Microbial Vesicles: From Ecosystem to Diseases

  • Shashank S. Kamble
  • Nancy Garg
  • Brijendra Kumar Tiwari
  • Lalit K. Singh
  • Neha Dhasmana
  • Yogendra Singh


The production of outer membrane vesicles (OMVs) is conserved in eukaryotes and prokaryotes. OMVs are double-layered structures with contents from outer membrane, periplasmic space, and even cytosol. Some of them have been shown to contain nucleic acids as well, which explains the specialized system for the packaging of these vesicles. OMVs mediate essential processes such as transport of nutrients, antigens, and virulence factors, etc., which help the microorganisms in communication as well as in killing of other microbial cells. The biogenesis of OMVs differs in bacteria and archaea. The archaeal OMV biogenesis is similar to eukaryotes involving ESCRT machinery, while in gram-negative bacteria, it occurs either due to broken OM-PG interaction or due to increased periplasmic pressure. OMVs containing antigens have been recently explored for use as vaccine which provides another dimension for its applications.


Outer Membrane Membrane Vesicle Anthrax Toxin Outer Membrane Vesicle Pseudomonas Quinolone Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Director of CSIR-Institute of Genomics and Integrative Biology (IGIB), Government of India for providing the necessary funds, and facilities. Authors are also thankful to Academy of Scientific and Innovative Research (AcSIR), New Delhi. SSK is a Senior Research Fellow supported by UGC, India. NG is a project assistant funded from BSC0123 (DRDO, India). BKT is a research associate supported by CSIR, India. LKS is a Senior Research Fellow supported by University Grant Commission, India. ND is a Shyama Prasad Mukherjee-Senior Research Fellow supported by CSIR, India. We highly acknowledge Neha Dubey and Dr. V. C. Kalia from CSIR-IGIB, Delhi, India, for inspiration and critical comments on the manuscript.


  1. Bauman SJ, Kuehn MJ (2006) Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect 8:2400–2408. doi: 10.1016/j.micinf.2006.05.001 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Baumgarten T, Sperling S, Seifert J, von Bergen M, Steiniger F, Wick LY, Heipieper HJ (2012) Membrane vesicle formation as a multiple-stress response mechanism enhances Pseudomonas putida DOT-T1E cell surface hydrophobicity and biofilm formation. Appl Environ Microbiol 78:6217–6224. doi: 10.1128/AEM.01525-12 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Biller SJ, Schubotz F, Roggensack SE, Thompson AW, Summons RE, Chisholm SW (2014) Bacterial vesicles in marine ecosystem. Science 343:183–186. doi: 10.1126/science.1243457 CrossRefPubMedGoogle Scholar
  4. Bishop DG, Work E (1965) An extracellular glycolipid produced by Escherichia coli grown under lysine-limiting conditions. Biochem J 96:567–576, PMC1207076PubMedCentralCrossRefPubMedGoogle Scholar
  5. Boslego J, Garcia J, Cruz C, Zollinger W, Brandt B, Ruiz S, Martinez M, Arthur J, Underwood P, Silva W, Moran E, Hankins W, Gilly J, Mays J (1995) Efficacy, safety, and immunogenicity of a meningococcal group B (15:P1.3) outer membrane protein vaccine in Iquique, Chile. Vaccine 13:821–829. doi: 10.1016/0264-410X(94)00037-N CrossRefPubMedGoogle Scholar
  6. Deatherage BL, Cookson BT (2012) Membrane vesicle release in bacteria, eukaryotes and archaea: a conserved yet underappreciated aspect of microbial life. Infect Immun 80:1948–1957. doi: 10.1128/IAI.06014-11 PubMedCentralCrossRefPubMedGoogle Scholar
  7. Dorward DW, Garon CF, Judd RC (1989) Export and intracellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J Bacteriol 171:2499–2505PubMedCentralPubMedGoogle Scholar
  8. Ducret A, Fleuchot B, Bergam P, Mignot T (2013) Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus. Elife 2:e00868. doi: 10.7554/eLife.00868 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Ellen AF, Albers SV, Huibers W, Pitcher A, Hobel CF, Schwarz H, Folea M, Schouten S, Boekema EJ, Poolman B, Driessen AJ (2009) Proteomic analysis of secreted membrane vesicles of archaeal Sulfolobus species reveals the presence of endosome sorting complex components. Extremophiles 13:67–79. doi: 10.1007/s00792-008-0199-x CrossRefPubMedGoogle Scholar
  10. Fiocca R, Necchi V, Sommi P, Ricci V, Telford J, Cover TL, Solcia E (1999) Release of Helicobacter pylori vacuolating cytotoxin by both a specific secretion pathway and budding of outer membrane vesicles. Uptake of released toxin and vesicles by gastric epithelium. J Pathol 188:220–226. doi: 10.1002/(SICI)10969896(199906)188:2<220, AID-PATH307 > 3.0.CO;2-CCrossRefPubMedGoogle Scholar
  11. Fredriksen JH, Rosenqvist E, Wedege E, Bryn K, Bjune G, Froholm LO, Lindbak AK, Mogster B, Namork E, Rye U (1991) Production, characterization and control of MenB-vaccine “Folkehelsa”: an outer membrane vesicle vaccine against group B meningococcal disease. NIPH Ann 14:67–79PubMedGoogle Scholar
  12. Garcia-del Portillo F, Stein MA, Finlay BB (1997) Release of lipopolysaccharide from intracellular compartments containing Salmonella typhimurium to vesicles of the host epithelial cell. Infect Immun 65:24–34, PMID: 8975888PubMedCentralPubMedGoogle Scholar
  13. Gorby YA, Yanina S, McLean JS, Rosso KM, Moyles D, Dohnalkova A, Beveridge TJ, Chang IS, Kim BH, Kim KS, Culley DE, Reed SB, Romine MF, Saffarini DA, Hill EA, Shi L, Elias DA, Kennedy DW, Pinchuk G, Watanabe K, Ishii S, Logan B, Nealso KH, Fredrickson JK (2006) Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci U S A 103:11358–11363. doi: 10.1073/pnas.0604517103 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Gorby Y, McLean J, Korenevsky A, Rosso K, El-Naggar MY, Beveridge TJ (2008) Redox-reactive membrane vesicles produced by Shewanella. Geobiology 6:232–241. doi: 10.1111/j.1472-4669.2008.00158.x CrossRefPubMedGoogle Scholar
  15. Gurung M, Moon DC, Choi CW, Lee JH, Bae YC, Kim YC, Lee YC, Seol SY, Cho DT, Kim S, Lee JC (2011) Staphylococcus aureus produces membrane-derived vesicles that induce host cell death. PLoS One 6:e27958. doi: 10.1371/journal.pone.0027958 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Harmsen M, Yang L, Pamp SJ, Tolker-Nielsen T (2010) An update on Pseudomonas aeruginosa biofilms formation, tolerance and dispersal. FEMS Immunol Med Microbiol 59:253–268. doi: 10.1111/j.1574-695X.2010.00690.x PubMedGoogle Scholar
  17. Hellerud BC, Stenvik J, Espevik T, Lambris JD, Mollnes TE, Brandtzaeg P (2008) Stages of meningococcal sepsis simulated in vitro, with emphasis on complement and toll like receptor activation. Infect Immun 76:4183–4189. doi: 10.1128/IAI.00195-08 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Hoekstra D, Van der Laan JW, De Leij L, Witholt B (1976) Release of outer membrane fragments from normally growing Escherichia coli. Biochim Biophys Acta 455:889–899. doi: 10.1016/0005-2736(76)90058-4 CrossRefPubMedGoogle Scholar
  19. Holst J, Martin D, Arnold R, HuegroC C, Oster P, O’Hallahan J, Rosengyiste E (2009) Properties and clinical performance of vaccines containing outer membrane vesicles from Neisseria meningitides. Vaccine 27:B3–B12. doi: 10.1016/j.vaccine.2009.04.07 CrossRefPubMedGoogle Scholar
  20. Huang SH, Wu CH, Chang YC, Kwin-Chung KJ, Brown RJ, Jong A (2012) Cryptococcus neoformans derived microvesicles enhance the pathogenesis of fungal brain infection. PLoS One 7:e48570. doi: 10.1371/journal.pone.0048570 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju SC, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. doi: 10.4014/jmb.1105.05056 CrossRefPubMedGoogle Scholar
  22. Ismail S, Hampton MB, Keenan JI (2003) Helicobacter pylori outer membrane vesicles modulate proliferation and interleukin-8 production by gastric epithelial cells. Infect Immun 71:5670–5675. doi: 10.1128/IAI.71.10.5670-5675.2003 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Kadurugamuwa JL, Beveridge TJ (1995) Virulence factors are released from Pseudomonas aeruginosa in association with membrane vesicles during normal growth and exposure to gentamicin: a novel mechanism of enzyme secretion. J Bacteriol 177:3998–4008, PMC177130PubMedCentralPubMedGoogle Scholar
  24. Kadurugamuwa JL, Beveridge TJ (1996) Bacteriolytic effect of membrane vesicles from Pseudomonas aeruginosa on other bacteria including pathogens: conceptually new antibiotics. J Bacteriol 178:2764–2774, PMC178010Google Scholar
  25. Kadurugamuwa JL, Beveridge TJ (1999) Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology 145:2051–2060. doi: 10.1099/13500872-145-8-2051 CrossRefPubMedGoogle Scholar
  26. Kahn ME, Maul G, Goodgal SH (1982) Possible mechanism for donor DNA binding and transport in Haemophilus. Proc Natl Acad Sci U S A 79:6370–6374, PMC347123PubMedCentralCrossRefPubMedGoogle Scholar
  27. Kahn ME, Barany F, Smith HO (1983) Transformasomes: specialized membranous structures that protect DNA during Haemophilus transformation. Proc Natl Acad Sci U S A 80:6927–6931, PMID:6316334PubMedCentralCrossRefPubMedGoogle Scholar
  28. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. doi: 10.1016/j.biotechadv.2012.10.004 CrossRefPubMedGoogle Scholar
  29. Kalia VC (2014a) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. doi: 10.1007/s12088-013-0443-7 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kalia VC (2014b) In search of versatile organisms for quorum‐sensing inhibitors: acyl homoserine lactones (AHL)‐acylase and AHL‐lactonase. FEMS Microbiol Lett 359:143. doi: 10.1111/1574-6968.12585 CrossRefPubMedGoogle Scholar
  31. Kalia VC (2015) Microbes: the most friendly beings? In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, pp 1–5. doi: 10.1007/978-81-322-1982-8_1
  32. Kalia VC, Kumar P (2015a) Potential applications of quorum sensing inhibitors in diverse fields. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, pp 359–370. doi: 10.1007/978-81-322-1982-8_29 Google Scholar
  33. Kalia VC, Kumar P (2015b) The battle: quorum-sensing inhibitors versus evolution of bacterial resistance. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, New Delhi, pp 385–391. doi: 10.1007/978-81-322-1982-8_31 Google Scholar
  34. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. doi: 10.3109/1040841X.2010.532479 CrossRefPubMedGoogle Scholar
  35. Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and -lactonase. Open Microbiol J 5:1–13. doi: 10.2174/187428580110501000 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. doi: 10.1007/s00248-013-0316-y PubMedCentralCrossRefPubMedGoogle Scholar
  37. Kalia VC, Kumar P, Pandian SK, Sharma P (2015) Biofouling control by quorum quenching. In: Kim SK (ed) Handbook of marine biotechnology. Springer, pp 431–440. doi: 10.1007/978-3-642-53971-8_15 CrossRefGoogle Scholar
  38. Kesty NC, Mason KM, Reedy M, Miller SE, Kuehn MJ (2004) Enterotoxigenic Escherichia coli vesicles target toxin delivery into mammalian cells. EMBO J 23:4538–4549. doi: 10.1038/sj.emboj.7600471 PubMedCentralCrossRefPubMedGoogle Scholar
  39. Kim OY, Hong BS, Park KS, Yoon YJ, Choi SJ, Lee WH, Roh TY, Lötvall J, Kim YK, Gho YS (2013) Immunization with Escherichia coli outer membrane vesicles protects bacteria-induced lethality via Th1 and Th17 cell responses. J Immunol 190:4092–4102. doi: 10.4049/jimmunol.1200742 CrossRefPubMedGoogle Scholar
  40. Knox KW, Vesk M, Work E (1966) Relation between excreted lipopolysaccharide complexes and surface structures of a lysine- limited culture of Escherichia coli. J Bacteriol 92:1206–1217, PMC276396PubMedCentralPubMedGoogle Scholar
  41. Koul A, Herget T, Klebl B, Ulrich A (2004) Interplay between mycobacteria and host signalling pathways. Nat Rev Microbiol 2:189–202, PMID: 15083155CrossRefPubMedGoogle Scholar
  42. Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and host-pathogen interaction. Genes Dev 19:2645–2655. doi: 10.1101/gad.1299905 CrossRefPubMedGoogle Scholar
  43. Kulkarni HM, Jagannadham MV (2014) Biogenesis and multifaceted roles of outer membrane vesicles from gram negative bacteria. Microbiol 160:2109–2121. doi: 10.1099/mic.0.079400-0 CrossRefGoogle Scholar
  44. Kusebauch U, Ortega C, Ollodart A, Rogers RS, Sherman DR, Moritz RL, Grundner C (2014) Mycobacterium tuberculosis supports protein tyrosine phosphorylation. Proc Natl Acad Sci U S A 111:9265–9270. doi: 10.1073/pnas.1323894111 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Lee EY, Bang JY, Park GW, Choi DS, Kang JS, Kim HJ, Park KS, Lee JO, Kim YK, Kwon KH, Kim KP, Gho YS (2007) Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7:3143–3153, PMID 1778703CrossRefPubMedGoogle Scholar
  46. Lee EY, Choi DY, Kim DK, Kim JW, Park JO, Kim S, Kim SH, Desiderio DM, Kim YK, Kim KP, Gho YS (2009) Gram-positive bacteria produce membrane vesicles: proteomics-based characterization of Staphylococcus aureus-derived membrane vesicles. Proteomics 9:5425–5436. doi: 10.1002/pmic.200900338 CrossRefPubMedGoogle Scholar
  47. Li Z, Clarke AJ, Beveridge TJ (1998) Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J Bacteriol 180:5478–5483, PMC107602PubMedCentralPubMedGoogle Scholar
  48. Loeb MR (1974) Bacteriophage T4-mediated release of envelope components from Escherichia coli. J Virol 13:631––641, PMCID: PMC355348PubMedCentralPubMedGoogle Scholar
  49. Ma L, Conover M, Lu H, Parsek MR, Bayles K, Wozniak DJ (2009) Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog 5:e1000354. doi: 10.1371/journal.ppat.1000354 PubMedCentralCrossRefPubMedGoogle Scholar
  50. MacDonald IA, Kuehn MJ (2013) Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol 195:2971–2981. doi: 10.1128/JB.02267-12 PubMedCentralCrossRefPubMedGoogle Scholar
  51. Mashburn LM, Whiteley M (2005) Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425. doi: 10.1038/nature03925 CrossRefPubMedGoogle Scholar
  52. Mathivanan S, Ji H, Simpson RJ (2010) Exosomes: extracellular organelles important in intercellular communication. J Proteomics 73:1907–1920. doi: 10.1016/j.jprot.2010.06.006 CrossRefPubMedGoogle Scholar
  53. Menard R, Prevost MC, Gounon P, Sansonetti P, Dehio C (1996) The secreted lpa complex of Shigella flexneri promotes entry into mammalian cells. Proc Natl Acad Sci U S A 93:1254–1258PubMedCentralCrossRefPubMedGoogle Scholar
  54. Mirlashari MR, Hoiby EA, Holst J, Lyberg T (2001) Outer membrane vesicles from Neisseria meningitidis: effects on cytokine production in human whole blood. Cytokine 13:91–97, PMID: 11145848CrossRefPubMedGoogle Scholar
  55. Mitra S, Chakrabarti MK, Koley H (2013) Serotype outer membrane vesicles of Shigellae confer passive protection to the neonatal mice against Shigellosis. Vaccine 31:3163–3173. doi: 10.1016/j.vaccine.2013.05.001 CrossRefPubMedGoogle Scholar
  56. Mug-Opstelten D, Witholt B (1978) Preferential release of new outer membrane fragments by exponentially growing Escherichia coli. Biochim Biophys Acta 508:287–295. doi: 10.1016/0005-2736(78)90331-0 CrossRefPubMedGoogle Scholar
  57. Municio AM, Diaz T, Martinez A (1963) The presence of a mucopeptide in the media of an E. coli mutant and its relation to the cell wall. Biochem Biophys Res Commun 11:195–200. doi: 10.1016/0006-291X(63)90333-4 CrossRefGoogle Scholar
  58. Nudleman E, Wall D, Kaiser D (2005) Cell-to-cell transfer of bacterial outer membrane lipoproteins. Science 309:125–127. doi: 10.1126/science.1112440 CrossRefPubMedGoogle Scholar
  59. Oliveira DL, Nakayasu ES, Joffe LS, Guimarães AJ, Sobreira TJ, Nosanchuk JD, Cordero RJ, Frases S, Casadevall A, Almeida IC, Nimrichter L, Rodrigues ML (2010) Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis. PLoS One 5:e11113. doi: 10.1371/journal.pone.0011113 PubMedCentralCrossRefPubMedGoogle Scholar
  60. Palsdottir H, Remis JP, Schaudinn C, O’Toole E, Lux R, Shi W, McDonald KL, Costerton JW, Auer M (2009) Three-dimensional macromolecular organization of cryofixed Myxococcus xanthus biofilms as revealed by electron microscopic tomography. J Bacteriol 191:2077–2082. doi: 10.1128/JB.01333-08 PubMedCentralCrossRefPubMedGoogle Scholar
  61. Parker H, Chitcholtan K, Hampton MB, Keenan JI (2010) Uptake of Helicobacter pylori outer membrane vesicles by gastric epithelial cells. Infect Immun 78:5054–5061. doi: 10.1128/IAI.00299-10 PubMedCentralCrossRefPubMedGoogle Scholar
  62. Pasquevich KA, García Samartino C, Coria LM, Estein SM, Zwerdling A, Ibañez AE, Barrionuevo P, Oliveira FS, Carvalho NB, Borkowski J, Oliveira SC, Warzecha H, Giambartolomei GH, Cassataro J (2010) The protein moiety of Brucella abortus outer membrane protein 16 is a new bacterial pathogen-associated molecular pattern that activates dendritic cells in vivo, induces a Th1 immune response, and is a promising self-adjuvanting vaccine against systemic and oral acquired brucellosis. J Immunol 184:5200–5212. doi: 10.4049/jimmunol.0902209 CrossRefPubMedGoogle Scholar
  63. Pirbadian S, Barchinger SE, Leung KM, Byun HS, Jangir Y, Bouhenni RA, Reed SB, Romine MF, Saffarini DA, Shi L, Gorby YA, Golbeck JH, El-Naggar MY (2014) Shewanella oneidensis MR-1 nanowires are outer membrane and periplasmic extensions of the extracellular electron transport components. Proc Natl Acad Sci U S A 111:12883–12888. doi: 10.1073/pnas.1410551111 PubMedCentralCrossRefPubMedGoogle Scholar
  64. Rath P, Huang C, Wang T, Wang T, Li H, Prados-Rosales R, Elemento O, Casadevall A, Nathan CF (2013) Genetic regulation of vesiculogenesis and immunomodulation in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 110:E4790–E4797. doi:  10.1073/pnas.1320118110 PubMedCentralCrossRefPubMedGoogle Scholar
  65. Renelli M, Martias V, Lo RY, Beveridge TJ (2004) DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology 150:2161–2169. doi: 10.1099/mic.0.26841-0 CrossRefPubMedGoogle Scholar
  66. Rivera J, Cordero RJ, Nakouzi AS, Frases S, Nicola A, Casadevall A (2010) Bacillus anthracis produces membrane-derived vesicles containing biologically active toxins. Proc Natl Acad Sci U S A 107:19002–19007. doi: 10.1073/pnas.1008843107 PubMedCentralCrossRefPubMedGoogle Scholar
  67. Rodrigues ML, Nakayasu ES, Oliveira DL, Nimrichter L, Nosanchuk JD, Almeida IC, Casadevall A (2008) Extracellular vesicles produced by Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell 7:58–67PubMedCentralCrossRefPubMedGoogle Scholar
  68. Sajid A, Arora G, Gupta M, Upadhyay S, Nandicoori VK, Singh Y (2011) Phosphorylation of Mycobacterium tuberculosis Ser/Thr phosphatase by PknA and PknB. PLoS One 6:e17871. doi: 10.1371/journal.pone.0017871 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Schaible UE, Winau F, Sieling PA, Fischer K, Collins HL, Hagens K, Modlin RL, Brinkmann V, Kaufmann SH (2003) Apoptosis facilitates antigen presentation to T lymphocytes through MHC-1 and CD1 in tuberculosis. Nat Med 9:1039–1046. doi: 10.1038/nm906 CrossRefPubMedGoogle Scholar
  70. Schild S, Nelson EJ, Camilli A (2008) Immunization with Vibrio cholerae outer membrane vesicles induces protective immunity in mice. Infect Immun 77:472–484. doi: 10.1128/IAI.01139-08 PubMedCentralCrossRefPubMedGoogle Scholar
  71. Schmidt O, Teis D (2012) The ESCRT machinery. Curr Biol 22:R116–R120. doi: 10.1016/j.cub.2012.01.028 PubMedCentralCrossRefPubMedGoogle Scholar
  72. Schwechheimer C, Kuehn MJ (2013) Synthetic effect between envelope stress and lack of outer membrane vesicle production in Escherichia coli. J Bacteriol 195:4161–4173. doi: 10.1128/JB.02192-12 PubMedCentralCrossRefPubMedGoogle Scholar
  73. Schwechheimer C, Kulp A, Kuehn MJ (2014) Modulation of bacterial outer membrane vesicle production by envelope structure and content. BMC Microbiol 14:324. doi: 10.1186/s12866-014-0324-1 PubMedCentralCrossRefPubMedGoogle Scholar
  74. Silverman JM, Chan SK, Robinson DP, Dwyer DM, Nandan D, Foster LJ, Reiner NE (2008) Proteomic analysis of the secretome of Leishmania donovani. Genome Biol 9:R35. doi: 10.1186/gb-2008-9-2-r35 PubMedCentralCrossRefPubMedGoogle Scholar
  75. Silverman JM, Clos J, de’Oliveira CC, Shirvani O, Fang Y, Wang C, Foster LJ, Reiner NE (2010) An exosome-based secretion pathway is responsible for protein export from Leishmania and communication with macrophages. J Cell Sci 123:842–852. doi: 10.1242/jcs.056465 CrossRefPubMedGoogle Scholar
  76. Thay B, Damm A, Kufer TA, Wai SN, Oscarsson J (2014) Aggregatibacter actinomycetemcomitans outer membrane vesicles are internalized in human host cells and trigger NOD1 and NOD2-dependent NF-κB activation. Infect Immun 82:4034–4046. doi: 10.1128/IAI.01980-14 PubMedCentralCrossRefPubMedGoogle Scholar
  77. Warren LM, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M (2008) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69:491–502. doi: 10.1111/j.1365-2958.2008.06302.x CrossRefGoogle Scholar
  78. Wei X, Pathak DT, Wall D (2011) Heterologous protein transfer within structured myxobacteria biofilms. Mol Microbiol 81:315–326. doi: 10.1111/j.1365-2958.2011.07710 CrossRefPubMedGoogle Scholar
  79. Yonezawa H, Osaki T, Kurata S, Fukuda M, Kawakami H, Ochiai K, Hanawa T, Kamiya S (2009) Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol 9:197. doi: 10.1186/1471-2180-9-197 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Shashank S. Kamble
    • 1
  • Nancy Garg
    • 1
  • Brijendra Kumar Tiwari
    • 1
  • Lalit K. Singh
    • 1
  • Neha Dhasmana
    • 1
  • Yogendra Singh
    • 2
  1. 1.Allergy and Infectious DiseasesCSIR-Institute of Genomics and Integrative BiologyDelhiIndia
  2. 2.Allergy and Infectious DiseasesCSIR-Institute of Genomics and Integrative BiologyDelhiIndia

Personalised recommendations