Skip to main content

Synthetic Biology Strategies for Polyhydroxyalkanoate Synthesis

  • Chapter
Microbial Factories
  • 1361 Accesses

Abstract

Synthetic biologists are trying to apply engineering principles in biology to create an artificial world with unlimited possibilities. The guiding principle is to look beyond finding the solutions and to create new ones. Synthetic biologists are now routinely designing synthetic genetic circuits in bacteria and yeast. The major aim is to use microbes as cell factories for the production of bioactive compounds with a particular focus on drugs, biofuels, and biopolymers. In this chapter, we emphasize on understanding the synthetic biology approaches and their role in creating polyhydroxyalkanoate (PHA)-producing microbial factories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Rocha CG, Fang G, Schmidt M, Ussery DW, Danchin A (2013) From essential to persistent genes: a functional approach to constructing synthetic life. Trends Genet 29:273–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Alper H, Fischer C, Nevoigt E, Stephanopoulos G (2005) Tuning genetic control through promoter engineering. Proc Natl Acad Sci U S A 102:12678–12683

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Amara AA, Steinbuchel A, Rehm BH (2002) In vivo evolution of the Aeromonas punctata polyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHA synthases with enhanced activity. Appl Microbiol Biotechnol 59:477–482

    Article  CAS  PubMed  Google Scholar 

  • Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123

    Article  CAS  PubMed  Google Scholar 

  • Anderson JC, Clarke EJ, Arkin AP, Voigt CA (2006) Environmentally controlled invasion of cancer cells by engineered bacteria. J Mol Biol 355:619–627

    Article  CAS  PubMed  Google Scholar 

  • Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:2006.0028

    Article  PubMed Central  PubMed  Google Scholar 

  • Arkin A (2008) Setting the standard in synthetic biology. Nat Biotechnol 26:771–774

    Article  CAS  PubMed  Google Scholar 

  • Atsumi S, Liao JC (2008) Metabolic engineering for advanced biofuels production from Escherichia coli. Curr Opin Biotechnol 19:414–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Benner SA, Yang Z, Chen F (2011) Synthetic biology, tinkering biology, and artificial biology. What are we learning? C R Chim 14:372–387

    Article  CAS  Google Scholar 

  • Breitling R, Takano E, Gardner TS (2015) Judging synthetic biology risks. Science 347:107

    Article  CAS  PubMed  Google Scholar 

  • Brophy JA, Voigt CA (2014) Principles of genetic circuit design. Nat Methods 11:508–520

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390

    Article  CAS  PubMed  Google Scholar 

  • Carothers JM, Goler JA, Keasling JD (2009) Chemical synthesis using synthetic biology. Curr Opin Biotechnol 20:498–503

    Article  CAS  PubMed  Google Scholar 

  • Chandran D, Bergmann FT, Sauro HM (2009) TinkerCell: modular CAD tool for synthetic biology. J Biol Eng 3:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Chandrasegaran SK, Ramani K, Sriram RD, Horváth I, Bernard A, Harik RF, Gao W (2013) The evolution, challenges, and future of knowledge representation in product design systems. Comput Aided Des 45:204–228

    Article  Google Scholar 

  • Chen BS, Wu CC (2013) Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. Cells 2:635–688

    Article  PubMed Central  PubMed  Google Scholar 

  • Church GM, Elowitz MB, Smolke CD, Voigt CA, Weiss R (2014) Realizing the potential of synthetic biology. Nat Rev Mol Cell Biol 15:289–294

    Article  CAS  PubMed  Google Scholar 

  • Cole JA (2014) Synthetic biology: old wine in new bottles with an emerging language that ranges from the sublime to the ridiculous? FEMS Microbiol Lett 351:113–115

    Article  CAS  PubMed  Google Scholar 

  • Colin VL, Rodriguez A, Cristobal HA (2011) The role of synthetic biology in the design of microbial cell factories for biofuel production. J Biomed Biotechnol 2011:601834

    Article  PubMed Central  PubMed  Google Scholar 

  • Dana GV, Kuiken T, Rejeski D, Snow AA (2012) Synthetic biology: Four steps to avoid a synthetic-biology disaster. Nature 483:29

    Article  CAS  PubMed  Google Scholar 

  • Eils R, Ritzerfeld J, Wiechert W (2015) Editorial: Synthetic biology – ready for application. Biotechnol J 10:229–230

    Article  CAS  PubMed  Google Scholar 

  • Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403:335–338

    Article  CAS  PubMed  Google Scholar 

  • Endy D (2005) Foundations for engineering biology. Nature 438:449–453

    Article  CAS  PubMed  Google Scholar 

  • Foo JL, Ching CB, Chang MW, Leong SS (2012) The imminent role of protein engineering in synthetic biology. Biotechnol Adv 30:541–549

    Article  CAS  PubMed  Google Scholar 

  • Friedrich K (2013) Digital ‘faces’ of synthetic biology. Stud Hist Philos Biol Biomed Sci 44:217–224

    Article  PubMed  Google Scholar 

  • Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, Roehner N, Wilson ML, Adam L, Anderson JC, Bartley BA, Beal J, Chandran D, Chen J, Densmore D, Endy D, Grunberg R, Hallinan J, Hillson NJ, Johnson JD, Kuchinsky A, Lux M, Misirli G, Peccoud J, Plahar HA, Sirin E, Stan GB, Villalobos A, Wipat A, Gennari JH, Myers CJ, Sauro HM (2014) The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nat Biotechnol 32:545–550

    Article  CAS  PubMed  Google Scholar 

  • Gardner TS, Hawkins K (2013) Synthetic biology: evolution or revolution? A co-founder’s perspective. Curr Opin Chem Biol 17:871–877

    Article  CAS  PubMed  Google Scholar 

  • Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403:339–342

    Article  CAS  PubMed  Google Scholar 

  • Glass JI, Assad-Garcia N, Alperovich N, Yooseph S, Lewis MR, Maruf M, Hutchison CA, Smith HO, Venter JC (2006) Essential genes of a minimal bacterium. Proc Natl Acad Sci U S A 103:425–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glick BR (1995) Metabolic load and heterologous gene expression. Biotechnol Adv 13:247–261

    Article  CAS  PubMed  Google Scholar 

  • Heinemann M, Panke S (2006) Synthetic biology-putting engineering into biology. Bioinformatics 22:2790–2799

    Article  CAS  PubMed  Google Scholar 

  • Holtz WJ, Keasling JD (2010) Engineering static and dynamic control of synthetic pathways. Cell 140:19–23

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Dhar PK (2015) Introduction to systems biology. Systems and Synthetic Biology. Springer, Netherlands, pp 3–23

    Google Scholar 

  • Immethun CM, Hoynes-O’Connor AG, Balassy A, Moon TS (2013) Microbial production of isoprenoids enabled by synthetic biology. Front Microbiol 4:75

    Article  PubMed Central  PubMed  Google Scholar 

  • Kaebnick GE, Gusmano MK, Murray TH (2014) The ethics of synthetic biology: next steps and prior questions. Hastings Cent Rep 44(S5):S4–S26

    Article  PubMed  Google Scholar 

  • Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi:10.1038/nbt0803-845

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi:10.1016/j.gene.2006.09.010

    Article  CAS  PubMed  Google Scholar 

  • Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3:64–76

    Article  CAS  PubMed  Google Scholar 

  • Kelwick R, MacDonald JT, Webb AJ, Freemont P (2014) Developments in the tools and methodologies of synthetic biology. Front Bioeng Biotechnol 2:60

    Article  PubMed Central  PubMed  Google Scholar 

  • Keung AJ, Joung JK, Khalil AS, Collins JJ (2015) Chromatin regulation at the frontier of synthetic biology. Nat Rev Genet 16:159–171

    Article  CAS  PubMed  Google Scholar 

  • Kocharin K, Chen Y, Siewers V, Nielsen J (2012) Engineering of acetyl-CoA metabolism for the improved production of polyhydroxybutyrate in Saccharomyces cerevisiae. AMB Express 2:52

    Article  PubMed Central  PubMed  Google Scholar 

  • Kolisnychenko V, Plunkett G, Herring CD, Feher T, Posfai J, Blattner FR, Posfai G (2002) Engineering a reduced Escherichia coli genome. Genome Res 12:640–647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Patel SK, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi:10.1007/s12088-014-0457-9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi:10.1007/s12088-014-0509-1

    Article  CAS  Google Scholar 

  • Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015b) Bioconversion of crude glycerol to PHA by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol. doi:10.1016/j.ijbiomac.2015.03.046

    Google Scholar 

  • Lee JW, Na D, Park JM, Lee J, Choi S, Lee SY (2012a) Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat Chem Biol 8:536–546

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Mattanovich D, Villaverde A (2012b) Systems metabolic engineering, industrial biotechnology and microbial cell factories. Microb Cell Fact 11:156

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lienert F, Lohmueller JJ, Garg A, Silver PA (2014) Synthetic biology in mammalian cells: next generation research tools and therapeutics. Nat Rev Mol Cell Biol 15:95–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Linton E (2010) A synthetic biological engineering approach to secretion-based recovery of polyhydroxyalkanoates and other cellular products

    Google Scholar 

  • Liu H, Xu Y, Zheng Z, Liu D (2010) 1,3-Propanediol and its copolymers: research, development and industrialization. Biotechnol J 5:1137–1148

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Liu Y, Shin HD, Chen RR, Wang NS, Li J, Du G, Chen J (2013) Developing Bacillus spp. as a cell factory for production of microbial enzymes and industrially important biochemicals in the context of systems and synthetic biology. Appl Microbiol Biotechnol 97:6113–6127

    Article  CAS  PubMed  Google Scholar 

  • Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci U S A 104:11197–11202

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maehara A, Ueda S, Nakano H, Yamane T (1999) Analyses of a polyhydroxyalkanoic acid granule-associated 16-kilodalton protein and its putative regulator in the pha locus of Paracoccus denitrificans. J Bacteriol 181:2914–2921

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marchisio MA, Stelling J (2009) Computational design tools for synthetic biology. Curr Opin Biotechnol 20:479–485

    Article  CAS  PubMed  Google Scholar 

  • Meyer HP, Schmidhalter DR (2012) Microbial expression systems and manufacturing from a market and economic perspective, innovations in biotechnology, Dr. Eddy C. Agbo (Ed.), ISBN: 978-953-51-0096-6, InTech. doi:10.5772/29417

  • Monod J, Jacob F (1961) Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harb Symp Quant Biol 26:389–401

    Article  CAS  PubMed  Google Scholar 

  • Paddon CJ, Westfall PJ, Pitera DJ, Benjamin K, Fisher K, McPhee D, Leavell MD, Tai A, Main A, Eng D, Polichuk DR, Teoh KH, Reed DW, Treynor T, Lenihan J, Fleck M, Bajad S, Dang G, Dengrove D, Diola D, Dorin G, Ellens KW, Fickes S, Galazzo J, Gaucher SP, Geistlinger T, Henry R, Hepp M, Horning T, Iqbal T, Jiang H, Kizer L, Lieu B, Melis D, Moss N, Regentin R, Secrest S, Tsuruta H, Vazquez R, Westblade LF, Xu L, Yu M, Zhang Y, Zhao L, Lievense J, Covello PS, Keasling JD, Reiling KK, Renninger NS, Newman JD (2013) High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496:528–532

    Article  CAS  PubMed  Google Scholar 

  • Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Bioma Bioenerg 36:218–225. doi:10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  • Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi:10.1016/j.biortech.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  • Pham TH, Webb JS, Rehm BH (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alginate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413

    Article  CAS  PubMed  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Pickens LB, Tang Y, Chooi YH (2011) Metabolic engineering for the production of natural products. Annu Rev Chem Biomol Eng 2:211–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pinto F, van Elburg KA, Pacheco CC, Lopo M, Noirel J, Montagud A, Urchueguia JF, Wright PC, Tamagnini P (2012) Construction of a chassis for hydrogen production: physiological and molecular characterization of a Synechocystis sp. PCC 6803 mutant lacking a functional bidirectional hydrogenase. Microbiol 158:448–464

    Article  CAS  Google Scholar 

  • Posfai G, Plunkett G, Feher T, Frisch D, Keil GM, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma SS, de Arruda M, Burland V, Harcum SW, Blattner FR (2006) Emergent properties of reduced-genome Escherichia coli. Science 312:1044–1046

    Article  CAS  PubMed  Google Scholar 

  • Rahman A, Linton E, Hatch AD, Sims RC, Miller CD (2013) Secretion of polyhydroxybutyrate in Escherichia coli using a synthetic biological engineering approach. J Biol Eng 7:24

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Reddy CS, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  CAS  PubMed  Google Scholar 

  • Rosano GL, Ceccarelli EA (2014) Recombinant protein expression in Escherichia coli: advances and challenges. Front Microbiol 5:172

    PubMed Central  PubMed  Google Scholar 

  • Schmidt M, Ganguli-Mitra A, Torgersen H, Kelle A, Deplazes A, Biller-Andorno N (2009) A priority paper for the societal and ethical aspects of synthetic biology. Syst Synth Biol 3:3–7

    Article  PubMed Central  PubMed  Google Scholar 

  • Schwille P (2011) Bottom-up synthetic biology: engineering in a tinkerer’s world. Science 333:1252–1254

    Article  CAS  PubMed  Google Scholar 

  • Seo SW, Yang J, Min BE, Jang S, Lim JH, Lim HG, Kim SC, Kim SY, Jeong JH, Jung GY (2013) Synthetic biology: tools to design microbes for the production of chemicals and fuels. Biotechnol Adv 31:811–817

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Blattner FR, Harcum SW (2007) Recombinant protein production in an Escherichia coli reduced genome strain. Metab Eng 9:133–141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh R (2014) Global synthetic biology market (products, technologies, applications and geography) – size, share, global trends, company profiles, demand, insights, analysis, research, report, opportunities, segmentation and forecast, 2013–2020. Report

    Google Scholar 

  • Singh M, Patel SK, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slusarczyk AL, Lin A, Weiss R (2012) Foundations for the design and implementation of synthetic genetic circuits. Nat Rev Genet 13:406–420

    Article  CAS  PubMed  Google Scholar 

  • Smith MT, Wilding KM, Hunt JM, Bennett AM, Bundy BC (2014) The emerging age of cell-free synthetic biology. FEBS Lett 588:2755–2761

    Article  CAS  PubMed  Google Scholar 

  • Tian SJ, Lai WJ, Zheng Z, Wang HX, Chen GQ (2005) Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiol Lett 244:19–25

    Article  CAS  PubMed  Google Scholar 

  • Trinh CT, Unrean P, Srienc F (2008) Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol 74:3634–3643

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Valentin HE, Dennis D (1997) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in recombinant Escherichia coli grown on glucose. J Biotechnol 58:33–38

    Article  CAS  PubMed  Google Scholar 

  • Valle J, Da RS, Schmid S, Skurnik D, D’Ari R, Ghigo JM (2008) The amino acid valine is secreted in continuous-flow bacterial biofilms. J Bacteriol 190:264–274

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Venter C, Cohen D (2004) The Century of biology. New Perspect Q 21:73–77

    Article  Google Scholar 

  • Verlinden RA, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol 102:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Wallace S, Balskus EP (2014) Opportunities for merging chemical and biological synthesis. Curr Opin Biotechnol 30:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wintermute EH, Silver PA (2010) Emergent cooperation in microbial metabolism. Mol Syst Biol 6:407

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu K, Rao CV (2012) Computational methods in synthetic biology: towards computer-aided part design. Curr Opin Chem Biol 16:318–322

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Su RQ, Li X, Ellis T, Lai YC, Wang X (2013) Engineering of regulated stochastic cell fate determination. Proc Natl Acad Sci U S A 110:10610–10615

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeh BJ, Lim WA (2007) Synthetic biology: lessons from the history of synthetic organic chemistry. Nat Chem Biol 3:521–525

    Article  CAS  PubMed  Google Scholar 

  • York GM, Stubbe J, Sinskey AJ (2001) New insight into the role of the PhaP phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol 183:2394–2397

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeng Y, Yao S (2009) Understanding design activities through computer simulation. Adv Eng Inform 23:294–308

    Article  Google Scholar 

  • Zhang H, Obias V, Gonyer K, Dennis D (1994) Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl Environ Microbiol 60:1198–1205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30:354–359

    Article  CAS  PubMed  Google Scholar 

  • Zhou XY, Yuan XX, Shi ZY, Meng DC, Jiang WJ, Wu LP, Chen JC, Chen GQ (2012) Hyperproduction of poly(4-hydroxybutyrate) from glucose by recombinant Escherichia coli. Microb Cell Fact 11:54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the CSIR-Institute of Genomics and Integrative Biology (IGIB), Delhi, Government of India for providing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gunjan Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Arora, G., Sajid, A., Kundu, P., Saxena, M. (2015). Synthetic Biology Strategies for Polyhydroxyalkanoate Synthesis. In: Kalia, V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2595-9_5

Download citation

Publish with us

Policies and ethics