish to thank the CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, Government of India for providing support.

References

  1. Acevedo-Rocha CG, Fang G, Schmidt M, Ussery DW, Danchin A (2013) From essential to persistent genes: a functional approach to constructing synthetic life. Trends Genet 29:273–279PubMedCentralCrossRefPubMedGoogle Scholar
  2. Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683PubMedCentralCrossRefPubMedGoogle Scholar
  3. Amara AA, Steinbuchel A, Rehm BH (2002) In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol 59:477–482CrossRefPubMedGoogle Scholar
  4. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123CrossRefPubMedGoogle Scholar
  5. Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627CrossRefPubMedGoogle Scholar
  6. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028PubMedCentralCrossRefPubMedGoogle Scholar
  7. Arkin A (2008) Setting the standard in synthetic biology. Nat Biotechnol 26:771–774CrossRefPubMedGoogle Scholar
  8. Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419PubMedCentralCrossRefPubMedGoogle Scholar
  9. Benner SA, Yang Z, Chen F (2011) Synthetic biology, tinkering biology, and artificial biology. What are we learning? C R Chim 14:372–387CrossRefGoogle Scholar
  10. Breitling R, Takano E, Gardner TS (2015) Judging synthetic biology risks. Science 347:107CrossRefPubMedGoogle Scholar
  11. Brophy JA, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11:508–520PubMedCentralCrossRefPubMedGoogle Scholar
  12. Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390CrossRefPubMedGoogle Scholar
  13. Carothers JM, Goler JA, Keasling JD (2009) Chemical synthesis using synthetic biology. Curr Opin Biotechnol 20:498–503CrossRefPubMedGoogle Scholar
  14. Chandran D, Bergmann FT, Sauro HM (2009) TinkerCell: modular CAD tool for synthetic biology. J Biol Eng 3:19PubMedCentralCrossRefPubMedGoogle Scholar
  15. Chandrasegaran SK, Ramani K, Sriram RD, Horváth I, Bernard A, Harik RF, Gao W (2013) The evolution, challenges, and future of knowledge representation in product design systems. Comput Aided Des 45:204–228CrossRefGoogle Scholar
  16. Chen BS, Wu CC (2013) Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells 2:635–688PubMedCentralCrossRefPubMedGoogle Scholar
  17. Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R (2014) Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol 15:289–294CrossRefPubMedGoogle Scholar
  18. Cole JA (2014) Synthetic biology: old wine in new bottles with an emerging language that ranges from the sublime to the ridiculous? FEMS Microbiol Lett 351:113–115CrossRefPubMedGoogle Scholar
  19. Colin VL, Rodriguez A, Cristobal HA (2011) The role of synthetic biology in the design of microbial cell factories for biofuel production. J Biomed Biotechnol 2011:601834PubMedCentralCrossRefPubMedGoogle Scholar
  20. Dana GV, Kuiken T, Rejeski D, Snow AA (2012) Synthetic biology: Four steps to avoid a synthetic-biology disaster. Nature 483:29CrossRefPubMedGoogle Scholar
  21. Eils R, Ritzerfeld J, Wiechert W (2015) Editorial: Synthetic biology – ready for application. Biotechnol J 10:229–230CrossRefPubMedGoogle Scholar
  22. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338CrossRefPubMedGoogle Scholar
  23. Endy D (2005) Foundations for engineering biology. Nature 438:449–453CrossRefPubMedGoogle Scholar
  24. Foo JL, Ching CB, Chang MW, Leong SS (2012) The imminent role of protein engineering in synthetic biology. Biotechnol Adv 30:541–549CrossRefPubMedGoogle Scholar
  25. Friedrich K (2013) Digital ‘faces’ of synthetic biology. Stud Hist Philos Biol Biomed Sci 44:217–224CrossRefPubMedGoogle Scholar
  26. Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, Roehner N, Wilson ML, Adam L, Anderson JC, Bartley BA, Beal J, Chandran D, Chen J, Densmore D, Endy D, Grunberg R, Hallinan J, Hillson NJ, Johnson JD, Kuchinsky A, Lux M, Misirli G, Peccoud J, Plahar HA, Sirin E, Stan GB, Villalobos A, Wipat A, Gennari JH, Myers CJ, Sauro HM (2014) The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32:545–550CrossRefPubMedGoogle Scholar
  27. Gardner TS, Hawkins K (2013) Synthetic biology: evolution or revolution? A co-founder’s perspective. Curr Opin Chem Biol 17:871–877CrossRefPubMedGoogle Scholar
  28. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342CrossRefPubMedGoogle Scholar
  29. Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103:425–430PubMedCentralCrossRefPubMedGoogle Scholar
  30. Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13:247–261CrossRefPubMedGoogle Scholar
  31. Heinemann M, Panke S (2006) Synthetic biology-putting engineering into biology. Bioinformatics 22:2790–2799CrossRefPubMedGoogle Scholar
  32. Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140:19–23CrossRefPubMedGoogle Scholar
  33. Hu B, Dhar PK (2015) Introduction to systems biology. Systems and Synthetic Biology. Springer, Netherlands, pp 3–23Google Scholar
  34. Immethun CM, Hoynes-O’Connor AG, Balassy A, Moon TS (2013) Microbial production of isoprenoids enabled by synthetic biology. Front Microbiol 4:75PubMedCentralCrossRefPubMedGoogle Scholar
  35. Kaebnick GE, Gusmano MK, Murray TH (2014) The ethics of synthetic biology: next steps and prior questions. Hastings Cent Rep 44(S5):S4–S26CrossRefPubMedGoogle Scholar
  36. Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi: 10.1038/nbt0803-845 CrossRefPubMedGoogle Scholar
  37. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi: 10.1016/j.gene.2006.09.010 CrossRefPubMedGoogle Scholar
  38. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76CrossRefPubMedGoogle Scholar
  39. Kelwick R, MacDonald JT, Webb AJ, Freemont P (2014) Developments in the tools and methodologies of synthetic biology. Front Bioeng Biotechnol 2:60PubMedCentralCrossRefPubMedGoogle Scholar
  40. Keung AJ, Joung JK, Khalil AS, Collins JJ (2015) Chromatin regulation at the frontier of synthetic biology. Nat Rev Genet 16:159–171CrossRefPubMedGoogle Scholar
  41. Kocharin K, Chen Y, Siewers V, Nielsen J (2012) Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2:52PubMedCentralCrossRefPubMedGoogle Scholar
  42. Kolisnychenko V, Plunkett G, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647PubMedCentralCrossRefPubMedGoogle Scholar
  43. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023CrossRefPubMedGoogle Scholar
  44. Kumar P, Patel SK, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561CrossRefPubMedGoogle Scholar
  45. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  47. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015b) Bioconversion of crude glycerol to PHA by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2015.03.046 Google Scholar
  48. Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012a) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546CrossRefPubMedGoogle Scholar
  49. Lee SY, Mattanovich D, Villaverde A (2012b) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11:156PubMedCentralCrossRefPubMedGoogle Scholar
  50. Lienert F, Lohmueller JJ, Garg A, Silver PA (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15:95–107PubMedCentralCrossRefPubMedGoogle Scholar
  51. Linton E (2010) A synthetic biological engineering approach to secretion-based recovery of polyhydroxyalkanoates and other cellular productsGoogle Scholar
  52. Liu H, Xu Y, Zheng Z, Liu D (2010) 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5:1137–1148CrossRefPubMedGoogle Scholar
  53. Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J (2013) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 97:6113–6127CrossRefPubMedGoogle Scholar
  54. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202PubMedCentralCrossRefPubMedGoogle Scholar
  55. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedCentralPubMedGoogle Scholar
  56. Maehara A, Ueda S, Nakano H, Yamane T (1999) Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. J Bacteriol 181:2914–2921PubMedCentralPubMedGoogle Scholar
  57. Marchisio MA, Stelling J (2009) Computational design tools for synthetic biology. Curr Opin Biotechnol 20:479–485CrossRefPubMedGoogle Scholar
  58. Meyer HP, Schmidhalter DR (2012) Microbial expression systems and manufacturing from a market and economic perspective, innovations in biotechnology, Dr. Eddy C. Agbo (Ed.), ISBN: 978-953-51-0096-6, InTech. doi: 10.5772/29417
  59. Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401CrossRefPubMedGoogle Scholar
  60. Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532CrossRefPubMedGoogle Scholar
  61. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Bioma Bioenerg 36:218–225. doi: 10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  62. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 CrossRefPubMedGoogle Scholar
  63. Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413CrossRefPubMedGoogle Scholar
  64. Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247CrossRefGoogle Scholar
  65. Pickens LB, Tang Y, Chooi YH (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236PubMedCentralCrossRefPubMedGoogle Scholar
  66. Pinto F, van Elburg KA, Pacheco CC, Lopo M, Noirel J, Montagud A, Urchueguia JF, Wright PC, Tamagnini P (2012) Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiol 158:448–464CrossRefGoogle Scholar
  67. Posfai G, Plunkett G, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046CrossRefPubMedGoogle Scholar
  68. Rahman A, Linton E, Hatch AD, Sims RC, Miller CD (2013) Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J Biol Eng 7:24PubMedCentralCrossRefPubMedGoogle Scholar
  69. Reddy CS, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146CrossRefPubMedGoogle Scholar
  70. Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172PubMedCentralPubMedGoogle Scholar
  71. Schmidt M, Ganguli-Mitra A, Torgersen H, Kelle A, Deplazes A, Biller-Andorno N (2009) A priority paper for the societal and ethical aspects of synthetic biology. Syst Synth Biol 3:3–7PubMedCentralCrossRefPubMedGoogle Scholar
  72. Schwille P (2011) Bottom-up synthetic biology: engineering in a tinkerer’s world. Science 333:1252–1254CrossRefPubMedGoogle Scholar
  73. Seo SW, Yang J, Min BE, Jang S, Lim JH, Lim HG, Kim SC, Kim SY, Jeong JH, Jung GY (2013) Synthetic biology: tools to design microbes for the production of chemicals and fuels. Biotechnol Adv 31:811–817CrossRefPubMedGoogle Scholar
  74. Sharma SS, Blattner FR, Harcum SW (2007) Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 9:133–141PubMedCentralCrossRefPubMedGoogle Scholar
  75. Singh R (2014) Global synthetic biology market (products, technologies, applications and geography) – size, share, global trends, company profiles, demand, insights, analysis, research, report, opportunities, segmentation and forecast, 2013–2020. ReportGoogle Scholar
  76. Singh M, Patel SK, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38PubMedCentralCrossRefPubMedGoogle Scholar
  77. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi: 10.1007/s12088-012-0294-7 PubMedCentralCrossRefPubMedGoogle Scholar
  78. Slusarczyk AL, Lin A, Weiss R (2012) Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet 13:406–420CrossRefPubMedGoogle Scholar
  79. Smith MT, Wilding KM, Hunt JM, Bennett AM, Bundy BC (2014) The emerging age of cell-free synthetic biology. FEBS Lett 588:2755–2761CrossRefPubMedGoogle Scholar
  80. Tian SJ, Lai WJ, Zheng Z, Wang HX, Chen GQ (2005) Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiol Lett 244:19–25CrossRefPubMedGoogle Scholar
  81. Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74:3634–3643PubMedCentralCrossRefPubMedGoogle Scholar
  82. Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58:33–38CrossRefPubMedGoogle Scholar
  83. Valle J, Da RS, Schmid S, Skurnik D, D’Ari R, Ghigo JM (2008) The amino acid valine is secreted in continuous-flow bacterial biofilms. J Bacteriol 190:264–274PubMedCentralCrossRefPubMedGoogle Scholar
  84. Venter C, Cohen D (2004) The Century of biology. New Perspect Q 21:73–77CrossRefGoogle Scholar
  85. Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449CrossRefPubMedGoogle Scholar
  86. Wallace S, Balskus EP (2014) Opportunities for merging chemical and biological synthesis. Curr Opin Biotechnol 30:1–8PubMedCentralCrossRefPubMedGoogle Scholar
  87. Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407PubMedCentralCrossRefPubMedGoogle Scholar
  88. Wu K, Rao CV (2012) Computational methods in synthetic biology: towards computer-aided part design. Curr Opin Chem Biol 16:318–322CrossRefPubMedGoogle Scholar
  89. Wu M, Su RQ, Li X, Ellis T, Lai YC, Wang X (2013) Engineering of regulated stochastic cell fate determination. Proc Natl Acad Sci U S A 110:10610–10615PubMedCentralCrossRefPubMedGoogle Scholar
  90. Yeh BJ, Lim WA (2007) Synthetic biology: lessons from the history of synthetic organic chemistry. Nat Chem Biol 3:521–525CrossRefPubMedGoogle Scholar
  91. York GM, Stubbe J, Sinskey AJ (2001) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397PubMedCentralCrossRefPubMedGoogle Scholar
  92. Zeng Y, Yao S (2009) Understanding design activities through computer simulation. Adv Eng Inform 23:294–308CrossRefGoogle Scholar
  93. Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205PubMedCentralPubMedGoogle Scholar
  94. Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359CrossRefPubMedGoogle Scholar
  95. Zhou XY, Yuan XX, Shi ZY, Meng DC, Jiang WJ, Wu LP, Chen JC, Chen GQ (2012) Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Fact 11:54PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Gunjan Arora
    • 1
  • Andaleeb Sajid
    • 1
  • Parijat Kundu
    • 1
  • Mritunjay Saxena
    • 1
  1. 1.CSIR-Institute of Genomics and Integrative Biology (IGIB)Delhi University CampusDelhiIndia

Personalised recommendations