Approaches for the Synthesis of Tailor-Made Polyhydroxyalkanoates

  • Carlos F. Peña Malacara
  • Andrés García Romero
  • Modesto Millán Ponce
  • Tania Castillo Marenco


Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible thermoplastics. These have been proposed for a wide range of biotechnological applications, especially in the field of the medicine and chemistry. PHAs are produced by more than 300 bacterial species, the most efficient being Cupriavidus necator (formerly Ralstonia eutropha), Alcaligenes latus, and recombinant strains of Escherichia coli. PHAs are produced by fermentation using different culture systems, from batch culture to exponentially fed-batch cultures, and it is known that culture conditions, such as pH, aeration, and nutritional conditions, influence the chemical characteristic PHAs synthesized by microorganisms; because of that, it has been proposed that by manipulating the microbial metabolism and culture conditions, it is possible to design biopolymers with specific chemical properties. This paper describes four cases of PHAs production: the copolymers of poly-3-hydroxybutyrate-co-poly-3-hydroxyvalerate [P(3HB-co-3HV)] and poly-3-hydroxybutyrate-co-poly-3-hydroxyhexanoate [P(3HB-co-3HHx)], the medium-chain-length PHAs, the P3HB of ultrahigh molecular mass, and finally, the production of other short-chain-length PHAs, with a special emphasis on the species that have been reported for their production as well as the molecular and fermentation strategies evaluated in order to modify the chemical composition of PHAs.


PHAs Biosynthesis Cupriavidus Necator Pseudomonas Oleovorans Fatty Acid Metabolic Pathway Ultrahigh Molecular Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully thank the financial support of DGAPA-UNAM (grant IT100513) and Conacyt (grants 131851 and 238535).


  1. Abe H, Ishii N, Sato S, Tsuge T (2012) Thermal properties and crystallization behaviors of medium-chain-length poly(3-hydroxyalkanoate)s. Polymer 53:3026–3034. doi: 10.1016/j.polymer.2012.04.043 CrossRefGoogle Scholar
  2. Agus J, Kahar P, Abe H, Doi Y, Tsuge T (2006) Molecular weight characterization of poly[(R)-3-hydroxybutyrate] synthesized by genetically engineered strains of Escherichia coli. Polym Degrad Stab 91:1138–1146. doi: 10.1016/j.polymdegradstab.2005.07.006 CrossRefGoogle Scholar
  3. Agus J, Kahar P, Hyakutake M, Tomizawa S, Abe H, Tsuge T, Satoh Y, Tajima K (2010) Unusual change in molecular weight of polyhydroxyalkanoate (PHA) during cultivation of PHA-accumulating Escherichia coli. Polym Degrad Stab 95:2250–2254. doi: 10.1016/j.polymdegradstab.2010.09.009 CrossRefGoogle Scholar
  4. Aldor I, Keasling JD (2001) Metabolic engineering of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Salmonella enterica serovar Typhimurium. Biotechnol Bioeng 76:108–114. doi: 10.1002/bit.1150 CrossRefPubMedGoogle Scholar
  5. Aldor I, Kim SW, Prather KL, Keasling JD (2002) Metabolic engineering of a novel propionate-independent pathway for the production of poly(3-hydroxybutyrate-co- 3-hydroxyvalerate) in recombinant Salmonella enterica serovar typhimurium. Appl Environ Microbiol 68:3848–3854. doi: 10.1128/AEM.68.8 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbial Rev 54:450–472, doi:0146-0749/90/040450-23Google Scholar
  7. Andreeβen B, Lange AB, Robenek H, Steinbüchel A (2010) Conversion of glycerol to poly(3-hydroxypropionate) in recombinant Escherichia coli. Appl Environ Microbiol 76:622–626. doi: 10.1128/AEM.02097-09 CrossRefGoogle Scholar
  8. Bosco F, Chiampo F (2010) Production of polyhydroxyalcanoates (PHAs) using milk whey and dairy wastewater activated sludge production of bioplastics using dairy residues. J Biosci Bioeng 109:418–421. doi: 10.1016/j.jbiosc.2009.10.012 CrossRefPubMedGoogle Scholar
  9. Braunegg G, Lefebvre G, Genser KF (1998) Polyhydroxyalkanoates, biopolyesters from renewable resources: physiological and engineering aspects. J Biotechnol 65:127–161. doi: 10.1016/S0168-1656(98)00126-6 CrossRefPubMedGoogle Scholar
  10. Budde CF, Riedel SL, Hubner F, Risch S, Popovic MK, Rha C, Sinskey AJ (2011) Growth and polyhydroxybutyrate production by Ralstonia eutropha in emulsified plant oil medium. Appl Microbiol Biotechnol 89(5):1611–1619. doi: 10.1007/s00253-011-3102-0 CrossRefPubMedGoogle Scholar
  11. Centeno-Leíja S, Huerta-Beristain G, Giles-Gomez M, Bolivar F, Gosset G, Martinez A (2014) Improving poly-3-hydroxybutyrate production in Escherichia coli by combining the increase in the NADPH pool and acetyl-CoA availability. Antonie Van Leeuwenhoek 105:687–696. doi: 10.1007/s10482-014-0124-5 CrossRefPubMedGoogle Scholar
  12. Chan RTH, Rusell RA, Marcal H, Lee TH, Holden PJ, Foster JR (2014) BioPEGylation of polyhydroxybutyrate promotes nerve cell health and migration. Biomacromolecules 15:339–349. doi: 10.1021/bm401572a CrossRefPubMedGoogle Scholar
  13. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110(6):621–32. doi: 10.1016/j.jbiosc.2010.07.014 CrossRefPubMedGoogle Scholar
  14. Chanprateep S, Buasri K, Muangwong A, Utiswannakul P (2010) Biosynthesis and biocompatibility of biodegradable poly (3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stabil 95:2003–2012. doi: 10.1016/j.polymdegradstab.2010.07.014 CrossRefGoogle Scholar
  15. Chen G (2009) A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry. Chem Soc Rev 38:2434–2446. doi: 10.1039/b812677c CrossRefPubMedGoogle Scholar
  16. Chen G (2010) Plastics completely synthesized by bacteria: polyhydroxyalkanoates. Microbiol Monogr 14:17–37. doi: 10.1007/978-3-642-03287_5_2 CrossRefGoogle Scholar
  17. Chen GQ, Page W (1994) The effect of substrate on the molecular weight of poly-β-hydroxybutyrate produced by Azotobacter vinelandii UWD. Biotechnol Lett 16:155–160. doi: 10.1007/BF01021663 CrossRefGoogle Scholar
  18. Chen GQ, Wu Q (2005) Polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578. doi: 10.1016/j.biomaterials.2005.04.036 CrossRefPubMedGoogle Scholar
  19. Chen YJ, Huang YC, Lee CY (2014) Production and characterization of medium-chain-length polyhydroxyalkanoates by Pseudomonas mosselii TO7. J Biosci Bioeng 118(2):145–152. doi: 10.1016/j.jbiosc.2014.01.012 CrossRefPubMedGoogle Scholar
  20. Choi J, Lee SY (1999) High-level production of poly(3-hydroxybutyrate-co-3- hydroxyvalerate) by fed-batch culture of recombinant Escherichia coli. Appl Environ Microbiol 65:4363–4368PubMedCentralPubMedGoogle Scholar
  21. Dionisi D, Beccari M, Di Gregorio S, Majone M, Petrangeli Papini M, Vallini G (2005) Storage of biodegradable polymers by an enriched microbial community in a sequencing batch reactor operated at high organic load rate. J Chem Tech Biotech 80:1306–1318. doi: 10.1002/jctb.1331 CrossRefGoogle Scholar
  22. Dionisi D, Majone M, Vallini G, Di Gregorio S, Beccari M (2006) Effect of applied organic load rate on biodegradable polymer production by mixed microbial cultures in a sequencing batch reactor. Biotechnol Bioeng 93:76–88. doi: 10.1002/bit.20683 CrossRefPubMedGoogle Scholar
  23. Dionisi D, Majone M, Vallini G, Di Gregorio S, Beccari M (2007) Effect of the length of the cycle on biodegradable polymer production and microbial community selection in a sequencing batch reactor. Biotechnol Prog 23:1064–1073. doi: 10.1021/bp060370c PubMedGoogle Scholar
  24. Domínguez-Díaz M, Meneses-Acosta A, Romo-Uribe A, Peña C, Segura D, Espín G (2015) Thermo-mechanical properties, microstructure and biocompatibility in poly-β-hydroxybutyrates (PHB) produced by OP and OPN strains of Azotobacter vinelandii. Eur Polym J 63:101–112. doi: 10.1016/j.eurpolymj.2014.12.002 CrossRefGoogle Scholar
  25. Don TM, Chen PC, Shang WW, Chiu HJ (2006) Studies on spherulitic morphology and crystallization kinetics of poly (3-hydroxybutyrate) blended with a medium molecular Poly(ethyl eneoxide). Tamkang J Sci Eng 9:279–290Google Scholar
  26. Feng L, Watanabe T, Wang Y, Kichise T, Fukuchi T, Chen GQ, Doi Y, Inoue Y (2002) Studies on comonomer compositional distribution of bacterial poly(3-hydroxybutyrate co-3-hydroxyhexanoate)s and thermal characteristics of their factions. Biomacromolecules 3:1071–1077. doi: 10.1021/bm0200581 CrossRefPubMedGoogle Scholar
  27. Fidler S, Dennis D (1992) Production of polyhydroxyalkanoates in recombinant E. coli strains. FEMS Microbiol Rev 103:231–236CrossRefGoogle Scholar
  28. Fukui T, Abe H, Doi Y (2002) Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-hydroxyhexanoate) from fructose and solid-state properties of the copolymer. Biomacromolecules 3:618–624. doi: 10.1021/bm0255084
  29. Gao Y, Liu C, Ding Y, Sun C, Zhang R, Xian M, Zhao G (2014) Development of genetically stable Escherichia coli strains for poly(3-hydroxypropionate) production. PLoS One 9:1–8. doi: 10.1371/journal.pone.0097845 Google Scholar
  30. Haba E, Vidal-Mas J, Bassas M, Espuny MJ, Llorens J, Manresa A (2007) Poly 3-(hydroxyalkanoates) produced from oily substrates by Pseudomonas aeruginosa 47T2 (NCBIM 40044): effect of nutrients and incubation temperature on polymer composition. Biochem Eng J 35:99–106. doi: 10.1016/j.bej.2006.11.021 CrossRefGoogle Scholar
  31. Hazer DB, Kılıçay E, Hazer B (2012) Poly(3-hydroxyalkanoate)s: diversification and biomedical applications a state of the art review. Mater Sci Eng C 32:637–647. doi: 10.1016/j.msec.2012.01.021 CrossRefGoogle Scholar
  32. Hezayen FF, Rehm BHA, Eberhardt R, Steinbüchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325. doi: 10.1007/s002530000394 CrossRefPubMedGoogle Scholar
  33. Hiroe A, Tsuge K, Nomura CT, Itaya M, Tsuge T (2012) Rearrangement of gene order in the phaCAB operon leads to effective production of ultra-high molecular-weight poly[(R)-3-hydroxybutyrate] in genetically engineered Escherichia coli. Appl Environ Microbiol 78:3177–3184. doi: 10.1128/AEM.07715-11 PubMedCentralCrossRefPubMedGoogle Scholar
  34. Hori K, Ichinohe R, Unno H, Marsudi S (2011) Simultaneous syntheses of polyhydroxyalkanoates and rhamnolipids by Pseudomonas aeruginosa IFO3924 at various temperatures and from various fatty acids. Biochem Eng J 53:196–202. doi: 10.1016/j.bej.2010.10.011 CrossRefGoogle Scholar
  35. Hu WF, Chua H, Yu PHF (1997) Synthesis of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from activated sludge. Biotech Lett 19:695–698. doi: 10.1023/A:1018307402891 CrossRefGoogle Scholar
  36. Huang TY, Duan KJ, Huang SY, Chen CW (2006) Production of polyhydroxyalkanoates from inexpensive extruded rice bran and starch by Haloferax mediterranei. J Ind Microbiol Biotechnol 33:701–706. doi: 10.1007/s10295-006-0098-z CrossRefPubMedGoogle Scholar
  37. Ienczak JL, Schmidell W, Falcão de Aragão GM (2013) High-cell-density culture strategies for polyhydroxyalkanoate production: a review. J Ind Microbiol 40:275–286. doi: 10.1007/s10295-013-1236-z CrossRefGoogle Scholar
  38. Insomphun C, Xie H, Mifune J, Kawashima Y, Orita I, Nakamura S, Fukui T (2015) Improved artificial pathway for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with high Cmonomer composition from fructose in Ralstonia eutropha. Metab Eng 27C:38–45. doi: 10.1016/j.ymben.2014.10.006 CrossRefGoogle Scholar
  39. Jana S, Tefft BJ, Spoon DB, Simari RD (2014) Scaffolds for tissue engineering of cardiac valves. Acta Biomater 10:2877–2893. doi: 10.1016/j.actbio.2014.03.014 CrossRefPubMedGoogle Scholar
  40. Jeon JM, Brigham CJ, Kim YH, Kim HJ, Yi DH, Kim H, Rha C, Sinskey AJ, Yang YH (2014) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) from butyrate using engineered Ralstonia eutropha Appl. Microbial Biotechnol 98:5461–5469. doi: 10.1007/s00253-014-5617-7 CrossRefGoogle Scholar
  41. Kahara P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutropha and its recombinant strain. Polym Degrad Stab 83(1):79–86. doi: 10.1016/S0141-3910(03)00227-1 CrossRefGoogle Scholar
  42. Kämpf MM, Thöny-Meyer L, Ren Q (2014) Biosynthesis of poly(4-hydroxybutyrate) in recombinant Escherichia coli grown on glycerol is stimulated by propionic acid. Int J Biol Macromol 71:8–13. doi: 10.1016/j.ijbiomac.2014.04.023 CrossRefPubMedGoogle Scholar
  43. Khanna S, Srivastava AK (2005) Recent advances in microbial polyhydroxyalkanoates. Process Biochem 40(2):607–619. doi: 10.1016/j.procbio.2004.01.053 CrossRefGoogle Scholar
  44. Kleerebezem R, Loosdrecht MCV (2007) Mixed culture biotechnology for bioenergy production. Curr Opin Biotechnol 18:207–12. doi: 10.1016/j.copbio.2007.05.001 CrossRefPubMedGoogle Scholar
  45. Kraak MN, Smits THM, Kessler B, Witholt B (1997) Polymerase C1 levels and poly(R-3- hydroxyalkanoate) synthesis in wild-type and recombinant Pseudomonas strains. J Bacteriol 179:4985–4991PubMedCentralPubMedGoogle Scholar
  46. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023. doi: 10.1111/j.1365-2672.2009.04160.x CrossRefPubMedGoogle Scholar
  47. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–61. doi: 10.1016/j.biotechadv.2013.08 CrossRefPubMedGoogle Scholar
  48. Kumar P, Mehariya S, Ray S, Mishra A, Kalia VC (2015) Biodiesel industry waste: a potential source of bioenergy and biopolymers. Indian J Microbiol 55:1–7. doi: 10.1007/s12088-014-0509-1 CrossRefGoogle Scholar
  49. Kusaka S, Abe H, Lee SY (1997) Molecular mass of poly[(R)-3-hydroxybutyric acid] produced in a recombinant Escherichia coli. Appl Microbiol Biotechnol 47:140–143. doi: 10.1007/s002530050902 CrossRefPubMedGoogle Scholar
  50. Lageveen RG, Huisman GW, Preusting H, Ketalaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans: effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932PubMedCentralPubMedGoogle Scholar
  51. Lee SY (1996) Bacterial polyhydroxyalkanoates. Biotechnol Bioeng 49:1–14. doi: 10.1002/(SICI)1097-0290 CrossRefPubMedGoogle Scholar
  52. Lee WH, Loo CY, Nomura CT, Sudesh K (2008) Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors. Bioresour Technol 99:6844–6851. doi: 10.1016/j.biortech.2008.01.051 CrossRefPubMedGoogle Scholar
  53. Legat A, Gruber C, Zangger K, Wanner G, Stan-Lotter H (2010) Identification of polyhydroxyalkanoates in Halococcus and other haloarchaeal species. Appl Microbiol Biotechnol 87(3):1119–27. doi: 10.1007/s00253-010-2611-6 PubMedCentralCrossRefPubMedGoogle Scholar
  54. Lemos PC, Levantesi C, Serafim LS, Rossetti S, Reis MAM, Tandoi V (2008) Microbial characterisation of polyhydroxyalkanoates storing populations selected under different operating conditions using a cell-sorting RT-PCR approach. Appl Microbiol Biotech- nol 78:351–360. doi: 10.1007/s00253-007-1301-5 CrossRefGoogle Scholar
  55. Le Meur S, Zinn M, Egli T, Thöny-Meyer L, Ren Q (2013) Poly(4-hydroxybutyrate) (P4HB) production in recombinant Escherichia coli: P4HB synthesis is uncoupled with cell growth. Microb Cell Fact 12:123. doi: 10.1186/1475-2859-12-123 PubMedCentralCrossRefPubMedGoogle Scholar
  56. Le Meur S, Zinn M, Egli T, Thöny-Meyer L, Ren Q (2014) Improved productivity of poly (4-hydroxybutyrate) (P4HB) in recombinant Escherichia coli using glycerol as the growth substrate with fed-batch culture. Microb Cell Fact 13:131. doi: 10.1186/s12934-014-0131-2 PubMedCentralCrossRefPubMedGoogle Scholar
  57. Leong YK, Show PL, Ooi CW, Ling TC, Lan JCW (2014) Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli. J Biotechnol 180:52–65. doi: 10.1016/j.jbiotec.2014.03.020 CrossRefPubMedGoogle Scholar
  58. Li XT, Zhang Y, Chen GQ (2008) Nanofibrous polyhydroxyalkanoate matrices as cell growth supporting materials. Biomaterials 29:3720–3728. doi: 10.1016/j.biomaterials.2008.06.004 CrossRefPubMedGoogle Scholar
  59. Li Q, Chen Q, Li MJ, Wang FS, Qi QS (2011) Pathway engineering results the altered polyhydroxyalkanoates composition in recombinant Escherichia coli. N Biotechnol 28:92–95. doi: 10.1016/j.nbt.2010.08.007 CrossRefPubMedGoogle Scholar
  60. Liu XW, Wang HH, Chen JY, Li XT, Chen GQ (2009) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli harboring propionyl-CoA synthase gene (prpE) or propionate permease gene (prpP). Biochem Eng J 43:72–77. doi: 10.1016/j.bej.2008.09.001 CrossRefGoogle Scholar
  61. López-Cortés A, Rodríguez-Fernández O, Latisnere-Barragán H, Mejía-Ruíz HC, González-Gutiérrez G, Lomelí-Ortega C (2010) Characterization of polyhydroxyalkanoate and the phaC gene of Paracoccus seriniphilus E71 strain isolated from a polluted marine microbial mat. World J Microbiol Biotechnol 26:109–118. doi: 10.1007/s11274-009-0149-5 CrossRefGoogle Scholar
  62. Luzier WD (1992) Materials derived from biomass/biodegradable materials. Proc Natl Acad Sci U S A 89:839–842. doi: 10.1073/pnas.89.3.839 PubMedCentralCrossRefPubMedGoogle Scholar
  63. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53PubMedCentralPubMedGoogle Scholar
  64. Myshkina VL, Nikolaeva DA, Makhina TK, Bonartsev AP, Filatova EV, Ruzhitsky AO, Bonartseva GA (2008) Effect of growth conditions on the molecular weight of Poly-3-hydroxybutyrate produced by Azotobacter chroococcum 7B. Appl Biochem Microbiol 44:482–486. doi: 10.1134/S0003683808050050 CrossRefGoogle Scholar
  65. Narayanan A, Sajeev Kumar VA, Ramana KV (2014) Production and Characterization of Poly (3-Hydroxybutyrateco-3-Hydroxyvalerate) from Bacillus mycoides DFC1 Using Rice Husk Hydrolyzate. Waste Biomass Valor 5:109–118. doi: 10.1007/s12649-013-9213-3 CrossRefGoogle Scholar
  66. Ni YY, Kim DY, Chung MG, Lee SH, Park HY, Rhee YH (2010) Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16. Bioresour Technol 101:8485–8488. doi: 10.1016/j.biortech.2010.06.033 CrossRefPubMedGoogle Scholar
  67. Nitschke M, Costa S, Contiero J (2011) Rhamnolipids and PHAs: Recent reports on Pseudomonas-derived molecules of increasing industrial interest. Process Biochem 46:621–630. doi: 10.1016/j.procbio.2010.12.012 CrossRefGoogle Scholar
  68. Olivera E, Carnicero D, Jodra R, Miñambres B, García B, Abraham G (2001) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3:612–618. doi: 10.1046/j.1462-2920.2001.00224.x CrossRefPubMedGoogle Scholar
  69. Pandian SR, Deepa KV, Kalishwaralal K, Rameshkumar N, Jeyaraj M, Gurunathan S (2010) Optimization and fed-batch production of PHB utilizing dairy waste and sea water as nutrient sources by Bacillus megaterium SRKP-3. Bioresour Technol 101:705–711. doi: 10.1016/j.biortech.2009.08.040 CrossRefPubMedGoogle Scholar
  70. Pappalardo F, Fragalà M, Mineo PG, Damigella A, Catara AF, Palmeri R, Rescifina A (2014) Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. Int J Biol Macromol 65:89–96. doi: 10.1016/j.ijbiomac.2014.01.014 CrossRefPubMedGoogle Scholar
  71. Peña C, Castillo T, Nuñez C, Segura D (2011) Bioprocess design: fermentation strategies for improving the production of alginate and poly-β-hydroxyalkanoates (PHAs) by Azotobacter vinelandii. INTECH- Open Access Publisher, London, pp 217–242. doi: 10.5772/20393 Google Scholar
  72. Peña C, Castillo T, García A, Millán M, Segura D (2014a) Biotechnological strategies to improve production of microbial poly-(3-hydroxybutyrate): a review of recent research work. Microb Biotechnol 7(4):278–293. doi: 10.1111/1751-7915.12129 PubMedCentralCrossRefPubMedGoogle Scholar
  73. Peña C, López S, García A, Espín G, Romo-Uribe A, Segura D (2014b) Biosynthesis of poly-β-hydroxybutyrate (PHB) with a high molecular mass by a mutant strain of Azotobacter vinelandii (OPN). Ann Microbiol 64:39–47. doi: 10.1007/s13213-013-0630-0 CrossRefGoogle Scholar
  74. Poirier Y, Nawrath C, Somerville C (1995) Production of polyhydroxyalkanoates, a family of Biodegradable plastics and elastomers, in bacterial and plant. Biotechnol 13:142–150. doi: 10.1038/nbt0295-142 CrossRefGoogle Scholar
  75. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by archaea. Archaea. doi: 10.1155/2011/693253 PubMedCentralPubMedGoogle Scholar
  76. Reddy CSK, Ghai R, Kalia RVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–46. doi: 10.1016/S0960-8524(02)00212-2 CrossRefPubMedGoogle Scholar
  77. Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZA, Rha C, Sinskey AJ (2012) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutropha in high cell density palm oil fermentations. Biotechnol Bioeng 109(1):74–83. doi: 10.1002/bit.23283 CrossRefPubMedGoogle Scholar
  78. Serafim LS, Lemos T, Rosetti S, Levantesi C, Tandoi V, Reis MA (2006) Microbial community analysis with a high PHA storage capacity. Wat Sci Technol 54:183–188. doi: 10.2166/wst.2006.386 CrossRefGoogle Scholar
  79. Simon-Colin C, Raguénès G, Costa B, Guezennec J (2008) Biosynthesis of medium chain length poly-3-hydroxyalkanoates by Pseudomonas guezennei from various carbon sources. React Funct Polym 68:1534–1541. doi: 10.1016/j.reactfunctpolym.2008.08.005 CrossRefGoogle Scholar
  80. Simon-Colin C, Gouin C, Pierre Lemechko P, Schmitt S, Senant A, Kervarec N, Guezennec J (2012) Biosynthesis and characterization of polyhydroxyalkanoates by Pseudomonas guezennei from alkanoates and glucose. Int J Biol Macromol 51:1063–1069. doi: 10.1016/j.ijbiomac.2012.08.018 CrossRefPubMedGoogle Scholar
  81. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi: 10.1186/1475-2859-8-38 PubMedCentralCrossRefPubMedGoogle Scholar
  82. Slater S, Gallaher T, Dennis D (1992) Production of poly-(3- hydroxybutyrate-Co-3-hydroxyvalerate) in a recombinant Escherichia coli strain. Appl Environ Microbiol 58:1089–1094PubMedCentralPubMedGoogle Scholar
  83. Slater S, Houmiel KL, Tran M, Mitsky TA, Taylor NB, Padgette SR, Gruys KJ (1998) Multiple -ketothiolases mediate poly (−hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987PubMedCentralPubMedGoogle Scholar
  84. Solaiman DKY, Ashby RD, Foglia TA, Marmer WN (2006) Conversion of agricultural feedstock and coproducts into poly(hydroxyalkanoates). Appl Microbiol Biotechnol 71:783–789. doi: 10.1007/s00253-006-0451-1 CrossRefPubMedGoogle Scholar
  85. Steinbüchel A, Lütke-Eversloh T (2003) Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms. Biochem Eng J 16:81–96. doi: 10.1016/S1369-703X(03)00036-6 CrossRefGoogle Scholar
  86. Steinbüchel A, Schlegel HG (1991) Physiology and molecular genetics of poly(beta-hydroxyalkanoic acid) synthesis in Alcaligenes eutrophus. Mol Microbiol 5(3):535–542. doi: 10.1111/j.1365-2958.1991.tb00725.x CrossRefPubMedGoogle Scholar
  87. Stubbe J, Tian J, He A, Sinskey AJ, Lawrence AG, Liu P (2005) Nontemplate-dependent polymerization processes: polyhydroxyalkanoate synthases as a paradigm. Annu Rev Biochem 74:433–480. doi: 10.1146/annurev.biochem.74.082803.133013 CrossRefPubMedGoogle Scholar
  88. Sun Z, Ramsay J, Guay M, Ramsay B (2009) Enhanced yield of medium-chain-length polyhydroxyalkanoates from nonanoic acid by co-feeding glucose in carbon-limited, fed-batch culture. J Biotechnol 143:262–267. doi: 10.1016/j.jbiotec.2009.07.014 CrossRefPubMedGoogle Scholar
  89. Timm A, Steinbüchel A (1990) Formation of polyesters consisting of medium-chain-length 3 hydroxyalkanoic acids from gluconate by Pseudomonas aeruginosa and other fluorescent pseudomonads. Appl Environ Microbiol 56:3360–3367PubMedCentralPubMedGoogle Scholar
  90. Valappil SP, Peiris D, Langley GJ, Herniman JM, Boccaccini AR, Bucke C, Roy I (2007) Polyhydroxyalkanoates (PHA) biosynthesis from structurally unrelated carbon sources by a newly characterised Bacillus spp. J Biotechnol 127:475–487. doi: 10.1016/j.jbiotec.2006.07.015 CrossRefPubMedGoogle Scholar
  91. Wang Q, Yang P, Liu C, Xue Y, Xian M, Zhao G (2013) Biosynthesis of poly(3-hydroxypropionate) from glycerol by recombinant Escherichia coli. Bioresour Technol 131:548–551. doi: 10.1016/j.biortech.2013.01.096 CrossRefPubMedGoogle Scholar
  92. Wang Q, Yang P, Xian M, Feng L, Wang J, Zhao G (2014) Metabolic engineering of Escherichia coli for poly(3-hydroxypropionate) production from glycerol and glucose. Biotechnol Lett 36:2257–2262. doi: 10.1007/s10529-014-1600-8 CrossRefPubMedGoogle Scholar
  93. Wang Q, Luan Y, Cheng X, Zhuang Q, Qi Q (2015) Engineering of Escherichia coli for the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from glucose. Appl Microbiol Biotechnol. doi: 10.1007/s00253-015-6380-0 Google Scholar
  94. Wong AL, Chua H, Lo WH, Yu PHF (2000) Synthesis of bioplastics from food industry wastes with activated sludge biomass. Water Sci Technol 41:55–59Google Scholar
  95. Yang XS, Zhao K, Chen GQ (2002) Effect of surface treatment on the biocompatibility of microbial polyhydroxyalkanoates. Biomaterials 23:1391–1397. doi: 10.1016/S0142-9612(01)00260-5 CrossRefPubMedGoogle Scholar
  96. Yang YH, Brigham CJ, Song E, Jeon JM, Rha CK, Sinskey AJ (2012) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing a predominant amount of 3-hydroxyvalerate by engineered Escherichia coli expressing propionate-CoA transferase. J Appl Microbiol 113:815–23. doi: 10.1111/j.1365-2672.2012.05391.x.CrossRefPubMedGoogle Scholar
  97. Yang JE, Choi YJ, Lee SJ, Kang KH, Lee H, Oh YH, Lee SH, Park SJ, Lee SY (2014) Metabolic engineering of Escherichia coli for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. Appl Microbiol Biotechnol 98:95–104. doi: 10.1007/s00253-013-5285-z CrossRefPubMedGoogle Scholar
  98. Yim KS, Lee SY, Chang HW (1996) Synthesis of poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) by recombinant Escherichia coli. Biotechnol Bioeng 49:495–503. doi: 10.1002/(SICI)1097-0290(19960305) CrossRefPubMedGoogle Scholar
  99. Zhuang Q, Wang Q, Liang Q, Qi Q (2014) Synthesis of polyhydroxyalkanoates from glucose that contain medium-chain-length monomers via the reversed fatty acid β-oxidation cycle in Escherichia coli. Metab Eng 24:78–86. doi: 10.1016/j.ymben.2014.05.004 CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Carlos F. Peña Malacara
    • 1
  • Andrés García Romero
    • 1
  • Modesto Millán Ponce
    • 1
  • Tania Castillo Marenco
    • 2
  1. 1.Institute of BiotechnologyNational University of Mexico (UNAM)CuernavacaMexico
  2. 2.Center of Research in Biotechnology (CEIB)Autonomous University of Morelos State (UAEM)CuernavacaMexico

Personalised recommendations