Bacteriophage Diversity in Different Habitats and Their Role in Pathogen Control

  • Nishant A. Dafale
  • Zubeen J. Hathi
  • Sarmistha Bit
  • Hemant J. Purohit


Bacteriophages are selective to their host bacteria and do not have any direct interaction with other members of the indigenous flora of the community. In any niche, the diversity of phage is directly proportional to the associated discriminating bacterial population as a host. Pathogens including MDR bacteria in wastewater are responsible for big outbreaks in many developing nations and the biggest emerging threat to public health. Every effort leading to reduction of pathogens in the environment has to be promoted and implemented for establishing a healthy and sustainable environment. The inefficient functioning of STPs is the significant reservoir of diverse bacterial population, including MDR. A biocontrol capability through phage has been demonstrated in the control of pathogens in food industry, medicine, aquaculture and agriculture and could be implemented to environment. In order to apply phage formulation in the environment, it must be a wild type and should be well characterised; that includes genome annotation, validation of genes of obligate lytic cycle and without the virulence factors. The implementation will demand long-term trials with microbial community. This can be ensured through advances in metagenomics, which will monitor shifts in the community structure after phage interventions. Phages would emerge as eco-friendly biocontrol agents and could be considered as an obvious alternative to chemical disinfectant and preservatives.


Phage Typing Host Bacterium Phage Therapy Lytic Phage Hospital Wastewater 


  1. Abuladze T, Li M, Menetrez Y, Dean T, Senecal A, Sulakvelidze A (2008) Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol 74:6230–6238. doi: 10.1128/AEM.01465-08 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ackermann W (2012) Bacteriophage electron microscopy. Adv Virus Res 82:1–32PubMedCrossRefGoogle Scholar
  3. Ackermann W, Krisch H (1997) A catalogue of T4-type bacteriophages. Arch Virol 142:2329–2345PubMedCrossRefGoogle Scholar
  4. Alemayehu D, Ross R, O’Sullivan O, Coffey A, Stanton C, Fitzgerald G, McAuliffe O (2009) Genome of a virulent bacteriophage Lb338-1 that lyses the probiotics Lactobacillus paracasei cheese strain. Gene 448:29–39. doi: 10.1016/j.gene.2009.08.008 PubMedCrossRefGoogle Scholar
  5. Allen K, Levine Y, Looft T, Bandrick M, Casey A (2013) Treatment, promotion, commotion: antibiotic alternatives in food-producing animals. Trends Microbiol 21:114–119. doi: 10.1016/j.tim.2012.11.001 PubMedCrossRefGoogle Scholar
  6. Arnold P, Zillig W, Ziese U, Holz I, Crosby M, Utterback T, Fraser M (2000) A novel lipothrixvirus, SIFV, of the extremely thermophilic crenarchaeon Sulfolobus. Virology 267:252–266. doi: 10.1006/viro.1999.0105 PubMedCrossRefGoogle Scholar
  7. Ashelford K, Fry J, Bailey M, Jeffries A, Day M (1999) Characterization of six bacteriophages of Serratia liquefaciens CP6 isolated from the sugar beet phytosphere. Appl Environ Microbiol 65:1959–1965PubMedCentralPubMedGoogle Scholar
  8. Augustine J, Louis L, Varghese S, Bhat S, Kishore A (2013) Isolation and partial characterization of ΦSP-1, a Salmonella specific lytic phage from intestinal content of broiler chicken. J Basic Microbiol 53:111–120. doi: 10.1002/jobm.201100319 PubMedCrossRefGoogle Scholar
  9. Baross A, Liston J, Morita Y (1978) Incidence of Vibrio parahaemolyticus bacteriophages and other Vibrio bacteriophages in marine samples. Appl Environ Microbiol 36:492–499PubMedCentralPubMedGoogle Scholar
  10. Baxa U, Steinbacher S, Miller S, Weintraub A, Huber R, Seckler R (1996) Interactions of phage P22 tails with their cellular receptor, Salmonella O-antigen polysaccharide. Biophys J 71(4):2040. doi: 10.1016/S0006-3495(96)79402-X PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bernhardt G, Wang SK, Young R (2001) A protein antibiotic in the phage Qβ virion: diversity in lysis targets. Science 292:2326–2329. doi: 10.1126/science.1058289 PubMedCrossRefGoogle Scholar
  12. Bettstetter M, Peng X, Garrett A, Prangishvili D (2003) AFV1, a novel virus infecting hyperthermophilic archaea of the genus Acidianus. Virology 315:68–79PubMedCrossRefGoogle Scholar
  13. Black N (1988) The fadL gene product of Escherichia coli is an outer membrane protein required for uptake of long-chain fatty acids and involved in sensitivity to bacteriophage T2. J Bacteriol 170:2850–2854PubMedCentralPubMedGoogle Scholar
  14. Bleackley J, Cooper J, Kaminski M, Sandilands S (2009) The reduction of T7 phage adsorption in Escherichia coli B23 cells treated with sub-lethal levels of kanamycin. J Exp Microbiol Immunol 13:89–92Google Scholar
  15. Blower R, Evans J, Przybilski R, Fineran C, Salmond P (2012) Viral evasion of a bacterial suicide system by RNA–based molecular mimicry enables infectious altruism. PLoS Genet 8:e10. doi: 10.1371/journal.pgen.1003023 CrossRefGoogle Scholar
  16. Bourdin G, Schmitt B, Guy M, Germond E, Zuber S, Michot L, Reuteler G, Brussow H (2014) Amplification and purification of T4-like Escherichia coli phages for phage therapy: from laboratory to pilot scale. Appl Environ Microbiol 80:1469–1476. doi: 10.1128/AEM.03357-13 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Boyd F, Brussow H (2002) Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol 10:521–529. doi: 10.1016/S0966-842X(02)02459-9 PubMedCrossRefGoogle Scholar
  18. Breitbart M, Haynes M, Kelley S, Angly F, Edwards R, Felts B, Mahaffy J, Mueller J, Nulton J, Rayhawk S, Rodriguez-Brito B, Salamon P, Rohwer F (2008) Viral diversity and dynamics in an infant gut. Res Microbiol 159:367–373. doi: 10.1016/j.resmic.2008.04.006 PubMedCrossRefGoogle Scholar
  19. Brewer E, Stroupe E, Jones M (2014) The genome, proteome and phylogenetic analysis of Sinorhizobium meliloti phage ΦM12, the founder of a new group of T4-superfamily phages. Virology 450:84–97. doi: 10.1016/j.virol.2013.11.027 PubMedCrossRefGoogle Scholar
  20. Brockhurst A, Buckling A, Rainey B (2006) Spatial heterogeneity and the stability of host‐parasite coexistence. J Evol Biol 19(2):374–379PubMedCrossRefGoogle Scholar
  21. Brussow H, Canchaya C, Hardt D (2004) Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev 68:560–602. doi: 10.1128/MMBR.68.3.560-602.200 PubMedCentralPubMedCrossRefGoogle Scholar
  22. Busby N, Panjikar S, Landsberg J, Hurst R, Lott S (2013) The BC component of ABC toxins is an RHS-repeat-containing protein encapsulation device. Nature 501:547–550. doi: 10.1038/nature12465 PubMedCrossRefGoogle Scholar
  23. Chibani-Chennoufi S, Bruttin A, Dillmann M, Brussow H (2004) Phage-host interaction: an ecological perspective. J Bacteriol 186:3677–3686. doi: 10.1128/JB.186.12.3677-3686.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Chitnis V, Chitnis S, Vaidya K, Ravikant S, Patil S, Chitnis S (2004) Bacterial population changes in hospital effluent treatment plant in central India. Water Res 38:441–447PubMedCrossRefGoogle Scholar
  25. Choi J, Kotay M, Goel R (2011) Bacteriophage based biocontrol of biological sludge bulking in wastewater. Bioeng Bugs 2:214–217. doi: 10.1016/j.watres.2010.08.038 PubMedCrossRefGoogle Scholar
  26. Dafale N, Lakhe S, Yadav K, Purohit H, Chakrabarti T (2007) Concentration and recovery of coliphages from water with bituminous coal. Water Environ Res 80:282–288. doi: 10.2175/106143007X220923 CrossRefGoogle Scholar
  27. Das S, Biswas A, Dasgupta S, Abraham A (2009) Bacterial foraging optimization algorithm: theoretical foundations, analysis, and applications. Found Comput Intell 3(1):23–55, Springer, Berlin/HeidelbergGoogle Scholar
  28. Davis A, Moran K, McAllister C, Gray P (2005) Multidrug resistant Acinetobacter extremity infections in soldiers. Emerg Infect Dis 11:1218–1224. doi: 10.3201/1108.050103 PubMedCentralPubMedCrossRefGoogle Scholar
  29. Didelot X, Bowden R, Wilson J, Peto A, Crook W (2012) Transforming clinical microbiology with bacterial genome sequencing. Nat Rev Genet 13:601–612. doi: 10.1038/nrg3226 PubMedCrossRefGoogle Scholar
  30. During K, Porsch P, Fladung M, Lorz H (1993) Transgenic potato plants resistant to the phytopathogenic bacterium Erwinia carotovora. Plant J 3:587–598. doi: 10.1046/j.1365-313X.1993.03040587.x CrossRefGoogle Scholar
  31. Ekhaise O, Omavwoya P (2008) Influence of hospital wastewater discharged from University of Benin Teaching Hospital (UBTH), Benin City on its receiving environment. Afr J Appl Zool Environ Biol 10:56–60Google Scholar
  32. Elbreki M, Ross P, Hill C, O’Mahony J, McAuliffe O, Coffey A (2014) Bacteriophages and their derivatives as biotherapeutic agents in disease prevention and treatment. J Viruses 1:1–20. doi: 10.1155/2014/382539 CrossRefGoogle Scholar
  33. Endersen L, Mahony J, Hill C, Ross R, McAuliffe O, Coffey A (2014) Phage therapy in food industry. Ann Rev Food Sci Technol 5:327–349. doi: 10.1146/annurev-food-030713-092415 CrossRefGoogle Scholar
  34. Fancello L, Trape S, Robert C, Boyer M, Popgeorgiev N, Raoult D, Desnues C (2013) Viruses in the desert: a metagenomic survey of viral communities in four perennial ponds of the Mauritanian Sahara. ISME J 7:359–369. doi: 10.1038/ismej.2012.101 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Fischetti V (2005) Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 13:491–496. doi: 10.1016/j.tim.2005.08.007 PubMedCrossRefGoogle Scholar
  36. Flynn G, Ross P, Fitzgerald F, Coffey A (2004) Evaluation of a cocktail of three bacteriophages for biocontrol of E coli O157:H7. Appl Environ Microbiol 70:3417–3424. doi: 10.1128/AEM.70.6.3417-3424.2004 CrossRefGoogle Scholar
  37. Fokine A, Chipman R, Leiman G, Mesyanzhinov V, Rao B, Rossmann G (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci 101:6003–6008. doi: 10.1073/pnas.0400444101 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Ford E, Sun B, Carpino J, Chapler S, Ching J, Choi Y, Dennehy J (2014) Frequency and fitness consequences of bacteriophage Φ6 host range mutations. PLoS One 9:e11. doi: 10.1371/journal.pone.0113078 Google Scholar
  39. Fu W, Forster T, Mayer O, Curtin J, Lehman M, Donlan M (2010) Bacteriophage cocktail for the prevention of biofilm formation by Pseudomonas aeruginosa on catheters in an in vitro model system. Antimicrob Agents Chemother 1:397–404. doi: 10.1128/AAC.00669-09 CrossRefGoogle Scholar
  40. Fuhrman A, Noble T (1995) Viruses and protists cause similar bacterial mortality in coastal seawater. Limnol Oceanogr 40:1236–1242. doi: 10.4319/lo.1995.40.7.1236 CrossRefGoogle Scholar
  41. Fuhrman A, Schwalbach M (2003) Viral influence on aquatic bacterial communities. Biol Bull 204:192–195PubMedCrossRefGoogle Scholar
  42. Fusco S, Aulitto M, Bartolucci S, Contursi P (2014) A standardized protocol for the UV induction of Sulfolobus spindle-shaped virus 1. Extremophiles 1:1–8. doi: 10.1007/s00792-014-0717 Google Scholar
  43. Gantzer C, Henny J, Schwartzbrod L (2002) Bacteroides fragilis and Escherichia coli bacteriophages in human faeces. Int J Hyg Environ Heal 205:325–328CrossRefGoogle Scholar
  44. García S, De la Torre Á, Morales PB, Tolón J, Domingo S, Picazo J (2010) Clinical outbreak of linezolid-resistant Staphylococcus aureus in an intensive care unit. JAMA 303(22):2260–2264. doi: 10.1001/jama.2010.757 PubMedCrossRefGoogle Scholar
  45. Gill J, Svircev M, Smith R, Castle J (2003) Bacteriophages of Erwinia amylovora. Appl Environ Microbiol 69(4):2133–2138. doi: 10.1128/AEM.69.4.2133-2138.200 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Goldman G, Starosvetsky J, Armon R (2009) Inhibition of biofilm formation on UF membrane by use of specific bacteriophages. J Membr Sci 342:145–152CrossRefGoogle Scholar
  47. Goodridge L, Abedon S (2003) Bacteriophage biocontrol and bioprocessing: application of phage therapy to industry. SIM News 53:254–262Google Scholar
  48. Goyal SM (1987) Methods in phage ecology. Wiley Interscience 1:267–287Google Scholar
  49. Grose H, Jensen L, Burnett H, Breakwell P (2014) Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 15:855. doi: 10.1186/1471-2164-15-855 PubMedCentralPubMedCrossRefGoogle Scholar
  50. Hanlon W (2007) Bacteriophages: an appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 30:118–128. doi: 10.1016/j.ijantimicag.2007.04.006 PubMedCrossRefGoogle Scholar
  51. Hatfull F (2008) Bacteriophage genomics. Curr Opin Microbiol 11:447–453. doi: 10.1016/j.mib.2008.09.004 PubMedCentralPubMedCrossRefGoogle Scholar
  52. Hopkins L, Desai M, Frost A, Stanley J, Logan M (2004) Fluorescent amplified fragment length polymorphism genotyping of Campylobacter jejuni and Campylobacter coli strains and its relationship with host specificity, serotyping, and phage typing. J Clin Microbiol 42(1):229–235. doi: 10.1128/JCM.42.1.229-235.2004 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Hudson A, Billington C, Carey-Smith G, Greening G (2005) Bacteriophages as biocontrol agents in food. J Food Prot 68:426–437. doi: 10.1016/j.copbio.2010.10.008 PubMedGoogle Scholar
  54. Jakutyte L, Lurz R, Baptista C, Carballido-Lopez R, Sao-Jose C, Tavares P, Daugelavicius R (2012) First steps of bacteriophage SPP1 entry into Bacillus subtilis. Virology 422:425–434. doi: 10.1016/j.virol.2011.11.010 PubMedCrossRefGoogle Scholar
  55. Jaschke R, Lieberman K, Rodriguez J, Sierra A, Endy D (2012) A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast. Virology 434:278–284. doi: 10.1016/j.virol.2012.09.020 PubMedCrossRefGoogle Scholar
  56. Jones A, Walsh M, Turton J, Livermore D, Pitt T, Green A, Gill M, Mortiboy D (2006) Importation of multidrug-resistant Acinetobacter sp. infections with casualties from Iraq. Lancet Infect Dis 6:317–318. doi: 10.1016/S1473-3099(06)70471-6 PubMedCrossRefGoogle Scholar
  57. Kisand V, Lettieri T (2013) Genome sequencing of bacteria: sequencing, de novo assembly and rapid analysis using open source tools. BMC Genomics 1:211. doi: 10.1186/1471-2164-14-211 CrossRefGoogle Scholar
  58. Kleppen P, Holo H, Jeon R, Nes F, Yoon S (2012) Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from kimchi. Appl Environ Microbiol 78:7299–7308. doi: 10.1128/AEM.00031-12 PubMedCentralPubMedCrossRefGoogle Scholar
  59. Klumpp J, Fouts E, Sozhamannan S (2013) Bacteriophage functional genomics and its role in bacterial pathogen detection. Brief Funct Genomics 9(1):8–14. doi: 10.1093/bfgp/elt009 Google Scholar
  60. Kostyuchenko A, Leiman G, Chipman R, Kanamaru S, van Raaij J, Arisaka F, Rossmann G (2003) Three-dimensional structure of bacteriophage T4 base plate. Nat Struct Mol Biol 10:688–693. doi: 10.1038/nsb970 CrossRefGoogle Scholar
  61. Kutter E, Sulakvelidze A (eds) (2005) Bacteriophages: biology and application. CRC Press/Taylor & Francis Group, Boca Raton, pp 335–380Google Scholar
  62. Kwan T, Liu J, DuBow M, Gros P, Pelletier J (2005) The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc Natl Acad Sci U S A 102(14):5174–5179. doi: 10.1073/pnas.0501140102 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Lander C, Tang L, Casjens R, Gilcrease B, Prevelige P, Poliakov A, Johnson E (2006) The structure of an infectious P22 virion shows the signal for headful DNA packaging. Science 312:1791–1795. doi: 10.1126/science.1127981 PubMedCrossRefGoogle Scholar
  64. Leiman G, Arisaka F, van Raaij J, Kostyuchenko A, Aksyuk A, Kanamaru S, Rossman G (2010) Morphogenesis of the T4 tail and tail fibers. Virol J 7(1):355. doi: 10.1186/1743-422X-7-355 PubMedCentralPubMedCrossRefGoogle Scholar
  65. Leiman G, Chipman R, Kostyuchenko A, Mesyanzhinov V, Rossmann G (2004) Three-dimensional rearrangement of proteins in the tail of bacteriophage T4 on infection of its host. Cell 118:419–429. doi: 10.1016/j.cell.2004.07.022 PubMedCrossRefGoogle Scholar
  66. Lima-Oliveira G, Guidi C, Salvagno L, Montagnana M, Rego LG, Picheth G (2012) Is phlebotomy part of the dark side in the clinical laboratory struggle for quality? Lab Med 43(5):172–176. doi: 10.1309/LMZ7YARD6ZSDIID CrossRefGoogle Scholar
  67. López-Bueno A, Tamames J, Velázquez D, Moy A, Quesada A, Alcamí A (2009) High diversity of the viral community from an Antarctic lake. Science 326:858–861. doi: 10.1126/science.1179287 PubMedCrossRefGoogle Scholar
  68. Lottmann J, Heuer H, DeVries J, Mahn A, During K, Wackernagel W, Berg G (2000) Establishment of introduced antagonistic bacteria in the rhizosphere of transgenic potatoes and their effect on the bacterial community. FEMS Microbiol Ecol 33:41–49. doi: 10.1111/j.1574-6941.2000.tb00725.x PubMedCrossRefGoogle Scholar
  69. Lu K, Collins J (2007) Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl Acad Sci 104(27):11197–11202. doi: 10.1073/pnas.0704624104 PubMedCentralPubMedCrossRefGoogle Scholar
  70. Lu Z, Breidt F (2015) Escherichia coli O157: H7 bacteriophage Φ241 isolated from industrial cucumber fermentation at high acidity and salinity. Front Microbiol 6:67. doi: 10.3389/fmicb.2015.00067 PubMedCentralPubMedGoogle Scholar
  71. Luhtanen M, Eronen-Rasimus E, Kaartokallio H, Rintala M, Autio R, Roine E (2014) Isolation and characterization of phage – host systems from the Baltic Sea ice. Extremophiles 18(1):121–130. doi: 10.1007/s00792-013-0604-y PubMedCrossRefGoogle Scholar
  72. Lungren M, Christensen D, Kankotia R, Falk I, Paxton B, Kim C (2013) Bacteriophage K for reduction of Staphylococcus aureus biofilm on central venous catheter material. Bacteriophage 3:4. doi: 10.4161/bact.26825 CrossRefGoogle Scholar
  73. Lurz R, Orlova V, Gunther D, Dube P, Droge A, Weise F, Tavares P (2001) Structural organisation of the head-to-tail interface of a bacterial virus. J Mol Biol 310:1027–1037. doi: 10.1006/jmbi.2001.4800 PubMedCrossRefGoogle Scholar
  74. Manchanda V, Sanchaita S, Singh P (2010) Multidrug resistant Acinetobacter. J Global Infect Dis 2:291. doi: 10.4103/0974-777X.68538 CrossRefGoogle Scholar
  75. Mannisto H, Kivela M, Paulin L, Bamford H, Bamford K (1999) The complete genome sequence of PM2, the first lipid-containing bacterial virus to be isolated. Virology 262:355–363PubMedCrossRefGoogle Scholar
  76. Markoishvili K, Tsitlanadze G, Katsarava R, Glenn J, Sulakvelidze A (2002) A novel sustained‐release matrix based on biodegradable poly (ester amide) and impregnated with bacteriophages and an antibiotic shows promise in management of infected venous stasis ulcers and other poorly healing wounds. Int J Dermatol 41:453–458. doi: 10.1046/j.1365-4362.2002.01451.x PubMedCrossRefGoogle Scholar
  77. Mc Grath S, van Sinderen D (eds) (2007) Bacteriophage: genetics and molecular biology. Horizon Scientific PressGoogle Scholar
  78. McIntyre L, Hudson A, Billington C, Withers H (eds) (2012) Biocontrol of food borne bacteria. Novel technologies in food science. Springer, pp 183–204. doi: 10.1007/978-1-4419-7880-6_8
  79. Mendes J, Leandro C, Mottola C, Barbosa R, Silva F, Oliveira M, Vilela C, Cristino J, Gorski A, Pimentel A, Sao-Jose C, Cavaco-Silva P, Garcia M (2014) In vitro design of a novel lytic bacteriophage cocktail with therapeutic potential against organisms causing diabetic foot infections. J Med Microbiol 63:1055–1065. doi: 10.1099/jmm.0.071753-0 PubMedCrossRefGoogle Scholar
  80. Merabishvili M, Vandenheuvel D, Kropinski M, Mast J, De Vos D, Verbeken G, Pirnay P (2014) Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii. doi:  10.1371/journal.pone.0104853
  81. Miller S, Heidelberg F, Eisen A, Nelson C, Durkin S, Ciecko A, Fraser M (2003) Complete genome sequence of the broad-host-range vibriophage KVP40: comparative genomics of a T4-related bacteriophage. J Bacteriol 185:5220–5233. doi: 10.1128/JB.185.17.5220-5233.2003 PubMedCentralPubMedCrossRefGoogle Scholar
  82. Minot S, Sinha R, Chen J, Li H, Keilbaugh S, Wu G, Lewis J, Bushman F (2011) The human gut virome: inter-individual variation and dynamic response to diet. Genome Res 21:1616–1625. doi: 10.1101/gr.122705.111 PubMedCentralPubMedCrossRefGoogle Scholar
  83. Mirzae K, Eriksson H, Kasuga K, Haggard-Ljungquist E, Nilsson S (2014) Genomic, proteomic, morphological, and phylogenetic analyses of vB_EcoP_SU10, a podoviridae phage with C3 morphology. PLoS One 9:12. doi: 10.1371/journal.pone.0116294 Google Scholar
  84. Mochizuki T, Yoshida T, Tanaka R, Forterre P, Sako Y, Prangishvili D (2010) Diversity of viruses of the hyperthermophilic archaeal genus Aeropyrum, and isolation of the Aeropyrum pernix bacilliform virus 1, APBV1, the first representative of the family Clavaviridae. Virology 402:347–354. doi: 10.1016/j.virol.2010.03.046 PubMedCrossRefGoogle Scholar
  85. Monk AB, Rees CD, Barrow P, Hagens S, Harper R (2010) Bacteriophage applications: where are we now? Lett Appl Microbiol 51:363–369. doi: 10.1111/j.1472-765X.2010.02916.x PubMedCrossRefGoogle Scholar
  86. Muller-Merbach M, Rauscher T, Hinrichs J (2005) Inactivation of bacteriophages by thermal and high-pressure treatment. Int Dairy J 15:777–784CrossRefGoogle Scholar
  87. Nakata N, Tobe T, Fukuda I, Suzuki T, Komatsu K, Yoshikawa M, Sasakawa C (1993) The absence of a surface protease, OmpT, determines the intercellular spreading ability of Shigella: the relationship between the ompT and kcpA loci. Mol Microbiol 9:459–468. doi: 10.1111/j.1365-2958.1993.tb01707.x PubMedCrossRefGoogle Scholar
  88. Oakley B, Talundzic E, Morales C, Hiett K, Siragusa G, Volozhantsev N, Seal B (2011) Comparative genomics of four closely related Clostridium perfringens bacteriophages reveals variable evolution among core genes with therapeutic potential. BMC Genomics 12:282. doi: 10.1186/1471-2164-12-282 PubMedCentralPubMedCrossRefGoogle Scholar
  89. Obeso M, Martínez B, Rodríguez A, García P (2008) Lytic activity of the recombinant staphylococcal bacteriophage ΦH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol 128(2):212–218. doi: 10.1016/j.ijfoodmicro.2008.08.010 PubMedCrossRefGoogle Scholar
  90. O’Connell P, Bucher R, Anderson E, Cao J, Khan S, Gostomski V, Valdes J (2006) Real-time fluorogenic Reverse transcription-PCR assays for detection of bacteriophage MS2. Appl Environ Microbiol 72:478–483. doi: 10.1128/AEM.72.1.478-483.2006 PubMedCentralPubMedCrossRefGoogle Scholar
  91. Oliveira H, Azeredo J, Lavigne R, Kluskens D (2012) Bacteriophage endolysins as a response to emerging foodborne pathogens. Trends Food Sci Technol 28(2):103–115. doi: 10.1016/j.tifs.2012.06.016 CrossRefGoogle Scholar
  92. Orlova V (2012) Bacteriophages and their structural organisation. InTech, 3–30. doi:  10.5772/34642
  93. Oyaski M, Hatfull F (1992) The cohesive ends of mycobacteriophage L5 DNA. Nucleic Acids Res 20:3251. doi: 10.1093/nar/20.12.3251 PubMedCentralPubMedCrossRefGoogle Scholar
  94. Peleg Y, Seifert H, Paterson L (2008) Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol 21:538–582. doi: 10.1128/CMR.00058-07 CrossRefGoogle Scholar
  95. Peng X, Basta T, Haring M, Garrett A, Prangishvili D (2007) Genome of the Acidianus bottle-shaped virus and insights into the replication and packaging mechanisms. Virology 364:237–243PubMedCrossRefGoogle Scholar
  96. Periasamy D, Sundaram A (2013) A novel approach for pathogen reduction in wastewater treatment. J Environ Health Sci Eng 11:12. doi: 10.1186/2052-336X-11-12 PubMedCentralPubMedCrossRefGoogle Scholar
  97. Petersen K, Riddle M, Danko J, Blazes D, Hayden R, Tasker A, Dunne J (2007) Trauma-related infections in battlefield casualties from Iraq. Ann Surg 245:803–811. doi: 10.1097/01.sla.0000251707.32332.c1 PubMedCentralPubMedCrossRefGoogle Scholar
  98. Petrovski S, Seviour J, Tillett D (2011) Characterization of the genome of the polyvalent lytic bacteriophage GTE2, which has potential for biocontrol of Gordonia, Rhodococcus, and Nocardia stabilized foams in activated sludge plants. Appl Environ Microbiol 77:3923–3929. doi: 10.1128/AEM.00025-11 PubMedCentralPubMedCrossRefGoogle Scholar
  99. Pirnay P, Verbeken G, Rose T, Jennes S, Zizi M, Huys I, Lavigne R, Merabishvili M, Vaneechoutte M, Buckling A, De Vos D (2012) Introducing yesterday’s phage therapy in today’s medicine. Futur Virol 7:379–390. doi: 10.2217/fvl.12.24 CrossRefGoogle Scholar
  100. Plisson C, White E, Auzat I, Zafarani A, Sao-Jose C, Lhuillier S, Orlova V (2007) Structure of bacteriophage SPP1 tail reveals trigger for DNA ejection. EMBO J 26:3720–3728. doi: 10.1038/sj.emboj.7601786 PubMedCentralPubMedCrossRefGoogle Scholar
  101. Poranen M, Paatero O, Tuma R, Bamford H (2001) Self-assembly of a viral molecular machine from purified protein and RNA constituents. Mol Cell 7:845–854. doi: 10.1016/S1097-2765(01)00228-3 PubMedCrossRefGoogle Scholar
  102. Qin J, Li R, Raes J, Arumugam M, Burgdorf K, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Doré J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Bork P, Ehrlich SD, Wang J, MetaHIT Consortium (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65. doi: 10.1038/nature08821 PubMedCentralPubMedCrossRefGoogle Scholar
  103. Rakhuba V, Kolomiets E, Dey E, Novik G (2010) Receptors, adsorption and penetration of bacteriophage. Pol J Microbiol 59:145–155PubMedGoogle Scholar
  104. Rattanachaikunsopon P, Phumkhachorn P (2012) Bacteriophage PPST1 Isolated from Hospital wastewater, a potential therapeutic agent against drug resistant Salmonella enterica subsp. Enterica serovar typhi. In tech open. doi:10.5772/30446Google Scholar
  105. Reyes A, Haynes M, Hanson N, Angly F, Heath A, Rohwer F, Gordon J (2010) Viruses in the fecal microbiota of monozygotic twins and their mothers. Nature 466:334–338PubMedCentralPubMedCrossRefGoogle Scholar
  106. Sao-Jose C, Lhuillier S, Lurz R, Melki R, Lepault J, Santos A, Tavares P (2006) The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J Biol Chem 281:11464–11470. doi: 10.1074/jbc.M513625200 PubMedCrossRefGoogle Scholar
  107. Scheele U, Erdmann S, Ungewickell J, Felisberto-Rodrigues C, Ortiz-Lombardía M, Garrett A (2011) Chaperone role for proteins p618 and p892 in the extracellular tail development of Acidianus two-tailed virus. J Virol 85:4812–4821. doi: 10.1128/JVI.00072-11 PubMedCentralPubMedCrossRefGoogle Scholar
  108. Schmeler M, Frumovitz M, Ramirez T (2011) Conservative management of early stage cervical cancer: is there a role for less radical surgery? Gynecol Oncol 120(3):321–325. doi: 10.1016/j.ygyno.2010.12.352 PubMedCentralPubMedCrossRefGoogle Scholar
  109. Schmeler M, Sood K, Bell-McGuinn M, Coleman RL, Frumovitz M, Sonoda Y, Gardner J (2012) Proceedings from the 9th international conference on ovarian cancer. Gynecol Oncol 125(1):5. doi: 10.1016/j.ygyno.2011.12.445 PubMedCentralPubMedCrossRefGoogle Scholar
  110. Schoenfeld T, Patterson M, Richardson M, Wommack E, Young M, Mead D (2008) Assembly of viral metagenomes from yellowstone hot springs. Appl Environ Microbiol 74:4164–4174. doi: 10.1128/AEM.02598-07 PubMedCentralPubMedCrossRefGoogle Scholar
  111. Sillankorva S, Neubauer P, Azeredo J (2008) Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol 8(1):79. doi: 10.1186/1472-6750-8-79 PubMedCentralPubMedCrossRefGoogle Scholar
  112. Sozhamannan S, McKinstry M, Lentz M, Jalasvuori M, McAfee F, Smith A, Read D (2008) Molecular characterization of a variant of Bacillus anthracis-specific phage AP50 with improved bacteriolytic activity. Appl Environ Microbiol 74:6792–6796. doi: 10.1128/AEM.01124-08 PubMedCentralPubMedCrossRefGoogle Scholar
  113. Strauch E, Hammerl J, Hertwig S (2007) Bacteriophages: new tools for safer food? J Verbr Lebensm 2:138–143. doi: 10.1007/s00003-007-0188-5 CrossRefGoogle Scholar
  114. Sulakvelidze A, Barrow P (2005) Phage therapy in animals and agribusiness. In: Kutter E, Sulakvelidze A (eds) Bacteriophages: biology and applications. CRC Press, Boca Raton, pp 335–380. doi: 10.1202/9780203491751.ch13
  115. Tetart F, Desplats C, Kutateladze M, Monod C, Ackermann W, Krisch M (2001) Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J Bacteriol 183:358–366. doi: 10.1128/JB.183.1.358-366.2001 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Thiel K (2004) Old dogma, new tricks–21st century phage therapy. Nat Biotechnol 22:31–36. doi: 10.1038/nbt0104-31 PubMedCrossRefGoogle Scholar
  117. Tinsley C, Bille E, Nassif X (2006) Bacteriophages and pathogenicity: more than just providing a toxin? Microbiol Infect 8:1365–1371. doi: 10.1016/j.micinf.2005.12.013 CrossRefGoogle Scholar
  118. Turki Y, Ouzari H, Mehri I, Ben Ammar A, Hassen A (2012) Evaluation of a cocktail of three bacteriophages for the biocontrol of Salmonella of wastewater. Food Res Int 45:1099–1105. doi: 10.1128/AEM.70.6.3417-3424.2004 CrossRefGoogle Scholar
  119. Uchiyama T, Abe T, Ikemura T, Watanabe K (2005) Substrate induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat Biotechnol 23:88–93. doi: 10.1038/nbt1048 PubMedCrossRefGoogle Scholar
  120. Verheust C, Pauwela K, Mahillon J, Helinski D, Herman P (2010) Contained use of bacteriophages: risk assessment and safety recommendations. App Bio Saf 15:32Google Scholar
  121. Wang J, Jiang Y, Vincent M, Sun Y, Yu H, Wang J, Hu S (2005) Complete genome sequence of bacteriophage T5. Virology 332:45–65PubMedCrossRefGoogle Scholar
  122. Wang X, Kim Y, Ma Q, Hong S, Pokusaeva K, Sturino J, Wood T (2010) Cryptic prophages help bacteria cope with adverse environments. Nat Commun 1:147. doi: 10.1038/ncomms1146 PubMedCentralPubMedCrossRefGoogle Scholar
  123. Wichels A, Biel H, Gelderblom H, Brinkhoff T, Muyzer G, Schutt C (1998) Bacteriophage diversity in the North Sea. Appl Environ Microbiol 64:4128–4133PubMedCentralPubMedGoogle Scholar
  124. Xiang X, Chen L, Luo Y, She Q, Huang L (2005) Sulfolobus tengchongensis spindle shaped virus SSTSV1: virus – host interactions and genomic features. J Virol 79:8677–8686. doi: 10.1128/JVI.79.14.8677-8686.2005 PubMedCentralPubMedCrossRefGoogle Scholar
  125. Young Y (1992) Bacteriophage lysis: mechanism and regulation. Microbiol Rev 56:430PubMedCentralPubMedGoogle Scholar
  126. Zhang C, Li W, Liu W, Zou L, Yan C, Lu K, Ren H (2013) T4-like phage Bp7, a potential antimicrobial agent for controlling drug-resistant Escherichia coli in chickens. Appl Environ Microbiol 79:5559–5565. doi: 10.1128/AEM.01505-13 PubMedCentralPubMedCrossRefGoogle Scholar
  127. Zhang Y, Huang C, Yang J, Jiao N (2011) Interactions between marine microorganisms and their phages. Chin Sci Bull 56(17):1770–1777. doi: 10.1007/s11434-011-4503-2 CrossRefGoogle Scholar
  128. Zillig W, Kletzin A, Schleper C, Holz I, Janekovic D, Hain J, Kristjansson K (1993) Screening for Sulfolobales, their plasmids and their viruses in Icelandic solfataras. Syst Appl Microbiol 16:609–662CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Nishant A. Dafale
    • 1
  • Zubeen J. Hathi
    • 1
  • Sarmistha Bit
    • 1
  • Hemant J. Purohit
    • 2
  1. 1.Environmental Genomics DivisionCSIR-National Environmental Engineering Research Institute (NEERI)NagpurIndia
  2. 2.Environmental Genomics DivisionCSIR-National Environmental Engineering Research Institute (NEERI)NagpurIndia

Personalised recommendations