Skip to main content

Phylogenetic Affiliation of Pseudomonas sp. MO2, a Novel Polyhydroxyalkanoate-Synthesizing Bacterium

  • Chapter
Microbial Factories

Abstract

A bacterium, isolated from wastewater after enrichment with waste canola fryer oil, was found to synthesize 12–20 % of cell dry weight (cdw) medium chain length polyhydroxyalkanoates (mcl-PHAs) using different carbon substrates. On the basis of partial 16S rDNA sequence analysis, this bacterium was first identified as Pseudomonas putida and designated as P. putida strain MO2. However, the full 16S rDNA gene sequence from a whole genome sequence analysis of this strain showed 100 % identity to 16S rDNA of Pseudomonas monteilii SB3101 and Pseudomonas monteilii SB3078. The comparison of the cpn60 gene sequence of Pseudomonas sp. strain MO2 with strains of P. putida, P. aeruginosa, P. fluorescens, P. stutzeri, P. syringae, and P. monteilii indicated that this strain is more closely related to P. monteilii than P. putida type strain KT2440. Based on gene sequence similarity index and phylogenetic analyses, some P. putida strains, which were earlier classified as P. putida, are also more closely related to the P. monteilii cluster. Our analyses show that P. putida is a very diverse group with divergent strains, and many strains of P. putida that cluster with P. monteilii species may need to be reclassified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589. doi:10.1099/00207713-50-4-1563

    Article  CAS  PubMed  Google Scholar 

  • Ashby RD, Foglia TA (1998) Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol 49:431–437. doi:10.1007/s002530051194

    Article  CAS  Google Scholar 

  • Barrett EL, Solanes RE, Tang JS, Palleroni NJ (1986) Pseudomonas fluorescens biovar V: its resolution into distinct component groups and the relationship of these groups to other P. fluorescens biovars, to P. putida, and to psychrotrophic pseudomonads associated with food spoilage. J Gen Microbiol 132:2709–2721. doi:10.1099/00221287-132-10-2709

    CAS  PubMed  Google Scholar 

  • Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC (2013) Development of genomic tools for the identification of certain Pseudomonas up to species level. Indian J Microbiol 53:253–263. doi:10.1007/s12088-013-0412-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Bogaerts P, Bouchahrouf W, Lissoir B, Denis O, Glupczynski Y (2011) IMP-13 producing Pseudomonas monteilii recovered in a hospital environment. J Antimicrob Chemother 66:2434–2435. doi:10.1093/jac/dkr294

    Article  CAS  PubMed  Google Scholar 

  • Bossis E, Lemanceau P, Latour X, Gardan L (2000) The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie 20:51–63. doi:10.1051/agro:2000112

    Article  Google Scholar 

  • Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37. doi:10.1007/BF00500854

    Article  CAS  Google Scholar 

  • Champion AB, Barrett EL, Palleroni NJ (1980) Evolution in Pseudomonas fluorescens. J Gen Microbiol 120:485–511. doi:10.1099/00221287-120-2-485

    CAS  PubMed  Google Scholar 

  • Chan PL, Yu V, Wai L, Yu HF (2006) Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas aeruginosa with fatty acids and alternative carbon sources. Appl Biochem Biotechnol 132:933–941. doi:10.1385/ABAB:132:1:933

    Article  Google Scholar 

  • Chen J, Liu T, Zheng Z, Chen J, Chen G (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol Lett 234:231–237. doi:10.1016/j.femsle.2004.03.029

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ, Huang YC, Lee CY (2014) Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J Biosci Bioeng 118:145–152. doi:10.1016/j.jbiosc.2014.01.012

    Article  CAS  PubMed  Google Scholar 

  • Chung AL, Jin HL, Huang LJ, Ye HM, Chen JC, Wu Q, Chen GQ (2011) Biosynthesis and characterization of poly (3-hydroxydodecanoate) by b-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 12:3559–3566. doi:10.1021/bm200770m

    Article  CAS  PubMed  Google Scholar 

  • Chung A, Zeng G, Jin H, Wu Q, Chen J, Chen G (2013) Production of medium-chain-length 3-hydroxyalkanoic acids by β-oxidation and phaC operon deleted Pseudomonas entomophila harboring thioesterase gene. Metab Eng 17:23–29. doi:10.1016/j.ymben.2013.02.001

    Article  CAS  PubMed  Google Scholar 

  • Cromwick AM, Foglia T, Lenz RW (1996) The microbial production of poly(hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol 46:464–469. doi:10.1007/s002530050845

    Article  CAS  Google Scholar 

  • Dabboussi F, Hamze M, Singer E, Geoffroy V, Meyer JM, Izard D (2002) Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evol Microbiol 52:363–376. doi:10.1099/ijs.0.01541-0

    Article  CAS  PubMed  Google Scholar 

  • Daird S, Carlier J-P, Ageron E, Patrick AD, Grimont PAD, Langlois V, Guérin P, Bouvet OMM (2002) Accumulation of poly(3-hydroxybutyrate) from octanoate in different Pseudomonas belonging to the rRNA homology group. Int Syst Appl Microbiol 25:183–188. doi:10.1078/0723-2020-00114

    Article  Google Scholar 

  • de Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galán B, García JL, Prieto MA (2010) The turnover of medium chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12:207–221. doi:10.1111/j.1462-2920.2009.02061.x

    Article  PubMed  Google Scholar 

  • De Vos P, De Ley J (1983) Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509. doi:10.1099/00207713-33-3-487

    Article  Google Scholar 

  • Dueholm MS, Albertsen M, D’Imperio S, Tale VP, Lewis D, Nilsen PH, Nielsen JL (2014) Complete genomes of Pseudomonas monteilii SB3078 and SB3101, two benzene, toluene and ethylbenzene degrading bacteria used for bioaugmentation. Genome Announc 2(3):e00524-14. doi:10.1128/genomeA.00524-14

    Article  PubMed Central  PubMed  Google Scholar 

  • Elbahloul Y, Steinbüchel A (2009) Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl Environ Microbiol 75:643–651. doi:10.1128/AEM.01869-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elomari M, Izard D, Vincent D, Coroler L, Leclerc H (1994) Comparison of ribotyping analysis and numerical taxonomy studies of Pseudomonas putida biovar A. Syst Appl Microbiol 17:361–369. doi:10.1016/S0723-2020(11)80052-4

    Article  CAS  Google Scholar 

  • Elomari M, Coroler L, Verhille S, Izard D, Leclerc H (1997) Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 47:846–852. doi:10.1099/00207713-47-3-846

    Article  CAS  PubMed  Google Scholar 

  • Fiedler S, Steinbuchel A, Rehm BHA (2002) The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160. doi:10.1007/s00203-002-0444-0

    Article  CAS  PubMed  Google Scholar 

  • Füchtenbusch B, Wullbrandt D, Steinbüchel A (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl Microbiol Biotechnol 53:167–172

    Article  PubMed  Google Scholar 

  • Fulekar MH, Wadgaonkar SL, Singh A (2013) Decolourization of dye compounds by selected bacterial strains isolated from dyestuff industrial area. Int J Adv Res Technol 2:182–192

    Google Scholar 

  • Gamal RF, Abdelhady HM, Khodair TA, El-Tayeb TS, Hassan EA, Aboutaleb KA (2013) Semiscale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Braz J Microbiol 44(2):539–549. doi:10.1590/S1517-83822013000200034

    Article  PubMed Central  PubMed  Google Scholar 

  • Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi:10.1099/ijs.0.64483-0

    Article  CAS  PubMed  Google Scholar 

  • Guo WB, Song CJ, Kong MM, Geng WT, Wang YY, Wang SF (2011) Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 92:791–901. doi:10.1016/j.micres.2012.11.003

    Article  CAS  PubMed  Google Scholar 

  • Hilario E, Buckley TR, Young JM (2004) Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Antonie Van Leeuwenhoek 86:51–64. doi:10.1023/B:ANTO.0000024910.57117.16

    Article  CAS  PubMed  Google Scholar 

  • Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM (2004) cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675. doi:10.1101/gr.2649204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Itoh Y, Kawamura Y, Kasai H, Shah MM, Nhung PH, Yamada M, Sun X, Koyana T, Hayashi M (2006) dnaJ and gyrB gene sequence relationship among species and strains of genus Streptococcus. Syst Appl Microbiol 29:368–374. doi:10.1016/j.syapm.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  • Janse JD, Derks JHJ, Spit BE, Van Der Tuin WR (1992) Classification of fluorescent soft rot Pseudomonas bacteria, including P. marginalis strains, using whole cell fatty acid analysis. Syst Appl Microbiol 15:538–553. doi:10.1016/S0723-2020(11)80114-1

    Article  CAS  Google Scholar 

  • Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic, New York, pp 21–132. doi:10.1016/B978-1-4832-3211-9.50009-7

    Chapter  Google Scholar 

  • Konstantinidis K, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2592. doi:10.1073/pnas.0409727102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361:1929–1940. doi:10.1098/rstb.2006.1920

    Article  PubMed Central  PubMed  Google Scholar 

  • Lazarovits G, Turnbull AL, Haug B, Links MG, Hill JE, Hemmingsen M (2013) Unraveling the rhizosphere using the cpn60 genomic marker and pyrosequencing. In: Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vols 1 and 2. Wiley, London

    Google Scholar 

  • Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14. doi:10.1002/(SICI)1097-0290(19960105)49:1%3C1::AID-BIT1%3E3.0.CO;2-P

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Lee Y, Wang FL (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65:363–368. doi:10.1002/(SICI)1097-0290(19991105)65:3%3C363::AID-BIT15%3E3.0.CO;2-1

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi:10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • Lie F, Chen Y, Wang Z, Li Z (2009) Enantioselective benzylic hydroxylation of indan and tetralin with Pseudomonas monteilii TA-5. Tetrahedron Asymmetry 20:1206–1211. doi:10.1016/j.tetasy.2009.04.006

    Article  CAS  Google Scholar 

  • Ma Q, Qu Y, Tang H, Yu H, Ma F, Shi S, Zhang X, Zhou H, Zhou J, Xu P (2012) Genome sequence of a novel indigo-producing strain, Pseudomonas monteilii QM. J Bacteriol 194:4459–4460. doi:10.1128/JB.00867-12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Martınez-Murcia AJ, Monera A, Alperi A, Figueras MJ, Saavedra MJ (2009) Phylogenetic evidence suggests that strains of Aeromonas hydrophila subsp. dhakensis belong to the species Aeromonas aquariorum sp. nov. Curr Microbiol 58:76–80. doi:10.1007/s00284-008-9278-6

    Article  PubMed  Google Scholar 

  • Masuda M, Yamasaki Y, Ueno S, Inoue A (2007) Isolation of bisphenol A-tolerant/degrading Pseudomonas monteilii strain N-502. Extremophiles 11:355–362. doi:10.1007/s00792-006-0047-9

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto K, Matsusaki H, Taguchi S, Seki M, Doi Y (2001) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) copolymer from sugars by recombinant Ralstonia eutropha harboring the phaC1Ps and the phaGPs genes of Pseudomonas sp. 61-3. Biomacromolecules 2:934–939. doi:10.1021/bm005604+

    Article  CAS  PubMed  Google Scholar 

  • Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271. doi:10.1007/s10534-007-9115-6

    Article  CAS  PubMed  Google Scholar 

  • Molina L, Udaondo Z, Duque E, Fernández M, Molina-Santiago C, Roca A, Porcel M, de la Torre J, Segura A, Plesiat P, Jeannot K, Ramos JL (2014) Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital. PLoS One 9(1), e81604. doi:10.1371/journal.pone.0081604

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore ERB, Mau M, Arnscheidt A, Böttger EC, Hutson RA, Collins MD, van De Peer Y, De Wachter R, Timmis KN (1996) The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492. doi:10.1016/S0723-2020(96)80021-X

    Article  CAS  Google Scholar 

  • Morita Y, Maruyama S, Kabeya H, Nagai A, Kozawa K, Kato M, Nakajima T, Mikami T, Katsube Y, Kimura H (2004) Genetic diversity of the dnaJ gene in the Mycobacterium avium complex. J Med Microbiol 53:813–817. doi:10.1099/jmm.0.45601-0

    Article  CAS  PubMed  Google Scholar 

  • Mulet M, Bennasar A, Lalucat J, Garcıa-Valdes E (2009) An rpoD based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 23:140–147. doi:10.1016/j.mcp.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  • Mulet M, Lalucat J, Garcıa-Valdes E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530. doi:10.1111/j.1462-2920.2010.02181.x

    CAS  PubMed  Google Scholar 

  • Mulet M, Garcıa-Valdes E, Lalucat J (2013) Phylogenetic affiliation of Pseudomonas putida biovar A and B strains. Res Microbiol 164:351–359. doi:10.1016/j.resmic.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  • Nakazawa T (2003) Travels of a Pseudomonas, from Japan around the world. Environ Microbiol 4:782–786. doi:10.1046/j.1462-2920.2002.00310.x

    Article  Google Scholar 

  • Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, De Boy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhoeft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808. doi:10.1046/j.1462-2920.2002.00366.x

    Article  CAS  PubMed  Google Scholar 

  • Otto K, Hofstetter K, Röthlisberger M, Witholt B, Schmidt A (2004) Biochemical characterization of styAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302. doi:10.1128/JB.186.16.5292-5302.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Palleroni NJ (1984) Genus I. Pseudomonas Migula 1894, 237AL. In: Krieg NJ, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 141–199

    Google Scholar 

  • Palleroni NJ (2005) Pseudomonas. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, part B, the gammaproteobacteria, 2nd edn. Springer, New York, pp 323–379

    Google Scholar 

  • Park SJ, Park JP, Lee Y (2002) Production of poly (3-hydroxybutyrate) from whey by fed-batch culture of recombinant Escherichia coli in a pilot-scale fermenter. Biotechnol Lett 24:185–189. doi:10.1023/A:1014196906095

    Article  CAS  Google Scholar 

  • Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alganiate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413. doi:10.1099/mic.0.27357-0

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Ma Y, Zhang X, Zhou H, Li X, Zhou J (2012) Optimization of indigo production by a newly isolated Pseudomonas sp. QM. J Basic Microbiol 52:1–8. doi:10.1002/jobm.201290001

    Article  Google Scholar 

  • Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1991) Continuous production of long-sidechain poly-beta-hydroxyalkanoates by Pseudomonas oleovorans. Appl Environ Microbiol 3:625–629

    Google Scholar 

  • Regenhardt D, Heuer H, Heim S, Fernandez DU, Strompl C, Moore ERB, Timmis KN (2002) Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol 4:912–915. doi:10.1046/j.1462-2920.2002.00368.x

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA, Steinbüchel A (2001) PHA synthases – the key enzymes of PHA synthesis. In: Doi Y, Steinbüchel A (eds) Biopolymers, 1st edn. Wiley-VCH, Weinheim, pp 173–215

    Google Scholar 

  • Rehm BHA, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109. doi:10.1128/AEM.67.7.3102-3109.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. doi:10.1073/pnas.0906412106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rozas J (2009) DNA sequence polymorphism analysis using DnaSP. In: Posada D (ed) Bioinformatics for DNA sequence analysis, vol 537, Methods in molecular biology series. Humana Press, New York, pp 337–350. doi:10.1007/978-1-59745-251-9_17

    Chapter  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:0737-4038/87/0404-0007$02.00

    Google Scholar 

  • Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754–759. doi:10.1111/j.1462-2920.2004.00617.x

    Article  CAS  PubMed  Google Scholar 

  • Shah MM, Iihara H, Noda M, Song SX, Nhung PH, Ohkusu K, Kawamura Y, Ezaki T (2007) dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int J Syst Evol Microbiol 57:25–30. doi:10.1099/ijs.0.64205-0

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Fu J, Cicek N, Sparling R, Levin DB (2012) Kinetics of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production by a novel isolate of Pseudomonas putida LS46. Can J Microbiol 58:982–989. doi:10.1139/w2012-074

    Article  CAS  PubMed  Google Scholar 

  • Sharma PK, Fu J, Zhang XL, Fristensky BW, Davenport K, Chain PSG, Sparling R, Levin DB (2013) Draft genome sequence of medium-chain-length polyhydroxyalkanoate-producing Pseudomonas putida strain LS46. Genome Announc 1:e00151–13. doi:10.1128/genomeA.00151-13

    Article  PubMed Central  PubMed  Google Scholar 

  • Sharma PK, Fu J, Zhang XL, Fristensky BW, Sparling R, Levin DB (2014) Genome features of Pseudomonas putida LS46, a novel polyhydroxyalkanoate producer and its comparison with other P. putida strains. AMB Exp 4:37. doi:10.1186/s13568-014-0037-8

    Article  CAS  Google Scholar 

  • Solaiman DK, Ashby RD, Foglia TA (2000) Rapid and specific identification of medium chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl Microbiol Biotechnol 53:690–694. doi:10.1007/s002530000332

    Article  CAS  PubMed  Google Scholar 

  • Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878

    PubMed Central  PubMed  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271. doi:10.1099/00221287-43-2-159

    Article  CAS  PubMed  Google Scholar 

  • Stead DE (1992) Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int J Syst Bacteriol 42:281–295. doi:10.1099/00207713-42-2-281

    Article  CAS  Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24. doi:10.1002/1616-5195(200101)1:1%3C1::AID-MABI1%3E3.3.CO;2-2

    Article  Google Scholar 

  • Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427. doi:10.1016/S0167-7799(98)01194-9

    Article  PubMed  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay B (2007) Increasing the yield of MCL-PHA from nonanoic acid by co-feeding glucose during the PHA accumulation stage in two-stage fed-batch fermentations of Pseudomonas putida KT2440. J Biotechnol 132:280–282. doi:10.1016/j.jbiotec.2007.02.023

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tan IKP, Sudesh K, Theanmalar M, Gan SN, Gordon B (1997) Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl Microbiol Biotechnol 47:207–211. doi:10.1007/s002530050914

    Article  CAS  Google Scholar 

  • Tang H, Yao Y, Wang L, Yu H, Ren Y, Wu G, Xu P (2012) Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Sci Rep 2:377. doi:10.1038/srep00377

    PubMed Central  PubMed  Google Scholar 

  • Tayeb LA, Ageron E, Grimont F, Grimont PAD (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156:763–773. doi:10.1016/j.resmic.2005.02.009

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist per excellence. Environ Microbiol 4:779–781. doi:10.1046/j.1462-2920.2002.00365.x

    Article  PubMed  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:200–204. doi:10.1016/S0167-7799(98)01295-5

    Article  CAS  PubMed  Google Scholar 

  • Vancanneyt M, Torck U, Dewettinck D, Vaerewijck M, Kersters K (1996) Grouping of pseudomonads by SDS-PAGE of whole-cell proteins. Syst Appl Microbiol 19:556–568. doi:10.1016/S0723-2020(96)80027-0

    Article  CAS  Google Scholar 

  • Wang SN, Liu Z, Tang HZ, Meng J, Xu P (2007) Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology 153:1556–1565. doi:10.1099/mic.0.2006/005223-0

    Article  CAS  PubMed  Google Scholar 

  • Wang SL, Lin YT, Liang TW, Chio SH, Ming LJ, Wu PC (2009) Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as the substrate. J Ind Microbiol Biotechnol 36:65–73. doi:10.1007/s10295-008-0473-z

    Article  PubMed  Google Scholar 

  • Yamamoto S, Harayama S (1998) Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16 rRNA genes. Int J Syst Bacteriol 48:813–819. doi:10.1099/00207713-48-3-813

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394. doi:10.1099/mic.0.27096-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funds provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), through a Strategic Programs grant (STPGP 306944-04), by Genome Canada, through the Applied Genomics Research in Bioproducts or Crops (ABC) program for the grant titled “Microbial Genomics for Biofuels and CoProducts from Biorefining Processes,” and by the Province of Manitoba, through the Manitoba Research Innovation Fund (MRIF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Levin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sharma, P.K., Fu, J., Zhang, X., Sparling, R., Levin, D.B. (2015). Phylogenetic Affiliation of Pseudomonas sp. MO2, a Novel Polyhydroxyalkanoate-Synthesizing Bacterium. In: Kalia, V. (eds) Microbial Factories. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2595-9_4

Download citation

Publish with us

Policies and ethics