Investigating the Phylogeny of Hydrogen Metabolism by Comparative Genomics: Horizontal Gene Transfer

  • Sadhana Lal
  • Dhananjay V. Raje
  • Simrita Cheema
  • Atya Kapley
  • Hemant J. Purohit
  • Vipin Chandra Kalia


The phylogenetic analysis based on molecular characteristics indicates that lithotrophic metabolism was followed by phototrophy. Hydrogen (H2) metabolism is a signature of such environments. This property is prominent among organisms found in geothermal conditions and in deep aquifers. H2 is generated readily by abiotic mechanisms where the terminal electron acceptor is likely to be the limiting factor. In the post-fossil fuel era, H2 has in fact emerged as a strong contender for future fuel. It is thus important to understand the molecular mechanisms which lead to H2 production and associated biological systems. These can help to comprehend issues such as sustainability, environmental emissions and energy security. Comparative genomic analysis reveals events of horizontal transfer of genes of H2 metabolism among taxonomically diverse organisms. This offers an opportunity to identify those genomes which can be tailored for transforming presently ‘non’-H2 producers into producers. This also suggests that naturally occurring events can be mimicked to provide future fuel H2.


Horizontal Gene Transfer Horizontal Gene Transfer Event Desulfovibrio Desulfuricans Vertical Inheritance hydA Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We are thankful to Directors of CSIR-Institute of Genomics and Integrative Biology, CSIR- National Environmental Engineering Research Institute and CSIR and CSIR project WUM (ESC0108) for providing the necessary funds, facilities and moral support.


  1. Achtman M, Hakenbeck R (1992) Recent developments regarding the evolution of pathogenic bacteria. In: Hormaeche CE (ed) Molecular biology of bacterial infection: current status and future perspective. Cambridge University Press, New York, pp 13–31Google Scholar
  2. Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Domiguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485. doi: 10.1016/j.tibtech.2004.07.001 CrossRefPubMedGoogle Scholar
  3. Aravind L, Tatusov RL, Wolf YI, Walker DR, Koonin EV (1998) Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet 14:442–444. doi: 10.1016/S0168-9525(98)01553-4 CrossRefPubMedGoogle Scholar
  4. Brown RJ (2003) Ancient horizontal gene transfer. Nat Rev Genet 4:121–132. doi: 10.1038/nrg1000 CrossRefPubMedGoogle Scholar
  5. Bui ET, Bradley PJ, Johnson PJ (1996) A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc Natl Acad Sci U S A 93:9651–9656PubMedCentralCrossRefPubMedGoogle Scholar
  6. Calteau A, Gouy M, Perriere G (2005) Horizontal transfer of two operons coding for hydrogenases between bacteria and archaea. J Mol Evol 60:557–565. doi: 10.1007/s00239-004-0094-8 CrossRefPubMedGoogle Scholar
  7. Campbell A, Mrazek J, Karlin S (1999) Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci U S A 96:9184–9189. doi: 10.1073/pnas.96.16.9184 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Carbone A, Zinovyev A, Kepes F (2003) Codon adaptation index as a measure of dominating codon bias. Bioinform 19:2005–2015. doi: 10.1093/bioinformatics/btg272 CrossRefGoogle Scholar
  9. Caro-Quintero A, Konstantinidis KT (2014) Inter-phylum HGT has shaped the metabolism of many mesophilic and anaerobic bacteria. ISME J. doi: 10.1038/ismej.2014.193 Google Scholar
  10. Cavalier-Smith T (1993) Kingdom protozoa and its 18 phyla. Microbiol Rev 57:953–994PubMedCentralPubMedGoogle Scholar
  11. Delmotte F, Rispe C, Schaber J, Silva FJ, Moya A (2006) Tempo and mode of early gene loss in endosymbiotic bacteria from insects. BMC Evol Biol 6:56. doi: 10.1186/1471-2148-6-56 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Di Gioia D, Peel M, Fava F, Wyndham RC (1998) Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl Environ Microbiol 64:1940–1946PubMedCentralPubMedGoogle Scholar
  13. Doolittle WF (1999) Phylogenetic classification and the universal tree. Science 284:2124–2128. doi: 10.1126/science.284.5423.2124 CrossRefPubMedGoogle Scholar
  14. Dubnau D (1999) DNA uptake in bacteria. Annu Rev Microbiol 53:217–244. doi: 10.1146/annurev.micro.53.1.217 CrossRefPubMedGoogle Scholar
  15. Embley TM, van der Giezen M, Horner DS, Dyal PL, Bell S, Foster PG (2003) Hydrogenosomes, mitochondria and early eukaryotic evolution. IUBMB Life 55:387–395. doi: 10.1080/15216540310001592834 CrossRefPubMedGoogle Scholar
  16. Ermolaeva O, Rastogi M, Pruitt KD, Schuler GD, Bittner ML, Chen Y, Simon R, Meltzer P, Trent JM, Boguski MS (1998) Data management and analysis for gene expression arrays. Nat Genet 20:19–23. doi: 10.1038/1670 CrossRefPubMedGoogle Scholar
  17. Felmlee T, Pellett S, Welch RA (1985) Nucleotide sequence of an Escherichia coli chromosomal hemolysin. J Bacteriol 163:94–105PubMedCentralPubMedGoogle Scholar
  18. Foflonker F, Price DC, Qiu H, Palenik B, Wang S, Bhattacharya D (2015) Genome of the halotolerant green alga Picochlorum sp. Reveals strategies for thriving under fluctuating environmental conditions. Environ Microbiol 17:412–426. doi: 10.1111/1462-2920.12541 CrossRefPubMedGoogle Scholar
  19. Fraser AA (2004) Hydrogenases: active site puzzles and progress. Curr Opin Chem Biol 8:133–140. doi: 10.1016/j.cbpa.2004.02.004 CrossRefGoogle Scholar
  20. Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) Horizontal gene transfer in bacterial and archaeal complete genomes. Nucleic Acids Res 31:187–189. doi: 10.1093/nar/gkg004 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Ge F, Wang LS, Kim J (2005) The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biol 3, e316. doi: 10.1371/journal.pbio.0030316 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Germot A, Philippe H, Guyader HL (1996) Presence of a mitochondrial-type 70 kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc Natl Acad Sci U S A 93:14614–14617PubMedCentralCrossRefPubMedGoogle Scholar
  23. Ghiorse WC (1997) Subterranean life. Science 275:789–790CrossRefGoogle Scholar
  24. Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol 23:1089–1097. doi: 10.1046/j.1365-2958.1997.3101672.x CrossRefPubMedGoogle Scholar
  25. Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin arsenate reductase. BMC Evol Biol 3:18. doi: 10.1186/1471-2148-3-18 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Jain R, Rivera MC, Moore JE, Lake JA (2003) Horizontal gene transfer accelerates genome innovation and evolution. Mol Biol Evol 20:1598–1602. doi: 10.1093/molbev/msg154 CrossRefPubMedGoogle Scholar
  27. John ME, Keller G (1996) Metabolic pathway engineering in cotton: biosynthesis of polyhydroxybutyrate in fiber cells. Proc Natl Acad Sci U S A 93:12768–12773PubMedCentralCrossRefPubMedGoogle Scholar
  28. Kalia VC, Chauhan A, Bhattacharyya G, Rashmi (2003a) Genomic databases yield novel bioplastic producers. Nature Biotechnol 21:845–846. doi: 10.1038/nbt0803-845 CrossRefGoogle Scholar
  29. Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003b) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156. doi: 10.1016/S0167-7799(03)00028-3 CrossRefPubMedGoogle Scholar
  30. Kalia VC, Lal S, Cheema S (2007) Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: horizontal gene transfer. Gene 389:19–26. doi: 10.1016/j.gene.2006.09.010 CrossRefPubMedGoogle Scholar
  31. Kandler O (1993) The early diversification of life. In: Bengtson S (ed) Early life on earth. Nobel symp 84. Columbia Univ Press, New York, pp 152–160Google Scholar
  32. Karube I, Urano N, Yamada T, Hirochika H, Sakaguchi K (1983) Cloning and expression of the hydrogenase gene from Clostridium butyricum in Escherichia coli. FEBS Lett 158:119–122CrossRefPubMedGoogle Scholar
  33. Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol 55:709–742. doi: 10.1146/annurev.micro.55.1.709 CrossRefPubMedGoogle Scholar
  34. Koumandou VL, Kossida S (2014) Evolution of the F0F1 ATP synthase complex in light of the patchy distribution of different bioenergetic pathways across prokaryotes. PLoS Comput Biol 10, e1003821. doi: 10.1371/journal.pcbi.1003821 PubMedCentralCrossRefPubMedGoogle Scholar
  35. Lal S, Cheema S, Kalia VC (2008) Phylogeny vs genome reshuffling: horizontal gene transfer. Indian J Microbiol 48:228–242. doi: 10.1007/s12088-008-0034-1 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci U S A 95:9413–9417PubMedCentralCrossRefPubMedGoogle Scholar
  37. Lerat E, Daubin V, Moran NA (2003) From gene trees to organismal phylogeny in prokaryotes: the case of the γ-proteobacteria. PLoS Biol 1, e19. doi: 10.1371/journal.pbio.0000019 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Liu S-J, Steinbüchel A (2000) A novel genetically engineered pathway for synthesis of poly (hydroxyalkanoic acids) in Escherichia coli. Appl Environ Microbiol 66:739–743. doi: 10.1128/AEM.66.2.739-743.2000 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Martin W, Embley TM (2004) Early evolution comes full circle. Nature 431:134–137. doi: 10.1038/431134a CrossRefPubMedGoogle Scholar
  40. Mount DW (2001) Phylogenetic prediction. In: Argentine J (ed) Bioinformatics: sequence and genome analysis, 2nd edn. Cold Spring Harbour Laboratory Press, New York, pp 247–248Google Scholar
  41. Norman RP (1997) A molecular view of microbial diversity and the biosphere. Science 276:734–740CrossRefGoogle Scholar
  42. Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic, produced in transgenic plants. Science 256:520–523CrossRefPubMedGoogle Scholar
  43. Raymond J, Zhaxybayeva O, Gogarten JP, Gerdes SY, Blankenship RE (2002) Whole-genome analysis of photosynthetic prokaryotes. Science 298:1616–1620. doi: 10.1126/science.1075558 CrossRefPubMedGoogle Scholar
  44. Rivera MC, Lake JA (2004) The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431:152–155. doi: 10.1038/nature02848 CrossRefPubMedGoogle Scholar
  45. Rochette NC, Brochier-Armanet C, Gouy M (2014) Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol Biol Evol 31:832–845. doi: 10.1093/molbev/mst272 PubMedCentralCrossRefPubMedGoogle Scholar
  46. Roger AJ, Clark CG, Doolittle WF (1996) A possible mitochondrial gene in the amitochondriate protist Trichomonas vaginalis. Proc Natl Acad Sci U S A 93:14618–14622PubMedCentralCrossRefPubMedGoogle Scholar
  47. Sharp PM, Li WH (1987) The codon adaptation index- a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295PubMedCentralCrossRefPubMedGoogle Scholar
  48. Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound (NiFe) hydrogenase and a NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463. doi: 10.1099/mic.0.27159-0 CrossRefPubMedGoogle Scholar
  49. Stevens TO, McKinley JP (1995) Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–455CrossRefGoogle Scholar
  50. Turner JA (2004) Sustainable hydrogen production. Science 305:972–974. doi: 10.1126/science.1103197 CrossRefPubMedGoogle Scholar
  51. Veziroglu TN (1995) Twenty years of hydrogen movement 1974–1994. Int J Hydrog Energ 20:1–7CrossRefGoogle Scholar
  52. Vignais PM, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501. doi: 10.1111/j.1574-6976.2001.tb00587.x CrossRefPubMedGoogle Scholar
  53. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedCentralPubMedGoogle Scholar
  54. Wolf YI, Aravind L, Koonin EV (1998) Rickettsiae and Chlamydia: evidence of horizontal gene transfer and gene exchange. Trends Genet 14:442–444. doi: 10.1016/S0168-9525(98)01553-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Sadhana Lal
    • 1
  • Dhananjay V. Raje
    • 3
  • Simrita Cheema
    • 2
  • Atya Kapley
    • 3
  • Hemant J. Purohit
    • 4
  • Vipin Chandra Kalia
    • 2
  1. 1.CSIR-Institute of Genomics and Integrative BiologyDelhi University CampusDelhiIndia
  2. 2.Microbial Biotechnology and GenomicsCSIR-Institute of Genomics and Integrative BiologyDelhiIndia
  3. 3.Environmental Genomics DivisionCSIR-National Environmental Engineering Research InstituteNagpurIndia
  4. 4.Environmental Genomics DivisionCSIR-National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations