Phylogenetic Affiliation of Pseudomonas sp. MO2, a Novel Polyhydroxyalkanoate-Synthesizing Bacterium

  • Parveen Kumar Sharma
  • Jilagamazhi Fu
  • Xiang Zhang
  • Richard Sparling
  • David B. Levin


A bacterium, isolated from wastewater after enrichment with waste canola fryer oil, was found to synthesize 12–20 % of cell dry weight (cdw) medium chain length polyhydroxyalkanoates (mcl-PHAs) using different carbon substrates. On the basis of partial 16S rDNA sequence analysis, this bacterium was first identified as Pseudomonas putida and designated as P. putida strain MO2. However, the full 16S rDNA gene sequence from a whole genome sequence analysis of this strain showed 100 % identity to 16S rDNA of Pseudomonas monteilii SB3101 and Pseudomonas monteilii SB3078. The comparison of the cpn60 gene sequence of Pseudomonas sp. strain MO2 with strains of P. putida, P. aeruginosa, P. fluorescens, P. stutzeri, P. syringae, and P. monteilii indicated that this strain is more closely related to P. monteilii than P. putida type strain KT2440. Based on gene sequence similarity index and phylogenetic analyses, some P. putida strains, which were earlier classified as P. putida, are also more closely related to the P. monteilii cluster. Our analyses show that P. putida is a very diverse group with divergent strains, and many strains of P. putida that cluster with P. monteilii species may need to be reclassified.


Monomer Composition Medium Chain Length Multilocus Sequence Analysis Cpn60 Gene Polymer Subunit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by funds provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), through a Strategic Programs grant (STPGP 306944-04), by Genome Canada, through the Applied Genomics Research in Bioproducts or Crops (ABC) program for the grant titled “Microbial Genomics for Biofuels and CoProducts from Biorefining Processes,” and by the Province of Manitoba, through the Manitoba Research Innovation Fund (MRIF).


  1. Anzai Y, Kim H, Park JY, Wakabayashi H, Oyaizu H (2000) Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589. doi: 10.1099/00207713-50-4-1563 CrossRefPubMedGoogle Scholar
  2. Ashby RD, Foglia TA (1998) Poly(hydroxyalkanoate) biosynthesis from triglyceride substrates. Appl Microbiol Biotechnol 49:431–437. doi: 10.1007/s002530051194 CrossRefGoogle Scholar
  3. Barrett EL, Solanes RE, Tang JS, Palleroni NJ (1986) Pseudomonas fluorescens biovar V: its resolution into distinct component groups and the relationship of these groups to other P. fluorescens biovars, to P. putida, and to psychrotrophic pseudomonads associated with food spoilage. J Gen Microbiol 132:2709–2721. doi: 10.1099/00221287-132-10-2709 PubMedGoogle Scholar
  4. Bhushan A, Joshi J, Shankar P, Kushwah J, Raju SC, Purohit HJ, Kalia VC (2013) Development of genomic tools for the identification of certain Pseudomonas up to species level. Indian J Microbiol 53:253–263. doi: 10.1007/s12088-013-0412-1 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bogaerts P, Bouchahrouf W, Lissoir B, Denis O, Glupczynski Y (2011) IMP-13 producing Pseudomonas monteilii recovered in a hospital environment. J Antimicrob Chemother 66:2434–2435. doi: 10.1093/jac/dkr294 CrossRefPubMedGoogle Scholar
  6. Bossis E, Lemanceau P, Latour X, Gardan L (2000) The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: current status and need for revision. Agronomie 20:51–63. doi: 10.1051/agro:2000112 CrossRefGoogle Scholar
  7. Braunegg G, Sonnleitner B, Lafferty RM (1978) A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur J Appl Microbiol Biotechnol 6:29–37. doi: 10.1007/BF00500854 CrossRefGoogle Scholar
  8. Champion AB, Barrett EL, Palleroni NJ (1980) Evolution in Pseudomonas fluorescens. J Gen Microbiol 120:485–511. doi: 10.1099/00221287-120-2-485 PubMedGoogle Scholar
  9. Chan PL, Yu V, Wai L, Yu HF (2006) Production of medium-chain-length polyhydroxyalkanoates by Pseudomonas aeruginosa with fatty acids and alternative carbon sources. Appl Biochem Biotechnol 132:933–941. doi: 10.1385/ABAB:132:1:933 CrossRefGoogle Scholar
  10. Chen J, Liu T, Zheng Z, Chen J, Chen G (2004) Polyhydroxyalkanoate synthases PhaC1 and PhaC2 from Pseudomonas stutzeri 1317 had different substrate specificities. FEMS Microbiol Lett 234:231–237. doi: 10.1016/j.femsle.2004.03.029 CrossRefPubMedGoogle Scholar
  11. Chen YJ, Huang YC, Lee CY (2014) Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J Biosci Bioeng 118:145–152. doi: 10.1016/j.jbiosc.2014.01.012 CrossRefPubMedGoogle Scholar
  12. Chung AL, Jin HL, Huang LJ, Ye HM, Chen JC, Wu Q, Chen GQ (2011) Biosynthesis and characterization of poly (3-hydroxydodecanoate) by b-oxidation inhibited mutant of Pseudomonas entomophila L48. Biomacromolecules 12:3559–3566. doi: 10.1021/bm200770m CrossRefPubMedGoogle Scholar
  13. Chung A, Zeng G, Jin H, Wu Q, Chen J, Chen G (2013) Production of medium-chain-length 3-hydroxyalkanoic acids by β-oxidation and phaC operon deleted Pseudomonas entomophila harboring thioesterase gene. Metab Eng 17:23–29. doi: 10.1016/j.ymben.2013.02.001 CrossRefPubMedGoogle Scholar
  14. Cromwick AM, Foglia T, Lenz RW (1996) The microbial production of poly(hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol 46:464–469. doi: 10.1007/s002530050845 CrossRefGoogle Scholar
  15. Dabboussi F, Hamze M, Singer E, Geoffroy V, Meyer JM, Izard D (2002) Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evol Microbiol 52:363–376. doi: 10.1099/ijs.0.01541-0 CrossRefPubMedGoogle Scholar
  16. Daird S, Carlier J-P, Ageron E, Patrick AD, Grimont PAD, Langlois V, Guérin P, Bouvet OMM (2002) Accumulation of poly(3-hydroxybutyrate) from octanoate in different Pseudomonas belonging to the rRNA homology group. Int Syst Appl Microbiol 25:183–188. doi: 10.1078/0723-2020-00114 CrossRefGoogle Scholar
  17. de Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galán B, García JL, Prieto MA (2010) The turnover of medium chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12:207–221. doi: 10.1111/j.1462-2920.2009.02061.x CrossRefPubMedGoogle Scholar
  18. De Vos P, De Ley J (1983) Intra- and intergeneric similarities of Pseudomonas and Xanthomonas ribosomal ribonucleic acid cistrons. Int J Syst Bacteriol 33:487–509. doi: 10.1099/00207713-33-3-487 CrossRefGoogle Scholar
  19. Dueholm MS, Albertsen M, D’Imperio S, Tale VP, Lewis D, Nilsen PH, Nielsen JL (2014) Complete genomes of Pseudomonas monteilii SB3078 and SB3101, two benzene, toluene and ethylbenzene degrading bacteria used for bioaugmentation. Genome Announc 2(3):e00524-14. doi: 10.1128/genomeA.00524-14 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Elbahloul Y, Steinbüchel A (2009) Large-scale production of poly(3-hydroxyoctanoic acid) by Pseudomonas putida GPo1 and a simplified downstream process. Appl Environ Microbiol 75:643–651. doi: 10.1128/AEM.01869-08 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Elomari M, Izard D, Vincent D, Coroler L, Leclerc H (1994) Comparison of ribotyping analysis and numerical taxonomy studies of Pseudomonas putida biovar A. Syst Appl Microbiol 17:361–369. doi: 10.1016/S0723-2020(11)80052-4 CrossRefGoogle Scholar
  22. Elomari M, Coroler L, Verhille S, Izard D, Leclerc H (1997) Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int J Syst Bacteriol 47:846–852. doi: 10.1099/00207713-47-3-846 CrossRefPubMedGoogle Scholar
  23. Fiedler S, Steinbuchel A, Rehm BHA (2002) The role of the fatty acid beta-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoate biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes phaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160. doi: 10.1007/s00203-002-0444-0 CrossRefPubMedGoogle Scholar
  24. Füchtenbusch B, Wullbrandt D, Steinbüchel A (2000) Production of polyhydroxyalkanoic acids by Ralstonia eutropha and Pseudomonas oleovorans from an oil remaining from biotechnological rhamnose production. Appl Microbiol Biotechnol 53:167–172CrossRefPubMedGoogle Scholar
  25. Fulekar MH, Wadgaonkar SL, Singh A (2013) Decolourization of dye compounds by selected bacterial strains isolated from dyestuff industrial area. Int J Adv Res Technol 2:182–192Google Scholar
  26. Gamal RF, Abdelhady HM, Khodair TA, El-Tayeb TS, Hassan EA, Aboutaleb KA (2013) Semiscale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Braz J Microbiol 44(2):539–549. doi: 10.1590/S1517-83822013000200034 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM (2007) DNA-DNA hybridization values and their relationship to whole genome sequence similarities. Int J Syst Evol Microbiol 57:81–91. doi: 10.1099/ijs.0.64483-0 CrossRefPubMedGoogle Scholar
  28. Guo WB, Song CJ, Kong MM, Geng WT, Wang YY, Wang SF (2011) Simultaneous production and characterization of medium-chain-length polyhydroxyalkanoates and alginate oligosaccharides by Pseudomonas mendocina NK-01. Appl Microbiol Biotechnol 92:791–901. doi: 10.1016/j.micres.2012.11.003 CrossRefPubMedGoogle Scholar
  29. Hilario E, Buckley TR, Young JM (2004) Improved resolution on the phylogenetic relationships among Pseudomonas by the combined analysis of atpD, carA, recA and 16S rDNA. Antonie Van Leeuwenhoek 86:51–64. doi: 10.1023/B:ANTO.0000024910.57117.16 CrossRefPubMedGoogle Scholar
  30. Hill JE, Penny SL, Crowell KG, Goh SH, Hemmingsen SM (2004) cpnDB: a chaperonin sequence database. Genome Res 14:1669–1675. doi: 10.1101/gr.2649204 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Itoh Y, Kawamura Y, Kasai H, Shah MM, Nhung PH, Yamada M, Sun X, Koyana T, Hayashi M (2006) dnaJ and gyrB gene sequence relationship among species and strains of genus Streptococcus. Syst Appl Microbiol 29:368–374. doi: 10.1016/j.syapm.2005.12.003 CrossRefPubMedGoogle Scholar
  32. Janse JD, Derks JHJ, Spit BE, Van Der Tuin WR (1992) Classification of fluorescent soft rot Pseudomonas bacteria, including P. marginalis strains, using whole cell fatty acid analysis. Syst Appl Microbiol 15:538–553. doi: 10.1016/S0723-2020(11)80114-1 CrossRefGoogle Scholar
  33. Jukes T, Cantor C (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism, vol 3. Academic, New York, pp 21–132. doi: 10.1016/B978-1-4832-3211-9.50009-7 CrossRefGoogle Scholar
  34. Konstantinidis K, Tiedje JM (2005) Genomic insights that advance the species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–2592. doi: 10.1073/pnas.0409727102 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond B Biol Sci 361:1929–1940. doi: 10.1098/rstb.2006.1920 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Lazarovits G, Turnbull AL, Haug B, Links MG, Hill JE, Hemmingsen M (2013) Unraveling the rhizosphere using the cpn60 genomic marker and pyrosequencing. In: Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vols 1 and 2. Wiley, LondonGoogle Scholar
  37. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14. doi: 10.1002/(SICI)1097-0290(19960105)49:1%3C1::AID-BIT1%3E3.0.CO;2-P CrossRefPubMedGoogle Scholar
  38. Lee SY, Lee Y, Wang FL (1999) Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. Biotechnol Bioeng 65:363–368. doi: 10.1002/(SICI)1097-0290(19991105)65:3%3C363::AID-BIT15%3E3.0.CO;2-1 CrossRefPubMedGoogle Scholar
  39. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 CrossRefPubMedGoogle Scholar
  40. Lie F, Chen Y, Wang Z, Li Z (2009) Enantioselective benzylic hydroxylation of indan and tetralin with Pseudomonas monteilii TA-5. Tetrahedron Asymmetry 20:1206–1211. doi: 10.1016/j.tetasy.2009.04.006 CrossRefGoogle Scholar
  41. Ma Q, Qu Y, Tang H, Yu H, Ma F, Shi S, Zhang X, Zhou H, Zhou J, Xu P (2012) Genome sequence of a novel indigo-producing strain, Pseudomonas monteilii QM. J Bacteriol 194:4459–4460. doi: 10.1128/JB.00867-12 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Martınez-Murcia AJ, Monera A, Alperi A, Figueras MJ, Saavedra MJ (2009) Phylogenetic evidence suggests that strains of Aeromonas hydrophila subsp. dhakensis belong to the species Aeromonas aquariorum sp. nov. Curr Microbiol 58:76–80. doi:10.1007/s00284-008-9278-6CrossRefPubMedGoogle Scholar
  43. Masuda M, Yamasaki Y, Ueno S, Inoue A (2007) Isolation of bisphenol A-tolerant/degrading Pseudomonas monteilii strain N-502. Extremophiles 11:355–362. doi: 10.1007/s00792-006-0047-9 CrossRefPubMedGoogle Scholar
  44. Matsumoto K, Matsusaki H, Taguchi S, Seki M, Doi Y (2001) Biosynthesis of poly (3-hydroxybutyrate-co-3-hydroxyalkanoates) copolymer from sugars by recombinant Ralstonia eutropha harboring the phaC1Ps and the phaGPs genes of Pseudomonas sp. 61-3. Biomacromolecules 2:934–939. doi: 10.1021/bm005604+ CrossRefPubMedGoogle Scholar
  45. Meyer JM, Gruffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H (2008) Siderotyping of fluorescent Pseudomonas: molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. Biometals 21:259–271. doi: 10.1007/s10534-007-9115-6 CrossRefPubMedGoogle Scholar
  46. Molina L, Udaondo Z, Duque E, Fernández M, Molina-Santiago C, Roca A, Porcel M, de la Torre J, Segura A, Plesiat P, Jeannot K, Ramos JL (2014) Antibiotic resistance determinants in a Pseudomonas putida strain isolated from a hospital. PLoS One 9(1), e81604. doi: 10.1371/journal.pone.0081604 PubMedCentralCrossRefPubMedGoogle Scholar
  47. Moore ERB, Mau M, Arnscheidt A, Böttger EC, Hutson RA, Collins MD, van De Peer Y, De Wachter R, Timmis KN (1996) The determination and comparison of the 16S rRNA gene sequences of species of the genus Pseudomonas (sensu stricto) and estimation of the natural intrageneric relationships. Syst Appl Microbiol 19:478–492. doi: 10.1016/S0723-2020(96)80021-X CrossRefGoogle Scholar
  48. Morita Y, Maruyama S, Kabeya H, Nagai A, Kozawa K, Kato M, Nakajima T, Mikami T, Katsube Y, Kimura H (2004) Genetic diversity of the dnaJ gene in the Mycobacterium avium complex. J Med Microbiol 53:813–817. doi: 10.1099/jmm.0.45601-0 CrossRefPubMedGoogle Scholar
  49. Mulet M, Bennasar A, Lalucat J, Garcıa-Valdes E (2009) An rpoD based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 23:140–147. doi: 10.1016/j.mcp.2009.02.001 CrossRefPubMedGoogle Scholar
  50. Mulet M, Lalucat J, Garcıa-Valdes E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530. doi: 10.1111/j.1462-2920.2010.02181.x PubMedGoogle Scholar
  51. Mulet M, Garcıa-Valdes E, Lalucat J (2013) Phylogenetic affiliation of Pseudomonas putida biovar A and B strains. Res Microbiol 164:351–359. doi: 10.1016/j.resmic.2013.01.009 CrossRefPubMedGoogle Scholar
  52. Nakazawa T (2003) Travels of a Pseudomonas, from Japan around the world. Environ Microbiol 4:782–786. doi: 10.1046/j.1462-2920.2002.00310.x CrossRefGoogle Scholar
  53. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, De Boy RT, Daugherty S, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düsterhoeft A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808. doi: 10.1046/j.1462-2920.2002.00366.x CrossRefPubMedGoogle Scholar
  54. Otto K, Hofstetter K, Röthlisberger M, Witholt B, Schmidt A (2004) Biochemical characterization of styAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase. J Bacteriol 186:5292–5302. doi: 10.1128/JB.186.16.5292-5302.2004 PubMedCentralCrossRefPubMedGoogle Scholar
  55. Palleroni NJ (1984) Genus I. Pseudomonas Migula 1894, 237AL. In: Krieg NJ, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins, Baltimore, pp 141–199Google Scholar
  56. Palleroni NJ (2005) Pseudomonas. In: Garrity GM, Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, part B, the gammaproteobacteria, 2nd edn. Springer, New York, pp 323–379Google Scholar
  57. Park SJ, Park JP, Lee Y (2002) Production of poly (3-hydroxybutyrate) from whey by fed-batch culture of recombinant Escherichia coli in a pilot-scale fermenter. Biotechnol Lett 24:185–189. doi: 10.1023/A:1014196906095 CrossRefGoogle Scholar
  58. Pham TH, Webb JS, Rehm BHA (2004) The role of polyhydroxyalkanoate biosynthesis by Pseudomonas aeruginosa in rhamnolipid and alganiate production as well as stress tolerance and biofilm formation. Microbiology 150:3405–3413. doi: 10.1099/mic.0.27357-0 CrossRefPubMedGoogle Scholar
  59. Qu Y, Ma Y, Zhang X, Zhou H, Li X, Zhou J (2012) Optimization of indigo production by a newly isolated Pseudomonas sp. QM. J Basic Microbiol 52:1–8. doi: 10.1002/jobm.201290001 CrossRefGoogle Scholar
  60. Ramsay BA, Saracovan I, Ramsay JA, Marchessault RH (1991) Continuous production of long-sidechain poly-beta-hydroxyalkanoates by Pseudomonas oleovorans. Appl Environ Microbiol 3:625–629Google Scholar
  61. Regenhardt D, Heuer H, Heim S, Fernandez DU, Strompl C, Moore ERB, Timmis KN (2002) Pedigree and taxonomic credentials of Pseudomonas putida strain KT2440. Environ Microbiol 4:912–915. doi: 10.1046/j.1462-2920.2002.00368.x CrossRefPubMedGoogle Scholar
  62. Rehm BHA, Steinbüchel A (2001) PHA synthases – the key enzymes of PHA synthesis. In: Doi Y, Steinbüchel A (eds) Biopolymers, 1st edn. Wiley-VCH, Weinheim, pp 173–215Google Scholar
  63. Rehm BHA, Mitsky TA, Steinbüchel A (2001) Role of fatty acid de novo biosynthesis in polyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by pseudomonads: establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis in Escherichia coli. Appl Environ Microbiol 67:3102–3109. doi: 10.1128/AEM.67.7.3102-3109.2001 PubMedCentralCrossRefPubMedGoogle Scholar
  64. Richter M, Rosselló-Móra R (2009) Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106:19126–19131. doi: 10.1073/pnas.0906412106 PubMedCentralCrossRefPubMedGoogle Scholar
  65. Rozas J (2009) DNA sequence polymorphism analysis using DnaSP. In: Posada D (ed) Bioinformatics for DNA sequence analysis, vol 537, Methods in molecular biology series. Humana Press, New York, pp 337–350. doi: 10.1007/978-1-59745-251-9_17 CrossRefGoogle Scholar
  66. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425. doi:0737-4038/87/0404-0007$02.00Google Scholar
  67. Santos SR, Ochman H (2004) Identification and phylogenetic sorting of bacterial lineages with universally conserved genes and proteins. Environ Microbiol 6:754–759. doi: 10.1111/j.1462-2920.2004.00617.x CrossRefPubMedGoogle Scholar
  68. Shah MM, Iihara H, Noda M, Song SX, Nhung PH, Ohkusu K, Kawamura Y, Ezaki T (2007) dnaJ gene sequence-based assay for species identification and phylogenetic grouping in the genus Staphylococcus. Int J Syst Evol Microbiol 57:25–30. doi: 10.1099/ijs.0.64205-0 CrossRefPubMedGoogle Scholar
  69. Sharma PK, Fu J, Cicek N, Sparling R, Levin DB (2012) Kinetics of medium-chain-length polyhydroxyalkanoates (mcl-PHAs) production by a novel isolate of Pseudomonas putida LS46. Can J Microbiol 58:982–989. doi: 10.1139/w2012-074 CrossRefPubMedGoogle Scholar
  70. Sharma PK, Fu J, Zhang XL, Fristensky BW, Davenport K, Chain PSG, Sparling R, Levin DB (2013) Draft genome sequence of medium-chain-length polyhydroxyalkanoate-producing Pseudomonas putida strain LS46. Genome Announc 1:e00151–13. doi: 10.1128/genomeA.00151-13 PubMedCentralCrossRefPubMedGoogle Scholar
  71. Sharma PK, Fu J, Zhang XL, Fristensky BW, Sparling R, Levin DB (2014) Genome features of Pseudomonas putida LS46, a novel polyhydroxyalkanoate producer and its comparison with other P. putida strains. AMB Exp 4:37. doi: 10.1186/s13568-014-0037-8 CrossRefGoogle Scholar
  72. Solaiman DK, Ashby RD, Foglia TA (2000) Rapid and specific identification of medium chain-length polyhydroxyalkanoate synthase gene by polymerase chain reaction. Appl Microbiol Biotechnol 53:690–694. doi: 10.1007/s002530000332 CrossRefPubMedGoogle Scholar
  73. Smet MJ, Eggink G, Witholt B, Kingma J, Wynberg H (1983) Characterization of intracellular inclusions formed by Pseudomonas oleovorans during growth on octane. J Bacteriol 154:870–878PubMedCentralPubMedGoogle Scholar
  74. Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271. doi: 10.1099/00221287-43-2-159 CrossRefPubMedGoogle Scholar
  75. Stead DE (1992) Grouping of plant-pathogenic and some other Pseudomonas spp. by using cellular fatty acid profiles. Int J Syst Bacteriol 42:281–295. doi: 10.1099/00207713-42-2-281 CrossRefGoogle Scholar
  76. Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24. doi: 10.1002/1616-5195(200101)1:1%3C1::AID-MABI1%3E3.3.CO;2-2 CrossRefGoogle Scholar
  77. Steinbüchel A, Füchtenbusch B (1998) Bacterial and other biological systems for polyester production. Trends Biotechnol 16:419–427. doi: 10.1016/S0167-7799(98)01194-9 CrossRefPubMedGoogle Scholar
  78. Sun Z, Ramsay JA, Guay M, Ramsay B (2007) Increasing the yield of MCL-PHA from nonanoic acid by co-feeding glucose during the PHA accumulation stage in two-stage fed-batch fermentations of Pseudomonas putida KT2440. J Biotechnol 132:280–282. doi: 10.1016/j.jbiotec.2007.02.023 CrossRefPubMedGoogle Scholar
  79. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 PubMedCentralCrossRefPubMedGoogle Scholar
  80. Tan IKP, Sudesh K, Theanmalar M, Gan SN, Gordon B (1997) Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl Microbiol Biotechnol 47:207–211. doi: 10.1007/s002530050914 CrossRefGoogle Scholar
  81. Tang H, Yao Y, Wang L, Yu H, Ren Y, Wu G, Xu P (2012) Genomic analysis of Pseudomonas putida: genes in a genome island are crucial for nicotine degradation. Sci Rep 2:377. doi: 10.1038/srep00377 PubMedCentralPubMedGoogle Scholar
  82. Tayeb LA, Ageron E, Grimont F, Grimont PAD (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156:763–773. doi: 10.1016/j.resmic.2005.02.009 CrossRefGoogle Scholar
  83. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 PubMedCentralCrossRefPubMedGoogle Scholar
  84. Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist per excellence. Environ Microbiol 4:779–781. doi: 10.1046/j.1462-2920.2002.00365.x CrossRefPubMedGoogle Scholar
  85. Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:200–204. doi: 10.1016/S0167-7799(98)01295-5 CrossRefPubMedGoogle Scholar
  86. Vancanneyt M, Torck U, Dewettinck D, Vaerewijck M, Kersters K (1996) Grouping of pseudomonads by SDS-PAGE of whole-cell proteins. Syst Appl Microbiol 19:556–568. doi: 10.1016/S0723-2020(96)80027-0 CrossRefGoogle Scholar
  87. Wang SN, Liu Z, Tang HZ, Meng J, Xu P (2007) Characterization of environmentally friendly nicotine degradation by Pseudomonas putida biotype A strain S16. Microbiology 153:1556–1565. doi: 10.1099/mic.0.2006/005223-0 CrossRefPubMedGoogle Scholar
  88. Wang SL, Lin YT, Liang TW, Chio SH, Ming LJ, Wu PC (2009) Purification and characterization of extracellular lipases from Pseudomonas monteilii TKU009 by the use of soybeans as the substrate. J Ind Microbiol Biotechnol 36:65–73. doi: 10.1007/s10295-008-0473-z CrossRefPubMedGoogle Scholar
  89. Yamamoto S, Harayama S (1998) Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16 rRNA genes. Int J Syst Bacteriol 48:813–819. doi: 10.1099/00207713-48-3-813 CrossRefPubMedGoogle Scholar
  90. Yamamoto S, Kasai H, Arnold DL, Jackson RW, Vivian A, Harayama S (2000) Phylogeny of the genus Pseudomonas: intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes. Microbiology 146:2385–2394. doi:10.1099/mic.0.27096-0CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Parveen Kumar Sharma
    • 1
  • Jilagamazhi Fu
    • 1
  • Xiang Zhang
    • 2
  • Richard Sparling
    • 3
  • David B. Levin
    • 1
  1. 1.Department of Biosystems EngineeringUniversity of ManitobaWinnipegCanada
  2. 2.Department of Plant ScienceUniversity of ManitobaWinnipegCanada
  3. 3.Department of MicrobiologyUniversity of ManitobaWinnipegCanada

Personalised recommendations