Metagenomics: A Systemic Approach to Explore Microbial World


Microbes are ubiquitous in nature and have been identified from all possible habitats on earth like water, soil, air, deep-sea sediments, living organisms, etc. Isolation, characterization, and industrial applications of these microbes were acknowledged from previous centuries. However, recent culture-independent microbial diversity studies with small subunit rRNA sequencing have speculated that majority of microbes (~99 %) were still hidden in respective ecosystem. Thus a huge microbial diversity remained untapped. Recently, a molecular biology technique was developed to explore their untapped gene pool, without the need of culturing them, i.e., metagenomics. Metagenomics tried to overcome this impediment by establishing and employing culture-independent approaches. Discoveries from metagenomic techniques have led to the agglomeration of novel gene sequences. This novel genetic information fetched with metagenomic approach has been utilized in biotechnological and pharmaceutical applications, as well as to boast our awareness of the microbial ecology in complex ecosystems. The metagenomic data can help to decode some of the key issues associated with the proper functioning of these complex microbial communities, as well as to analyze the microbial interactions within niche.


Microbial Community Antibiotic Resistance Gene Metagenomic Library Human Microbiome Anaerobic Methane Oxidation 



The author wish to thank CSIR scheme project 60(0099)/11/EMRII and UGC major research project SR1256(2012) for providing the necessary funds and facilities.


  1. Albenberg LG, Lewis JD, Wu GD (2012) Food and the gut microbiota in inflammatory bowel diseases: a critical connection. Curr Opin Gastroenterol 28:314–320. doi: 10.1097/MOG.0b013e328354586f PubMedCrossRefGoogle Scholar
  2. Allen HK, Moe LA, Rodbumrer J, Gaarder A, Handelsman J (2009) Functional metagenomics reveals diverse beta-lactamases in a remote Alaskan soil. ISME J 3:243–251. doi: 10.1038/ismej.2008.86 PubMedCrossRefGoogle Scholar
  3. Alvarez TM, Paiva JH, Ruiz DM, Cairo JPLF, Pereira IO, Paixao DAA, Almeida RF, Tonoli CCC, Ruller R, Santos CR, Squina FM, Murakami MT (2013) Structure and function of a novel cellulase 5 from sugarcane soil metagenome. PLoS One 8:e83635. doi: 10.1371/journal.pone.0083635 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Baelum J, Borglin S, Chakraborty R, Fortney JL, Mason RLOU, Auer M, Zemla M, Bill M, Conrad ME (2012) Deep-sea bacteria enriched by oil and dispersant from the deepwater horizon spill. Environ Microbiol 14:2405–2416. doi: 10.1111/j.1462-2920.2012.02780.x PubMedCrossRefGoogle Scholar
  5. Beja O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial Rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906. doi: 10.1126/science.289.5486 PubMedCrossRefGoogle Scholar
  6. Bhullar K, Waglechner N, Pawlowski A, Koteva K, Banks ED, Johnston MD, Barton HA, Wright GD (2012) Antibiotic resistance is prevalent in an isolated cave microbiome. PLoS One 7:e34953. doi: 10.1371/journal.pone.0034953 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bik EM (2009) Composition and function of the human associated microbiota. Nutr Rev 67:164–171. doi: 10.1111/j.1753-4887.2009.00237.x CrossRefGoogle Scholar
  8. Biver S, Portetelle D, Vandenbol M (2013) Characterization of a new oxidant-stable serine protease isolated by functional metagenomics. SpringerPlus 2:410. doi: 10.1186/2193-1801-2-410 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bordbar A, Omidiyan K, Hosseinzadeh R (2005) Study on interaction of \( \alpha \)-amylase from Bacillus subtilis with cetyl trimethylammonium bromide. Colloids Surf B Biointerfaces 40:67–71. doi: 10.1016/j.colsurfb.2004.10.002 PubMedCrossRefGoogle Scholar
  10. Brady SF, Clardy J (2004) Palmitoyl putrescine, an antibiotic isolated from the heterologous expression of DNA extracted from bromeliad tank water. J Nat Prod 67:1283–1286. doi: 10.1021/np0499766 PubMedCrossRefGoogle Scholar
  11. Brady SF, Chao CJ, Handelsman J, Clardy J (2001) Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org Lett 3:1981–1984. doi: 10.1021/ol015949k PubMedCrossRefGoogle Scholar
  12. Chae JC, Song B, Zylstra GJ (2008) Identification of genes coding for hydrolytic dehalogenation in the metagenome derived from a denitrifying 4-chlorobenzoate degrading consortium. FEMS Microbiol Lett 281:203–209. doi: 10.1111/j.1574-6968.2008.01106.x PubMedCrossRefGoogle Scholar
  13. Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge metagenomic library. FEMS Microbiol Ecol 67:130–139. doi: 10.1111/j.1574-6941.2008.00613.x PubMedCrossRefGoogle Scholar
  14. Chow J, Kovacic F, Antonia YD, Krauss U, Fersini F, Schmeisser C, Lauinger B, Bongen P, Pietruszka J, Schmidt M, Menyes I, Bornscheuer UT, Eckstein M, Thum O, Liese A, Dieckmann JM, Jaeger KE, Streit WR (2012) The metagenome derived enzymes LipS and LipT increase the diversity of known lipases. PLoS One 7:e47665. doi: 10.1371/journal.pone.0047665 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chung EJ, Lim HK, Kim JC, Choi GJ, Park EJ, Lee MH, Chung YR, Lee SW (2008) Forest soil metagenome gene cluster involved in antifungal activity expression in Escherichia coli. Appl Environ Microbiol 74:723–730. doi: 10.1128/AEM.01911-07 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23. doi: 10.1016/j.femsre.2004.06.005 PubMedCrossRefGoogle Scholar
  17. Cox-Foster DL, Conlan S, Holmes EC, Palacios G, Evans JD, Moran NA, Quan PL, Briese T, Hornig M, Geiser DM, Martinson V, Engelsdorp DV, Kalkstein AL, Drysdale A, Hui J, Zhai J, Cui L, Hutchison SK, Simons JF, Egholm M, Pettis JS, Lipkin WI (2007) A metagenomic survey of microbes in honey bee colony collapse disorder. Science 318:283–287. doi: 10.1126/science.1146498 PubMedCrossRefGoogle Scholar
  18. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478. doi: 10.1038/nrmicro1160 PubMedCrossRefGoogle Scholar
  19. Dave M, Higgins PD, Middha S, Rioux KP (2012) The human gut microbiome: current knowledge, challenges, and future directions. Transl Res 160:246–257. doi: 10.1016/j.trsl.2012.05.003 PubMedCrossRefGoogle Scholar
  20. DeLong EF (2006) Archaeal mysteries of the deep revealed. Proc Natl Acad Sci U S A 103:6417–6418. doi: 10.1073/pnas.0602079103 PubMedCentralPubMedCrossRefGoogle Scholar
  21. Duan CJ, Xian L, Zhao GC, Feng Y, Pang H, Bai XL, Tang JL, Ma QS, Feng JX (2009) Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J Appl Microbiol 107:245–256. doi: 10.1111/j.1365-2672.2009.04202.x PubMedCrossRefGoogle Scholar
  22. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat Rev Microbiol 6:121–131. doi: 10.1038/nrmicro1817 PubMedCrossRefGoogle Scholar
  23. Fu J, Leiros HKS, Pascale D, Johnson KA, Blencke HM, Landfald B (2013) Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Appl Microbiol Biotechnol 97:3965–3978. doi: 10.1007/s00253-012-4276-9 PubMedCrossRefGoogle Scholar
  24. Gabor EM, de Vries EJ, Janssen DB (2004) Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environ Microbiol 6:948–958. doi: 10.1111/j.1462-2920.2004.00643.x PubMedCrossRefGoogle Scholar
  25. Gilbert JA, Dupont CL (2011) Microbial metagenomics: beyond the genome. Ann Rev Mar Sci 3:347–371. doi: 10.1146/annurev-marine-120709-142811 PubMedCrossRefGoogle Scholar
  26. Glogauer A, Martini VP, Faoro H, Couto GH, Muller-Santos M, Monteiro RA, Mitchell DA, de Souza EM, Pedrosa FO, Krieger N (2011) Identification and characterization of a new true lipase isolated through metagenomic approach. Microb Cell Fact 10:54. doi: 10.1186/1475-2859-10-54 PubMedCentralPubMedCrossRefGoogle Scholar
  27. Gong X, Gruniniger RJ, Forster RJ, Teather RM, McAllister TA (2013) Biochemical analysis of a highly specific, pH stable xylanase gene identified from a bovine rumen-derived metagenomic library. Appl Microbiol Biotechnol 97:2423–2431. doi: 10.1007/s00253-012-4088-y PubMedCrossRefGoogle Scholar
  28. Gordon JI (2012) Honor thy gut symbionts redux. Science 336:1251–1253. doi: 10.1126/science.1224686 PubMedCrossRefGoogle Scholar
  29. Grant S, Sorokin DY, Grant WD, Jones BE, Heaphy S (2004) A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification of cellulase genes from these cultures. Extremophiles 8:421–429. doi: 10.1007/s00792-004-0402-7 PubMedCrossRefGoogle Scholar
  30. Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol 4:e95. doi: 10.1371/journal.pbio.0040095 PubMedCentralPubMedCrossRefGoogle Scholar
  31. Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685. doi: 10.1128/MMBR.68.4.669-685.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:245–249. doi: 10.1016/S1074-5521(98)90108-9 CrossRefGoogle Scholar
  33. Hardeman F, Sjoling S (2007) Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol Ecol 59:524–534. doi: 10.1111/j.1574-6941.2006.00206.x PubMedCrossRefGoogle Scholar
  34. Harris K, Kassis A, Major G, Chou CJ (2012) Is the gut microbiota a new factor contributing to obesity and its metabolic disorders? J Obes 2012:879151. doi: 10.1155/2012/879151 PubMedCentralPubMedGoogle Scholar
  35. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N, Jansson JK, Probst A, Borglin SE, Fortney JL (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208. doi: 10.1126/science.1195979 PubMedCrossRefGoogle Scholar
  36. Hedlund BP, Staley JT (2006) Isolation and characterization of Pseudoalteromonas strains with divergent polycyclic aromatic hydrocarbon catabolic properties. Environ Microbiol 8:178–182. doi: 10.1111/j.1462-2920.2005.00871.x PubMedCrossRefGoogle Scholar
  37. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, Schroth G, Luo S, Clark DS, Chen F, Zhang T, Mackie RI, Pennacchio LA, Tringe SG, Visel A, Woyke T, Wang Z, Rubin EM (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331:463–467. doi: 10.1126/science.1200387 PubMedCrossRefGoogle Scholar
  38. Human Microbiome project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214. doi: 10.1038/nature11234 CrossRefGoogle Scholar
  39. Hunter P (2012) The changing hypothesis of the gut. The intestinal microbiome is increasingly seen as vital to human health. EMBO Rep 13:498–500. doi: 10.1038/embor.2012.68 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Jadeja NB, More RP, Purohit HJ, Kapley A (2014) Metagenomic analysis of oxygenases from activated sludge. Bioresour Technol 165:250–256. doi: 10.1016/j.biortech.2014.02.045 PubMedCrossRefGoogle Scholar
  41. Jiang C, Wu B (2007) Molecular cloning and functional characterization of a novel decarboxylase from uncultured microorganisms. Biochem Biophys Res Commun 357:421–426. doi: 10.1016/j.bbrc.2007.03.159 PubMedCrossRefGoogle Scholar
  42. Kapardar RK, Ranjan R, Grover A, Puri M, Sharma R (2010) Identification and characterization of genes conferring salt tolerance to Escherichia coli from pond water metagenome. Bioresour Technol 101:3917–3924. doi: 10.1016/j.biortech.2010.01.017 PubMedCrossRefGoogle Scholar
  43. Kennedy J, OLeary ND, Kiran GS, Morrissey JP, OGara F, Selvin J, Dobson AD (2011) Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 111:787–799. doi: 10.1111/j.1365-2672.2011.05106.x PubMedCrossRefGoogle Scholar
  44. Kimes NE, Callaghan AV, Aktas DF, Smith WL, Sunner J, Golding B, Drozdowska M, Hazen TC, Suflita JM, Morris PJ (2013) Metagenomic analysis and metabolite profiling of deep-sea sediments from the Gulf of Mexico following the deepwater horizon oil spill. Front Microbiol 4:50. doi: 10.3389/fmicb.2013.00050 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Krause KM, Combs DK (2003) Effects of forage particle size, forage source, and grain fermentability on performance and ruminal pH in midlactation cows. J Dairy Sci 86:1382–1397. doi: 10.3168/jds.S0022-0302(03)73722-9 PubMedCrossRefGoogle Scholar
  46. LeCleir GR, Buchan A, Maurer J, Moran MA, Hollibaugh JT (2007) Comparison of chitinolytic enzymes from an alkaline, hypersaline lake and an estuary. Environ Microbiol 9:197–205. doi: 10.1111/j.1462-2920.2006.01128.x PubMedCrossRefGoogle Scholar
  47. Lee M, Lee C, Oh T, Song JK, Yoon J (2006) Isolation and characterization of a novel lipase from a metagenomic library of tidal flat sediments: evidence for a new family of bacterial lipases. Appl Environ Microbiol 72:7406–7409. doi: 10.1128/AEM.01157-06 PubMedCentralPubMedCrossRefGoogle Scholar
  48. Lee MY, Cheon JH, Hidaka T, Tsuno H (2008) The performance and microbial diversity of temperature-phased hyperthermophilic and thermophilic anaerobic digestion system fed with organic waste. Water Sci Technol 57:283–289. doi: 10.2166/wst.2008.062 PubMedCrossRefGoogle Scholar
  49. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008) Evolution of mammals and their gut microbes. Science 320:1647–1651. doi: 10.1126/science.1155725 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Li K, Bihan M, Yooseph S, Methe BA (2012) Analyses of the microbial diversity across the human microbiome. PLoS One 7:e32118. doi: 10.1371/journal.pone.0032118 PubMedCentralPubMedCrossRefGoogle Scholar
  51. Lim HK, Chung EJ, Kim JC, Choi GJ, Jang KS, Chung YR, Cho KY, Lee SW (2005) Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol 71:7768–7777. doi: 10.1128/AEM.71.12.7768-7777 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Lorenz P, Liebeton K, Niehaus F, Eck J (2002) Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol 13:572–577. doi: 10.1128/AEM.71.12.7768-7777 PubMedCrossRefGoogle Scholar
  53. Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577. doi: 10.1128/MMBR.66.3.506-577 PubMedCentralPubMedCrossRefGoogle Scholar
  54. Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307:1920–1925. doi: 10.1126/science.1106442 PubMedCrossRefGoogle Scholar
  55. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55:205–211. doi: 10.1136/gut.2005.073817 PubMedCentralPubMedCrossRefGoogle Scholar
  56. Marathe NP, Regina VR, Walujkar SA, Charan SS, Moore ER, Larsson DG, Shouche YS (2013) A treatment plant receiving waste water from multiple bulk drug manufacturers is a reservoir for highly multi-drug resistant integron-bearing bacteria. PLoS One 8:e77310. doi: 10.1371/journal.pone.0077310 PubMedCentralPubMedCrossRefGoogle Scholar
  57. Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HYN, Hultman J, Lamendella R (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to deepwater horizon oil spill. ISME J 6:1715–1727. doi: 10.1038/ismej.2012.59 PubMedCentralPubMedCrossRefGoogle Scholar
  58. Mason OU, Scott NM, Gonzalez A, Robbins-Pianka A, Baelum J, Kimbrel J, Bouskill NJ, Prestat E, Borglin S, Joyner DC (2014) Metagenomics reveals sediment microbial community response to deepwater horizon oil spill. ISME J 8:1464–1475. doi: 10.1038/ismej.2013.254 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Montagna PA, Baguley JG, Cooksey C, Hartwell I, Hyde LJ, Hyland JL, Kalke RD, Kracker LM, Reuscher M, Rhodes AC (2013) Deep-sea benthic footprint of the deepwater horizon blowout. PLoS One 8:e70540. doi: 10.1371/journal.pone.0070540 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Moore AM, Munck C, Sommer MOA, Dantas G (2011) Functional metagenomic investigations of the human intestinal microbiota. Front Microbiol 2:1–8. doi: 10.3389/fmicb.2011.00188 CrossRefGoogle Scholar
  61. More RP, Mitra S, Raju SC, Kapley A, Purohit HJ (2014) Mining and assessment of catabolic pathways in the metagenome of a common effluent treatment plant to induce the degradative capacity of biomass. Bioresour Technol 153:137–146. doi: 10.1016/j.biortech.2013.11.065 PubMedCrossRefGoogle Scholar
  62. Mueller K, Ash C, Pennisi E, Smith O (2012) The gut microbiota. Introduction. Science 336:1245. doi: 10.1126/science.336.6086.1245 PubMedCrossRefGoogle Scholar
  63. Neuman MG, Nanau RM (2012) Inflammatory bowel disease: role of diet, microbiota, life style. Transl Res 16:29–44. doi: 10.1016/j.trsl.2011.09.001 CrossRefGoogle Scholar
  64. Neveu TJ, Regeard C, Dubow MS (2011) Isolation and characterization of two serine proteases from metagenomic libraries of the Gobi and Death Valley deserts. Appl Microbiol Biotechnol 91:635–644. doi: 10.1007/s00253-011-3256-9 PubMedCrossRefGoogle Scholar
  65. Ngo TD, Ryu BH, Ju H, Jang E, Park K, Kim KK, Kim TD (2013) Structural and functional analyses of a bacterial homologue of hormone-sensitive lipase from a metagenomic library. Acta Crystallogr D Biol Crystallogr 69:1726–1737. doi: 10.1107/S0907444913013425 PubMedCrossRefGoogle Scholar
  66. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host-gut microbiota metabolic interactions. Science 336:1262–1267. doi: 10.1126/science.1223813 PubMedCrossRefGoogle Scholar
  67. Niehaus F, Gabor E, Wieland S, Siegert P, Maurer KH, Eck J (2011) Enzymes for the laundry industries: tapping the vast metagenomic pool of alkaline proteases. Microb Biotechnol 4:767–776. doi: 10.1111/j.1751-7915.2011.00279 PubMedCentralPubMedCrossRefGoogle Scholar
  68. Novo A, Andre S, Viana P, Nunes OC, Manaia CM (2013) Antibiotic resistance, antimicrobial residues and bacterial community composition in urban wastewater. Water Res 47:1875–1887. doi:  10.1016/j.watres.2013.01.010 PubMedCrossRefGoogle Scholar
  69. Ogawa K, Maki Y (2003) Cellulose as extracellular polysaccharide of hot spring sulfur-turf bacterial mat. Biosci Biotechnol Biochem 67:2652–2654. doi: 10.1271/bbb.67.2652 PubMedCrossRefGoogle Scholar
  70. Orhan E, Omay D, Guvenilir Y (2005) Partial purification and characterization of protease enzyme from Bacillus subtilis and Bacillus cereus. Appl Biochem Biotechnol 121:183–194. doi: 10.1007/978-1-59259-991-2_16 PubMedCrossRefGoogle Scholar
  71. Pace NR (1995) Opening the door onto the natural microbial world: molecular microbial ecology. Harvey Lect 91:59–78PubMedGoogle Scholar
  72. Parfrey LW, Knight R (2012) Spatial and temporal variability of the human microbiota. Clin Microbiol Infect 18:8–11. doi: 10.1111/j.1469-0691.2012.03861 PubMedCrossRefGoogle Scholar
  73. Peng Q, Wang X, Shang M, Huang J, Guan G, Li Y, Shi B (2014) Isolation of a novel alkalinestable lipase from a metagenomic library and its specific application for milk fat flavor production. Microb Cell Fact 13:1. doi: 10.1186/1475-2859-13-1 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Preeti A, Hemalatha D, Rajendhran J, Mullany P, Gunasekaran P (2014) Cloning, expression and characterization of a lipase encoding gene from human oral metagenome. Indian J Microbiol 54:284–292. doi: 10.1007/s12088-014-0455-y PubMedCentralPubMedCrossRefGoogle Scholar
  75. Pushpam PL, Rajesh T, Gunasekaran P (2011) Identification and characterization of alkaline serine protease from goat skin surface metagenome. AMB Express 1:3. doi: 10.1186/2191-0855-1-3 PubMedCentralPubMedCrossRefGoogle Scholar
  76. Ranjan R, Grover A, Kapardar RK, Sharma R (2005) Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem Biophys Res Commun 335:57–65. doi: 10.1016/j.bbrc.2005.07.046 PubMedCrossRefGoogle Scholar
  77. Rhee JK, Ahn DG, Kim YG, Oh JW (2005) New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol 71:817–825. doi: 10.1128/AEM.71.2.817-825 PubMedCentralPubMedCrossRefGoogle Scholar
  78. Riesenfeld CS, Goodman RM, Handelsman J (2004a) Uncultured soil bacteria are a reservoir of new antibiotic resistance genes. Environ Microbiol 6:981–989. doi: 10.1111/j.1462-2920.2004.00664 PubMedCrossRefGoogle Scholar
  79. Riesenfeld CS, Schloss PD, Handelsman J (2004b) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–52. doi: 10.1146/annurev.genet.38.072902.091216 PubMedCrossRefGoogle Scholar
  80. Robertson DE, Chaplin JA, DeSantis G, Podar M, Madden M, Chi E, Richardson T, Milan A, Miller M, Weiner DP, Wong K, McQuaid J, Farwell B, Preston LA, Tan X, Snead MA, Keller M, Mathur E, Kretz PL, Burk MJ, Short JM (2004) Exploring nitrilase sequence space for enantioselective catalysis. Appl Environ Microbiol 70:2429–2436. doi: 10.1128/AEM.70.4.2429-2436 PubMedCentralPubMedCrossRefGoogle Scholar
  81. Rondon MR, Goodman RM, Handelsman J, Rondon MR, Goodman RM, Handelsman J (1999) The Earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol 17:403–409. doi: 10.1016/S0167-7799(99)01352-9 PubMedCrossRefGoogle Scholar
  82. Sangwan N, Lata P, Dwivedi V, Singh A, Niharika N, Kaur J, Anand S, Malhotra J, Jindal S, Nigam A, Lal D, Dua A, Saxena A, Garg N, Verma M, Kaur J, Mukherjee U, Gilbert JA, Dowd SE, Raman R, Khurana P, Khurana JP, Lal R (2014a) Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 7:e46219. doi: 10.1371/journal.pone.0046219 CrossRefGoogle Scholar
  83. Sangwan N, Verma H, Kumar R, Negi V, Lax S, Khurana P, Khurana JP, Gilbert JA, Lal R (2014b) Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. ISME J8:398–408. doi: 10.1038/ismej.2013.153 CrossRefGoogle Scholar
  84. Sathya TA, Jacob AM, Khan M (2014) Cloning and molecular modelling of pectin degrading glycosyl hydrolase of family 28 from soil metagenomic library. Mol Biol Rep 41:2645–2656. doi: 10.1007/s11033-014-3380-6 PubMedCrossRefGoogle Scholar
  85. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71:4840–4849. doi: 10.1128/AEM.71.8.4840-4849.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Schjorring S, Krogfelt KA (2011) Assessment of bacterial antibiotic resistance transfer in the gut. Int J Microbiol 2011:1–10. doi: 10.1155/2011/312956 CrossRefGoogle Scholar
  87. Schloss PD, Handelsman J (2003) Biotechnological prospects from metagenomics. Curr Opin Biotechnol 14:303–310. doi: 10.1016/S0958-1669(03)00067-3 PubMedCrossRefGoogle Scholar
  88. Schloss PD, Handelsman J (2004) Status of the microbial census. Microbiol Mol Biol Rev 68:686–691. doi: 10.1128/MMBR.68.4 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Schmeisser C, Stockigt C, Raasch C, Wingender J, Timmis KN, Wenderoth DF, Flemming HC, Liesegang H, Schmitz RA, Jaeger KE, Streit WR (2003) Metagenome survey of biofilms in drinking-water networks. Appl Environ Microbiol 69:7298–7309. doi: 10.1128/AEM.69.12 PubMedCentralPubMedCrossRefGoogle Scholar
  90. Selvin J, Kennedy J, Lejon DPH, Kiran GS, Dobson ADW (2012) Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb Cell Fact 11:72. doi: 10.1186/1475-2859 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Shade A, Handelsman J (2012) Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 14:4–12. doi: 10.1111/j.1462-2920.2011.02585.x PubMedCrossRefGoogle Scholar
  92. Sharma S, Khan FG, Qazi GN (2010) Molecular cloning and characterization of amylase from soil metagenomic library derived from northwestern Himalayas. Appl Microbiol Biotechnol 86:1821–1828. doi: 10.1007/s00253-009-2404-y PubMedCrossRefGoogle Scholar
  93. Silva AET, Rua CPJ, Andrade BGN, Vicente ACP, Silva GGZ, Berlinck RGS, Thompson FL (2013) Polyketide synthase gene diversity within the microbiome of the sponge Arenosclera brasiliensis, endemic to the southern Atlantic ocean. Appl Environ Microbiol 79:1598–1605. doi: 10.1128/AEM.03354-12 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Singh BK (2010) Exploring microbial diversity for biotechnology: the way forward. Trends Biotechnol 28:111–116. doi: 10.1016/j.tibtech.2009.11.006 PubMedCrossRefGoogle Scholar
  95. Singh A, Chauhan NS, Thulasiram HV, Taneja V, Sharma R (2010) Identification of two flavin monooxygenases from an effluent treatment plant sludge metagenomic library. Bioresour Technol 101:8481–8484. doi: 10.1016/j.biortech.2010.06.025 PubMedCrossRefGoogle Scholar
  96. Singh R, Dhawan S, Singh K, Kaur J (2012) Cloning, expression and characterization of a metagenome derived thermoactive/thermostable pectinase. Mol Biol Rep 39:8353–8361. doi: 10.1007/s11033-012-1685-x PubMedCrossRefGoogle Scholar
  97. Song JS, Jeon JH, Lee JH, Jeong SH, Jeong BC, Kim SJ, Lee JH, Lee SH (2005) Molecular characterization of TEM-type beta-lactamases identified in cold-seep sediments of Edison Seamount (South of Lihir Island, Papua New Guinea). J Microbiol 43:172–178. doi: 10.1002/9781118010549.ch51 PubMedGoogle Scholar
  98. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:1955–9. doi: 10.1126/science.1109051 PubMedCrossRefGoogle Scholar
  99. Steele HL, Streit WR (2005) Metagenomics: advances in ecology and biotechnology. FEMS Microbiol Lett 247:105–111. doi: 10.1016/j.femsle.2005.05.011 PubMedCrossRefGoogle Scholar
  100. Steele HL, Jaeger KE, Daniel R, Streit WR (2009) Advances in recovery of novel biocatalysts from metagenomes. J Mol Microbiol Biotechnol 16:25–37. doi: 10.1159/000142892 PubMedCrossRefGoogle Scholar
  101. Streit WR, Schmitz RA (2004) Metagenomics the key to the uncultured microbes. Curr Opin Microbiol 7:492–498. doi: 10.1016/j.mib.2004.08.002 PubMedCrossRefGoogle Scholar
  102. Sudo N (2012) Role of microbiome in regulating the HPA axis and its relevance to allergy. Chem Immunol Allergy 98:163–75. doi: 10.1159/000336510 PubMedCrossRefGoogle Scholar
  103. Sul WJ, Cole JR, Jesus EC, Wang Q, Farris RJ, Fish JA, Tiedjea JM (2011) Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering. Proc Natl Acad Sci U S A 108:4637–14642. doi: 10.1073/pnas.1111435108 CrossRefGoogle Scholar
  104. Tamakai H, Wright CL, Li X, Lin Q, Hwang C, Wang S, Thimmapurma J, Kamagata Y, Liu WT (2011) Analysis of 16S rRNA amplicon sequencing option on the Roche/454 next-generation titanium sequencing platform. PLoS One 6:e25263. doi: 10.1371/journal.pone.0025263 CrossRefGoogle Scholar
  105. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Tamayo RM, Paslier DL, Nalin R, Dore J, Leclerc M (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2584. doi: 10.1111/j.1462-2920.2009.01982.x PubMedCrossRefGoogle Scholar
  106. Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, Klopp C, Cantarel BL, Coutinho PM, Henrissat B, Leclerc M, Doré J, Monsan P, Remaud-Simeon M, Potocki-Veronese G (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Res 20:1605–1612. doi: 10.1101/gr.108332.110 PubMedCentralPubMedCrossRefGoogle Scholar
  107. Tuffin M, Anderson D, Heath C, Cowan DA (2009) Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnol J 4(12):1671–1683. doi: 10.1002/biot.200900235 PubMedCrossRefGoogle Scholar
  108. Turnbaugh PJ, Gordon JI (2009) The core gut microbiome, energy balance and obesity. J Physiol 587:4153–4158. doi: 10.1113/jphysiol.2009.174136 PubMedCentralPubMedCrossRefGoogle Scholar
  109. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43PubMedCrossRefGoogle Scholar
  110. Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74. doi: 10.1126/science.1093857 PubMedCrossRefGoogle Scholar
  111. Verma D, Kawarabayasi Y, Miyazaki K, Satyanarayana T (2013) Cloning, expression and characteristics of a novel alkalistable and thermostablexylanase encoding gene (Mxyl) retrieved from compost-soil metagenome. PLoS One 8:e52459. doi: 10.1371/journal.pone.0052459 PubMedCentralPubMedCrossRefGoogle Scholar
  112. Vidya J, Swaroop S, Singh SK, Alex D, Sukumaran RK, Pandey A (2011) Isolation and characterization of a novel \( \alpha \)-amylase from a metagenomic library of western Ghats of Kerala, India. Biologia 66:939–944. doi: 10.2478/s11756-011-0126-y CrossRefGoogle Scholar
  113. Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36. doi: 10.1016/j.jbiotec.2006.02.011 PubMedCrossRefGoogle Scholar
  114. Waidner LA, Kirchman DL (2005) Aerobic anoxygenic photosynthesis genes and operons in uncultured bacteria in the Delaware River. Environ Microbiol 7:1896–1908. doi: 10.1111/j.1462-2920.2005.00883.x PubMedCrossRefGoogle Scholar
  115. Wang L, Chen S, Xiao X, Huang X, You D, Zhou X, Deng Z (2006) arsRBOCT arsenic resistance system encoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Appl Environ Microbiol 72:3738–3742. doi: 10.1128/AEM.72.5.3738-3742 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299. doi: 10.1016/j.copbio.2009.05.007 PubMedCrossRefGoogle Scholar
  117. Xie G, Chain PS, Lo CC, Liu KL, Gans J, Merritt J, Qi F (2010) Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. Mol Oral Microbiol 25:391–405. doi: 10.1111/j.2041-1014.2010.00587.x PubMedCentralPubMedCrossRefGoogle Scholar
  118. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486:222–227. doi: 10.1038/nature11053 PubMedCentralPubMedGoogle Scholar
  119. Yun J, Kang S, Park S, Yoon H, Kim MJ, Heu S, Ryu S (2004) Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Appl Environ Microbiol 70:7229–7235. doi: 10.1128/AEM.70.12.7229-7235 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Manoj Kumar
    • 1
  • Jitendra Kumar
    • 1
  • Nar Singh Chauhan
    • 1
  1. 1.System Biology, Department of BiochemistryMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations