Advertisement

Biodegradable Polymers: Renewable Nature, Life Cycle, and Applications

  • Manjusha Dake

Abstract

Biopolymers are superior to synthetic polymer due to their eco-friendly nature. Microbial biopolymers being a good substitute for conventional plastics causing a waste management problem. Polyhydroxyalkanoates (PHAs) produced as microbial polyesters can provide promising prospects for food and allied industries due to their versatile properties assisting viscosifying, gelling, and film-forming ability. Microbial and biocatalytic production of functionalized polyhydroxyalkanoates with novel monomer structure and tailor-made properties can be feasible by manipulating the metabolic network in host microbes by genetic modification enabling them to utilize a diverse range of low-cost substrate as unsaturated fatty acid constituents. But expensive technology associated extraction and isolation of PHAs is a major hindrance for their commercial applications. A collective knowledge about PHAs as microbial biopolymers, their production from cheap and renewable resources, metabolic pathways involved in their production, economics of PHA production, and decisive factors involved could possibly assist their effective utilization as a substitute to synthetic polymers.

Keywords

Polylactic Acid Bacterial Cellulose Natural Rubber Olive Mill Wastewater Microbial Polysaccharide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The author is thankful to Springer and the editor Dr. V. C. Kalia for giving the opportunity to contribute a book chapter. The support from Dr. D. Y. Patil Vidyapeeth, Pune, is also gratefully acknowledged.

References

  1. Akar A, Akkaya EU, Yesiladali SKC, Celikyilmaz G, Cokgor EU, Tamerler C, Orhon D, Cakar ZP (2006) Accumulation of polyhydroxyalkanoates by Microlunatus phosphovorus under various growth conditions. J Ind Microbiol Biotechnol 33:215–220. doi: 10.1007/s10295-004-0201-2 PubMedCrossRefGoogle Scholar
  2. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144. doi: 10.1002/(SICI)1097-0126(1998100)47:2<89::AID-PI86>3.0.CO;2-F CrossRefGoogle Scholar
  3. Antipov EM, Dubinsky VA, Rubrov AV, Nekrasov YP, Gordeev SA, Ungar G (2006) Strain induced mesophase and hard- elastic behaviour of biodegradable polyhydroxyalkanoates fibers. Polymer 47:5678–5690. doi: 10.1016/j.polymer.2005.04.111 CrossRefGoogle Scholar
  4. Asrar J, Pierre JR (2000) Plasticized polyhydroxyalkanoate compositions and methods for their use in the production of shaped polymer articles. US patent 6127512Google Scholar
  5. Atlic A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91:295–304. doi: 10.1007/s00253-011-3260-0 PubMedCrossRefGoogle Scholar
  6. Bajaj I, Singhal R (2007) Gellan gum for reducing oil uptake in sev, a legume based product during deep-fat frying. Food Chem 104:1472–1477. doi: 10.1016/j.foodchem.2007.02.011 CrossRefGoogle Scholar
  7. Bassas M, Marques AM, Manresa A (2008) Study of the crosslinking reaction (natural and UV induced) in polyunsaturated PHA from linseed oil. Biochem Eng J 40:275–283. doi: 10.1016/j.bej.2007.12.022 CrossRefGoogle Scholar
  8. Bhuwal AK, Singh G, Aggarwal NK, Goyal V, Yadav A (2013) Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes. Int J Biomater 2013:1–10. doi: 10.1155/2013/752821 CrossRefGoogle Scholar
  9. Brandl H, Aeberli B, Bachofen R, Schwegler I, Muller HM, Burger MH, Hoffmann T, Lengweiler UD, Seebach D (1995) Biodegradation of cyclic and substituted linear oligomers of poly (3-hydroxybutyrate). Can J Microbiol 41:180–186. doi: 10.1139/m95-185 PubMedCrossRefGoogle Scholar
  10. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161. doi: 10.1016/S0168-1656(98)00126-6 PubMedCrossRefGoogle Scholar
  11. Braunegg G, Bona R, Koller M, Martinz J (2002) Production of polyhydroxyalkanoates: a contribution of biotechnology to sustainable development. In: Proceedings of sustainable development and environmentally degradable plastics in China, Beijing, pp 56–71Google Scholar
  12. Bucci DZ, Tavares LBB (2005) PHB packaging for the storage of food products. J Polym Test 24:564–571. doi: 10.1016/j.polymertesting.2005.02.008 CrossRefGoogle Scholar
  13. Bury D, Jelen P, Kalab M (2001) Disruption of Lactobacillus delbrueckii ssp. bulgaricus 11842 cells for lactose hydrolysis in dairy products: a comparison of sonication, high-pressure homogenization and bead milling. Innovat Food Sci Emerg Tech 2:23–29. doi: 10.1016/S1466-8564(00)00039-4 CrossRefGoogle Scholar
  14. Carolan G, Catley BJ, McDougal FJ (1983) The location of tetrasaccharide units in pullulan. Carbohydr Res 114:237–243. doi: 10.1016/0008-6215(83)88190-7 CrossRefGoogle Scholar
  15. Chaijamrus S, Udpuay N (2008) Production and Characterization of polyhydroxybutyrate from molasses and corn steep liquor produced by Bacillus megaterium ATCC 6748. Agric Eng Int Cigr J 10:1–12Google Scholar
  16. Cheirsilp B, Radchabut S (2011) Use of whey lactose from dairy industry for economical kefiran production by Lactobacillus kefiranofaciens in mixed cultures with yeasts. N Biotechnol 28:574–580. doi: 10.1016/j.nbt.2011.01.009 PubMedCrossRefGoogle Scholar
  17. Cheirsilp B, Shimizu H, Shioya S (2003) Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. J Biotechnol 100:43–53. doi: 10.1016/s1389-1723(03)80194-9 PubMedCrossRefGoogle Scholar
  18. Chen GQ (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem Soc Rev 38:2434–2446. doi: 10.1039/B812677C PubMedCrossRefGoogle Scholar
  19. Chen GQ, Martin KP (2012) Plastics derived from biological sources: present and future: a technical and environmental review. Chem Rev 112:2082–2099. doi: 10.1021/cr200162d PubMedCrossRefGoogle Scholar
  20. Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036 PubMedCrossRefGoogle Scholar
  21. Cheng KC, Catchmark JM, Demicri A (2011) Effect of CMC addition on bacterial cellulose production in a biofilm reactor and its paper sheets analysis. Biomacromolecules 12:730–736. doi: 10.1021/bm101363t PubMedCrossRefGoogle Scholar
  22. Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in Gram-negative bacteria. Microbiol Mol Biol Rev 73:155–177. doi: 10.1128/MMBR.00024-08 PubMedCentralPubMedCrossRefGoogle Scholar
  23. De Eugenio LI, Escapa IF, Morales V, Dinjaski N, Galan B, Garcia JL, Prieto MA (2010) The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ Microbiol 12:207–221. doi: 10.1111/j.1462-2920.2009.02061.x PubMedCrossRefGoogle Scholar
  24. Delben F, Forabosco A, Guerrini M, Liut G, Torri G (2006) Pullulans produced by strains of Cryphonectria parasitica-II. Nuclear magnetic resonance evidence. Carbohydr Polym 63:545–554. doi: 10.1016/j.carbpol.2005.11.012 CrossRefGoogle Scholar
  25. Di Donato P, Fiorentino G, Anzelmo G, Tommonaro G, Nicolaus B, Poli A (2011) Re-use of vegetable wastes as cheap substrates for extremophile biomass production. Waste Biomass Valoriz 2:103–111. doi: 10.1007/s12649-011-9062-x CrossRefGoogle Scholar
  26. Divyashree MS, Shamala TR (2009) Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus. Radiat Phys Chem 78:147–152. doi: 10.1016/j.radphyschem.2008.08.010 CrossRefGoogle Scholar
  27. Doi Y, Abe C (1990) Biosynthesis and characterization of new bacterial copolyester of 3-hydroxyalkanoates and 3-hydroxy-ω-chloroalkanoates. Macromolecules 23:3705–3707. doi: 10.1021/ma00217a027 CrossRefGoogle Scholar
  28. Dong Z, Sun X (2000) A new method of recovering polyhydroxyalkanoate from Azotobacter chroococcum. Chin Sci Bull 45:252–256. doi: 10.1007/BF02884685 CrossRefGoogle Scholar
  29. Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962. doi: 10.1016/j.carbpol.2011.08.083 CrossRefGoogle Scholar
  30. Draget KI, Smidsrod O, Skjak-Braek G (2005) Alginates from algae. In: Steinbüchel EA, Rhee SK (eds) Polysaccharides and polyamides in the food industry: properties, production, and patents. Wiley-VCH/Verlach GmbH, Weinheim/Germany, pp 1–30Google Scholar
  31. El-Saied H, Basta AH, Gobran RH (2004) Research progress in friendly environmental technology for the production of cellulose products (bacterial cellulose and its application). Polym-Plast Technol Eng 43:797–820. doi: 10.1081/ppt-120038065 CrossRefGoogle Scholar
  32. Finore I, Donato PD, Mastascusa V, Nicolaus B, Poli A (2014) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024. doi: 10.3390/md12053005 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398. doi: 10.1016/j.tibtech.2011.03.008 PubMedCrossRefGoogle Scholar
  34. Full TD, Jung DO, Madigan MT (2006) Production of poly-beta-hydroxyalkanoates from soy molasses oligosaccharides by new, rapidly growing Bacillus species. Lett Appl Microbiol 43:377–384. doi: 10.1111/j.1472-765x.2006.01981.x PubMedCrossRefGoogle Scholar
  35. George J, Ramana KV, Sabapathy SN, Jambur HJ, Bawa AS (2005) Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical Properties. Int J Biol Macromol 37:189–194. doi: 10.1016/j.ijbiomac.2005.10.007 PubMedCrossRefGoogle Scholar
  36. Ghasemlou M, Khodaiyan F, Oromiehie A, Yarmand MS (2011a) Development and characterisation of a new biodegradable edible film made from kefiran, an exopolysaccharide obtained from kefir grains. Food Chem 127:1496–1502. doi: 10.1016/j.foodchem.2011.02.003 CrossRefGoogle Scholar
  37. Ghasemlou M, Khodaiyan F, Oromiehie A, Yarmand MS (2011b) Characterization of edible emulsified films with low affinity to water based on kefiran and oleic acid. Int J Biol Macromol 49:378–384. doi: 10.1016/j.ijbiomac.2011.05.013 PubMedCrossRefGoogle Scholar
  38. Gong Y, Wang C, Lai RC, Su K, Zhang F, Wang D (2009) An improved injectable polysaccharide hydrogel; modified gellan gum for long term cartilage regeneration in vitro. J Mater Sci 19:1968–1977. doi: 10.1039/b818090c Google Scholar
  39. Gouda MK, Swellam AE, Omar SH (2001) Production of PHB by a Bacillus megaterium strain using sugarcane molasses and corn steep liquor as sole carbon and nitrogen source. Microbiol Res 156:201–220. doi: 10.1078/0944-5013-00104 PubMedCrossRefGoogle Scholar
  40. Gupta S, Pal A, Sahu N, Dalvi R, Kumar V, Mukherjee S (2008) Microbial levan in the diet of Labeo rohita Hamilton juveniles: effect on nonspecific immunity and histopathological changes after challenge with Aeromonas hydrophila. J Fish Dis 3:649–657. doi: 10.1111/j.1365-2761.2008.00939.x CrossRefGoogle Scholar
  41. Han J, Qiu YZ, Liu DC, Chen GQ (2004) Engineered Aeromonas hydrophila for enhanced production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with alterable monomers composition. FEMS Microbiol Lett 239:195–201. doi: 10.1016/j.femsle.2004.08.044 PubMedCrossRefGoogle Scholar
  42. Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065. doi: 10.1128/AEM.00953-07 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hazer B (2010) Amphiphilic poly(3-hydroxy alkanoate)s: potential candidates for medical applications. Int J Polym Sci 2010:1–8. doi: 10.1155/2010/423460 CrossRefGoogle Scholar
  44. Hejazi P, Vasheghani-Farahani E, Yamini Y (2003) Supercritical fluid disruption of Ralstonia eutropha for poly(beta-hydroxybutyrate) recovery. Biotechnol Prog 19:1519–1523. doi: 10.1021/bp034010q PubMedCrossRefGoogle Scholar
  45. Hoffmann N, Rehm BHA (2004) Regulation of polyhydroxyalkanoate biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol Lett 237:1–7. doi: 10.1111/j.1574-6968.2004.tb09671.x PubMedCrossRefGoogle Scholar
  46. Horvat P, Vrana Spoljaric I, Lopar M, Atlic A, Koller M, Braunegg G (2013) Mathematical modelling and process optimization of a continuous 5-stage bioreactor cascade for production of poly[−(R)-3-hydroxybutyrate] by Cupriavidus necator. Bioprocess Biosyst Eng 36:1235–1250. doi: 10.1007/s00449-012-0852-8 PubMedCrossRefGoogle Scholar
  47. Jang KH, Song KB, Park BS, Kim CH, Chung BH, Choue RW, Lee KS, Lee C, Chun UH, Rhee SK (2001) Levan production by use of the recombinant levansucrase immobilized on titanium-activated magnetite. Process Biochem 37:339–342. doi: 10.1016/s0032-9592(01)00215-1 CrossRefGoogle Scholar
  48. Jau MH, Yew SP, Toh PSY, Chong ASC, Chu WL, Phang SM, Najimudin N, Sudesh K (2005) Biosynthesis and mobilization of poly(3-hydroxybutyrate) P(3HB) by Spirulina platensis. Int J Biol Macromol 36:144–151. doi: 10.1016/j.ijbiomac.2005.05.002 PubMedCrossRefGoogle Scholar
  49. Jeong YI, Na HS, Oh JS, Choi KC, Song CE, Lee HC (2006) Adriamycin release from self-assembling nanospheres of poly (dl-lactide-co-glycolide)-grafted pullulan. Int J Pharm 322:154–160. doi: 10.1016/j.ijpharm.2006.05.020 PubMedCrossRefGoogle Scholar
  50. Jogdand SN (2014) Biopolymers, 408, Archana Building, Sector-17. Vashi, Navi MumbaiGoogle Scholar
  51. Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Mater Res Innov 83:79–86. doi: 10.1016/s0141-3910(03)00227-1 Google Scholar
  52. Kalia VC, Raizada N, Sonakya V (2000) Bioplastics. J Sci Ind Res 59:433–445Google Scholar
  53. Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846. doi: 10.1038/nbt0803-845 PubMedCrossRefGoogle Scholar
  54. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi: 10.1016/j.gene.2006.09.010 PubMedCrossRefGoogle Scholar
  55. Kanmani P, Lim ST (2013) Synthesis and structural characterization of silver nanoparticles using bacterial exopolysaccharide and its antimicrobial activity against food and multidrug resistant pathogens. Process Biochem 47:1099–1106. doi: 10.1016/j.procbio.2013.05.011 CrossRefGoogle Scholar
  56. Kato M, Fukui T, Doi Y (1996) Biosynthesis of polyester blends by Pseudomonas sp. 61–3 from alkanoic acids. Bull Chem Soc Jpn 69:515–520, doi:http://dx.doi.org/10.1246/bcsj.69.515CrossRefGoogle Scholar
  57. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40:607–619. doi: 10.1016/j.procbio.2004.01.053 CrossRefGoogle Scholar
  58. Khardenavis AA, Suresh Kumar M, Mudliar SN, Chakrabarti T (2007) Biotechnological conversion of agro-industrial wastewaters into biodegradable plastic, poly-beta-hydroxybutyrate. Bioresour Technol 98:3579–3584. doi: 10.1016/j.biortech.2006.11.024 PubMedCrossRefGoogle Scholar
  59. Ki Ho Kim, Chan Bok Chung, Young Heui Kim, Ki Soo Kim, Chang Sung Han, Chul Ho Kim RD (2005) Cosmeceutical properties of levan produced by Zymomonas mobilis. J Cosmet Sci 56:395–406PubMedGoogle Scholar
  60. Koller M, Salerno A, Miranda de SousaDias M, Reiterer A, Braunegg G (2010) Modern biotechnological polymer synthesis: a review. Food Technol Biotechnol 48:255–269. doi: 10.1016/j.biombioe.2010.10.008 Google Scholar
  61. Koller M, Gasser I, Schmid F, Berg G (2011) Linking ecology with economy: insights into polyhydroxyalkanoate-producing microorganisms. Eng Life Sci 11:222–237. doi: 10.1002/elsc.201000190 CrossRefGoogle Scholar
  62. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi: 10.1111/j.1365-2672.2009.04160.x PubMedCrossRefGoogle Scholar
  63. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi: 10.1016/j.biotechadv.2013.08.007 PubMedCrossRefGoogle Scholar
  64. Kumar P, Singh M, Mehariya S, Patel SKS, Lee JK, Kalia VC (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. doi: 10.1007/s12088-014-0457-9 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015a) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  66. Kumar P, Ray S, Patel SKS, Lee JK, Kalia VC (2015b) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2015.03.046 Google Scholar
  67. Lakshman K, Shamala TR (2006) Extraction of polyhydroxyalkanoate from Sinorhizobium meliloti cells using Microbispora sp. culture and its enzymes. Enzym Microb Technol 39:1471–1475. doi: 10.1016/j.enzmictec.2006.03.037 CrossRefGoogle Scholar
  68. Leathers TD (2003) Biotechnological production and applications of pullulan. Appl Microbiol Biotechnol 62:468–473. doi: 10.1007/s00253-003-l386-4 PubMedCrossRefGoogle Scholar
  69. Lee SH, Oh DH, Ahn WS, Lee Y, Choi JI, Lee SY (2000) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by high-cell-density cultivation of Aeromonas hydrophila. Biotechnol Bioeng 67:240–244. doi: 10.1002/(sici)1097-0290(20000120)67:2<240::aid-bit14>3.0.co;2-f PubMedCrossRefGoogle Scholar
  70. Legault BA, Lopez-Lopez A, Alba-Casado JC, Doolittle WF, Bolhuis H, Rodriguex-Valera F, Papke RT (2006) Environmental genomics of “Haloquadratum walsbyi” in a saltern crystallizer indicates a large pool of accessory genes in an otherwise coherent species. BMC Genomics 7:171. doi: 10.1186/1471-2164-7-171 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Lin S-P, Calvar IL, Catchmark JM, Liu J-R, Demirci A, Cheng K-C (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219. doi: 10.1007/s10570-013-9994-3 CrossRefGoogle Scholar
  72. Lu XY, Ciraolo E, Stefenia R, Chen GQ, Zhang Y, Hirsch E (2011) Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines. Appl Microbiol Biotechnol 89:1423–1433. doi: 10.1007/s00253-011-3101-1 PubMedCrossRefGoogle Scholar
  73. Matko E, Tonka K, Ivka K (2005) Thermal degradation of poly(3- hydroxybutyrate) plasticized with acetyl tributyl citrate. Polym Degrad Stab 90:313–318. doi: 10.1016/j.polymdegradstab.2005.04.048 CrossRefGoogle Scholar
  74. Matsubara Y, Kawada R, Iwasaki K, Kimura Y, Oda T, Muramatsu T (2000) Cloning and sequence analysis of a gene (aly PG) encoding poly-(α-L-guluronate) lyase from Corynebacterium sp. strain ALY-1. J Biosci Bioeng 89:199–202. doi: 10.1016/s1389-1723(00)88738-1 PubMedCrossRefGoogle Scholar
  75. Mercan N, Beyatli Y (2005) Production of poly-betahydroxybutyrate (PHB) by Rhizobium meliloti, R. viciae, and Bradyrhizobium japonicum with different carbon and nitrogen sources, and inexpensive substrates. Zuckerindustrie 130:410–415Google Scholar
  76. Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1994) Microbial degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in compost. J Environ Polym Degrad 2:177–183. doi: 10.1007/bf02067443 CrossRefGoogle Scholar
  77. Mironescu M, Mironescu V (2006) New concept for the obtention of biopolymers-based food biofilms. J Agroaliment Proc Technol 12:219–216Google Scholar
  78. Mironescu M, Mironescu ID (2011) Rheological behaviour of a novel microbial polysaccharide. Rom Biotechnol Lett 16:6105–6114. doi: 10.1016/j.profoo.2011.09.050c Google Scholar
  79. Mitsue T, Tachibana K, Fujio J (1999) Efficient kefiran production by a mixed culture of Lacto bacillus kefiranofaciens KF-75 and yeast strains. Seibutsu Kogaku Kaishi 76:93–103. doi: 10.1016/s1389-1723(99)80057-7 Google Scholar
  80. Moreira S, Silva NB, Almeida-Lima J, Rocha HAO, Medeiros SRB, Alves C Jr, Gama FM (2009) BC nanofibres, in vitro study of genotoxicity and cell proliferation. Toxicol Lett 189:235–241. doi: 10.1016/j.toxlet.2009.06.849 PubMedCrossRefGoogle Scholar
  81. Nakagaito AN, Iwamoto S, Yano H (2005) Bacterial cellulose: the ultimate nano-scalar cellulose morphology for the production of high-strength composites. Appl Phys A Mater Sci Process 80:93–97. doi: 10.1007/s00339-004-2932-3 CrossRefGoogle Scholar
  82. Nakas JP, Keenan TJ, Stipanovic AJ, Tanenbaum SW (2004) Bioconversion of xylose and levulinic acid to polyhydroxyalkanoate (PHA) copolymers. Abstr Pap Am Chem Soc 227:U299Google Scholar
  83. Nicolaus B, Kambourova M, Oner ET (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158. doi: 10.1080/09593330903552094 PubMedCrossRefGoogle Scholar
  84. Nikel PI, Pettinari MJ, Galvagno MA, Mendez BS (2006) Poly(3-hydroxybutyrate) synthesis by recombinant Escherichia coli arcA mutants in microaerobiosis. Appl Environ Microbiol 72:2614–2620. doi: 10.1128/aem.72.4.2614-2620.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Nishi Y, Uryu M, Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S (1990) The structure and mechanical-properties of sheets prepared from bacterial cellulose. 2. Improvement of the mechanical-properties of sheets and their applicability to diaphragms of electroacoustic transducers. J Mater 25:2997–3001. doi: 10.1007/bf00584917 CrossRefGoogle Scholar
  86. Noda I (2001) Films comprising biodegradable PHA copolymers. US patent 6174990, 16 Jan 2001Google Scholar
  87. Nuti MP, De Bertoldi M, Lepidi AA (1972) Influence of phenylacetic acid on poly-β-hydroxybutyrate (PHB) polymerization and cell elongation in Azotobacter chroococcum Beij. Can J Microbiol 18:1257–1261. doi: 10.1139/m72-194 PubMedCrossRefGoogle Scholar
  88. Oliveira MR, Silva RSSF, Buzato JB, Celligoi MAPC (2007) Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Appl Microbiol Biotechnol 37:177–183. doi: 10.1016/j.bej.2007.04.009 Google Scholar
  89. Oner ET (2013) Microbial production of extracellular polysaccharides from Biomass. In: Fang Z (ed) Pretreatment techniques biofuels and biorefineries, Green energy and technology. Springer, Berlin, pp 35–56. doi: 10.1007/978-3-642-32735-3_2 CrossRefGoogle Scholar
  90. Orts WJ, Nobes GAR, Kawada J, Nguyen S, Yu GE, Ravenelle F (2008) Poly(hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault. Can J Chem 86:628–640. doi: 10.1139/v08-050 CrossRefGoogle Scholar
  91. Parolis LAS, Parolis H, Paramonov NA, Boan IF, Anton J, Rodriguez-Valera F (1999) Structural studies on the acidic exopolysaccharide from Haloferax denitrificans ATCC 35960. Carbohydr Res 319:133–140. doi: 10.1016/s0008-6215(99)00111-1 PubMedCrossRefGoogle Scholar
  92. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. doi: 10.1007/s12088-011-0236-9 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi: 10.1016/j.biombioe.2011.10.027 CrossRefGoogle Scholar
  94. Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi: 10.1016/j.biortech.2014.11.029 PubMedCrossRefGoogle Scholar
  95. Piermaria JA, Pinotti A, Garcia MA, Abraham AG (2009) Films based on kefiran, an exopolysaccharide obtained from kefir grain: development and characterization. Food Hydrocoll 23:684–690. doi: 10.1016/j.foodhyd.2008.05.003 CrossRefGoogle Scholar
  96. Pohlmann A, Fricke WF, Reinecke F, Kusian B, Liesegang H, Cramm R, Eitinger T, Ewering C, Potter M, Schwartz E, Strittmatter A, Voss I, Gottschalk G, Steinbuchel A, Friedrich B, Bowien B (2006) Genome sequence of the bioplastic-producing ‘Knallgas’ bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262. doi: 10.1038/nbt1244 PubMedCrossRefGoogle Scholar
  97. Pollock TJ, Throne L, Armentrout RW (1992) Isolation of new Aureobasidium strains that produce high-molecular-weight pullulan with reduced pigmentation. Appl Environ Microbiol 58:877–883PubMedCentralPubMedGoogle Scholar
  98. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi: 10.1016/j.biortech.2007.11.011 PubMedCrossRefGoogle Scholar
  99. Quillaguaman J, Delgado O, Mattiasson B, Hatti-Kaul R (2006) Poly(beta-hydroxybutyrate) production by a moderate halophile, Halomonas boliviensis LC1. Enzyme Microb Technol 38:148–154. doi: 10.1016/j.enzmictec.2005.05.013 CrossRefGoogle Scholar
  100. Rairakhwada D, Pal A, Bhathena Z, Sahu N, Jha A, Mukherjee S (2007) Dietary microbial levan enhances cellular non-specific immunity and survival of common carp (Cyprinus carpio) juveniles. Fish Shellfish Immunol 22:477–486. doi: 10.1016/j.fsi.2006.06.005 PubMedCrossRefGoogle Scholar
  101. Rajendran N, Sharanya P, Sneha RM, Ruth AB, Rajam C (2012) Seaweeds can be a new source for bioplastics. J Pharm Res 5:1476–1479. doi: 10.1007/s00436-010-2219-x Google Scholar
  102. Reddy CSK, Ghai R, Kalia V (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146. doi: 10.1016/S0960-8524(02)00212-2 PubMedCrossRefGoogle Scholar
  103. Rehm B (2009) Microbial exopolysaccharides: variety and potential applications. In: Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, Norfolk, pp 229–254Google Scholar
  104. Reis RA, Tischer CA, Gorrin PAJ, Iacomini M (2002) A new pullulan and a branched (1–3)-, (1–6)- linked β-glucan from the lichenised ascomycete Teloschistes flavicans. FEMS Microbiol Lett 210:1–5. doi: 10.1111/j.1574-6968.2002.tb11152.x PubMedGoogle Scholar
  105. Remminghorst U, Rehm BHA (2006) Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 28:1701–1712. doi: 10.1007/s10529-006-9156-x PubMedCrossRefGoogle Scholar
  106. Ren Q, Sierro N, Kellerhals M, Kessler B, Witholt B (2000) Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains. Appl Environ Microbiol 66:1311–1320. doi: 10.1128/AEM.66.4.1311-1320.2000 PubMedCentralPubMedCrossRefGoogle Scholar
  107. Sakata Y, Otsuka M (2009) Evaluation of relationship between molecular behaviour and mechanical strength of pullulan films. Int J Pharm 374:33–38. doi: 10.1016/j.ijpharm.2009.02.019 PubMedCrossRefGoogle Scholar
  108. Sam S, Kucukasik F, Yenigun O, Nicolaus B, Oner ET, Yukselen MA (2011) Flocculating performances of exopolysaccharides produced by a halophilic bacterial strain cultivated on agro-industrial waste. Bioresour Technol 102:1788–1794. doi: 10.1016/j.biortech.2010.09.020 PubMedCrossRefGoogle Scholar
  109. Senior PJ, Dawes EA (1973) The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. J Biochem 134:225–238CrossRefGoogle Scholar
  110. Shih IL, Yu YT, Shieh CJ, Hsieh CY (2005) Selective production and characterization of levan by Bacillus subtilis (natto) Takahashi. J Agric Food Chem 53:8211–8215. doi: 10.1021/jf058084o PubMedCrossRefGoogle Scholar
  111. Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8. doi: 10.1007/bf02931175 CrossRefGoogle Scholar
  112. Shrivastav A, Kim HY, Kim TR (2013) Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. BiomMed Res Int 12:1–12. doi: 10.1155/2013/581684 CrossRefGoogle Scholar
  113. Sima F, Mutlu EC, Eroglu MS, Sima LE, Serban N, Ristoscu C, Petrescu SM, Oner ET, Mihailescu IN (2011) Levan nanostructured thin films by MAPLE assembling. Int J Biol Macromol 12:2251–2256. doi: 10.1021/bm200340b Google Scholar
  114. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi: 10.1007/s12088-012-0294-7 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Singh M, Kumar P, Ray S, Kalia VC (2015) Challenges and opportunities for customizing polyhydroxyalkanoates. Indian J Microbiol 55:234–249. doi: 10.1007/s12088-015-0528-6 CrossRefGoogle Scholar
  117. Singha TK (2012) Microbial extracellular polymeric substances: production, isolation and applications. IOSR J Pharm 2:276–281. doi: 10.9790/3013-0220276281 Google Scholar
  118. Snell K, Peoples O (2002) Polyhydroxyalkanoate polymers and their production in transgenic plants. Metab Eng 4:29–40. doi: 10.1006/mben.2001.0214 PubMedCrossRefGoogle Scholar
  119. Snell KD, Peoples OP (2009) PHA bioplastic: a value-added coproduct for biomass biorefineries. Biofuels Bioprod Bioref 3:456–467. doi: 10.1111/j.1467-7652.2008.00350.x CrossRefGoogle Scholar
  120. Solaiman SKY, Ashby RD, Foglia TA, Marmer WN (2006) Conversion of agricultural feedstock and co-products into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 71:783–789. doi: 10.1007/s00253-006-0451-1 PubMedCrossRefGoogle Scholar
  121. Steinbuchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24. doi: 10.1002/1616-5195(200101)1:1<1::AID-MABI1>3.0.CO;2-B CrossRefGoogle Scholar
  122. Sudesh K, Abe H, Doi Y (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555. doi: 10.1016/S0079-6700(00)00035-6 CrossRefGoogle Scholar
  123. Sutherland IW (2005) Polysaccharides from microorganisms, plants and animals. In: Steinbuchel A (ed) Bipopolymers online. Wiley, New York. doi: 10.1002/3527600035.bpo15001 Google Scholar
  124. Sworn G (2000) Gellan gum. In: Phillips GO, Williams PA (eds) Handbook of hydrocolloids. Woodhead Publishing Ltd, Cambridge, UK, pp 117–135Google Scholar
  125. Tako M, Nakamura S (1989) Evidence for intramolecular associations in xanthan molecules in aqueous media. Agric Biol Chem 53:1941–1946. doi: 10.1271/bbb1961.53.1941 CrossRefGoogle Scholar
  126. Tanaka K, Shimonishi M, Kitagaki M, Ikunaga M (1990) Action of levan fructotransferase of Arthrobacter ureafaciens on three oligosaccharides containing a bifurcose residue. Agric Biol Chem 54:815–817PubMedCrossRefGoogle Scholar
  127. Tanaka T, Yabe T, Teramachi S, Iwata T (2007) Mechanical properties and enzymatic degradation of poly[(R)-3-hydroxybutyrate] fibers stretched after isothermal crystallization near Tg. Polym Degrad Stab 92:1016–1024. doi: 10.1016/j.polymdegradstab.2007.02.017 CrossRefGoogle Scholar
  128. Taran M (2011) Utilization of petrochemical wastewater for the production of poly (3-hydroxybutyrate) by Haloarcula sp. IRU1. J Hazard Mater 188:26–28. doi: 10.1016/j.jhazmat.2011.01.036 PubMedCrossRefGoogle Scholar
  129. Tortajada M, da Silva LF, Prieto MA (2013) Second-generation functionalized medium chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. Int Microbiol 16:1–15. doi: 10.2436/20.1501.01.175 PubMedGoogle Scholar
  130. Uchino K, Saito T, Gebauer B, Jendrossek D (2007) Isolated poly (3-hydroxybutyrate) (PHB) granules complex bacterial organelles catalyzing formation of PHB from acetyl Coenzyme A (CoA) and degradation of PHB to acetyl CoA. J Bacteriol 189:8250–8256. doi: 10.1128/jb.00752-07 PubMedCentralPubMedCrossRefGoogle Scholar
  131. Valappil SP, Misra SK, Boccaccini A, Roy I (2006) Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses. Expert Rev Med Devices 3:853–868. doi: 10.1586/17434440.3.6.853 PubMedCrossRefGoogle Scholar
  132. Verlinden RAJ, Hill DJ, Kenward MA, William CD, Radeckal I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiol Rev 102:1437–1449. doi: 10.1111/j.1365-2672.2007.03335.x CrossRefGoogle Scholar
  133. Vijayendra SV, Shamala TR (2014) Film forming microbial biopolymers for commercial applications-a review. Crit Rev Biotechnol 34:338–357. doi: 10.3109/07388551.2013.798254 PubMedCrossRefGoogle Scholar
  134. Volova TG (2004) Properties in polyhydroxyalkanoates-plastic materials of the 21st century: production, properties, applications. Nova Science Publishers, New York, p 282Google Scholar
  135. Volova TG, Kalacheva GS (2005) The synthesis of hydroxybutyrate and hydroxyvalerate copolymers by the bacterium Ralstonia eutropha. Microbiology 74:54–59. doi: 10.1007/s11021-005-0028-5 CrossRefGoogle Scholar
  136. Volova TG, Kalachevaa GS, Steinbuchel A (2007) Biosynthesis of multi-component polyhydroxyalkanoates by the bacterium Wautersia eutropha. Microbiology 76:704–711. doi: 10.1134/S0026261707060082 CrossRefGoogle Scholar
  137. Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xuan BB, Dung VV, Gitelson II (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95:2350–2359. doi: 10.1016/j.polymdegradstab.2010.08.023 CrossRefGoogle Scholar
  138. Wang L, Shelton RM, Cooper PR, Lawson M, Triffitt JT, Barralet JE (2003) Evaluation of sodium alginate for bone marrow cell tissue engineering. Biomaterials 24:3475–3481. doi: 10.1016/s0142-9612(03)00167-4 PubMedCrossRefGoogle Scholar
  139. Wang YW, Wu Q, Chen GQ (2005) Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)films for biomedical application. Biomacromolecules 6:566–571. doi: 10.1021/bm049342d PubMedCrossRefGoogle Scholar
  140. Witthuhn RC, Schoeman T, Britz TJ (2005) Characterisation of the microbial population at different stages of Kefir production and Kefir grain mass cultivation. Int Dairy J 15:383–389. doi: 10.1016/j.idairyj.2004.07.016 CrossRefGoogle Scholar
  141. Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340. doi: 10.1146/annurev.micro.54.1.289 PubMedCrossRefGoogle Scholar
  142. Wong PAL, Cheung MK, Lo WL, Chua H, Yu PHF (2005) Effects of types of food waste as carbon source on the molecular weight distributions and thermal properties of the biopolymer (polyhydroxybutyrate) produced by two strains of microorganisms. Mater Res Innov 9:4–5. doi: 10.1515/epoly.2004.4.1.324 Google Scholar
  143. Yasotha K, Aroua MK, Ramachandran KB, Tan IKP (2006) Recovery of medium-chain-length polyhydroxyalkanoates (PHAs) through enzymatic digestion treatments and ultrafiltration. Biochem Eng J 30:260–268. doi: 10.1016/j.bej.2006.05.008 CrossRefGoogle Scholar
  144. Yoo SH, Yoon EJ, Cha J, Lee HG (2004) Antitumor activity of levan polysaccharides from selected microorganisms. Int J Biol Macromol 34:37–41. doi: 10.1016/j.ijbiomac.2004.01.002 PubMedCrossRefGoogle Scholar
  145. Young NWG (2002) The yield stress phenomenon and related issues – an industrial view. In: Williams PA, Phillips GO (eds) Gums and stabilizers for the food industry. The Royal Society of Chemistry, Cambridge, UK, pp 226–234Google Scholar
  146. Yu J, Stahl H (2008) Microbial utilization and biopolyester synthesis of bagasse hydrolysates. Bioresour Technol 99:8042–8048. doi: 10.1016/j.biortech.2008.03.071 PubMedCrossRefGoogle Scholar
  147. Yu P, Chua H, Huang AL, Ho KP (1999) Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates. Appl Biochem Biotechnol 78:445–454. doi: 10.1385/abab:78:1-3:445 CrossRefGoogle Scholar
  148. Yue H, Ling C, Yang T, Chen X, Chen Y, Deng H, Wu Q, Chen J, Chen GQ (2014) A seawater-based open and continuous process for polyhydroxyalkanoates production by recombinant Halomonas campaniensis LS21 grown in mixed substrates. Biotechnol Biofuels 7:108–119. doi: 10.1186/1754-6834-7-108 CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of BiotechnologyDr. D.Y. Patil Biotechnology and Bioinformatics InstitutePuneIndia

Personalised recommendations