Photorhabdus: A Microbial Factory of Insect-Killing Toxins

  • Jyoti Kushwah
  • Vishal Singh Somvanshi


The overuse of chemical pesticides to meet the production and productivity goals in modern agriculture is causing a number of unintended side effects and destruction of the environment. Eco-friendly pest management techniques and strategies are urgently needed. Photorhabdus spp. are Gram-negative gamma-proteobacteria of the family Enterobacteriaceae, found exclusively in symbiotic association with nematodes of the genus Heterorhabditis. Heterorhabditis nematodes are widely used as a biological control agent for insect-pests of crops. These nematodes carry the symbiont bacteria in their gut and release them in insect hemocoel upon infection of new insect host. Inside the insect hemocoel, Photorhabdus multiplies and releases a multitude of insecticidal toxins and secondary metabolites resulting in death of the insect by septicemia and toxemia. Some of these toxins are highly specific to their target species, while others are generalists. Stand-alone formulation of Photorhabdus bacteria is reported to be selling well in markets for insect management. Photorhabdus toxins are considered next to Bt toxins in their potential for use in insect-pest management in agriculture.


Yersinia Pestis Binary Toxin Insecticidal Toxin Toxin Complex Nematode Host 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aktories K, Schmidt G, Lang AE (2015) Photorhabdus luminescens toxins TccC3 and TccC5: insecticidal ADP-ribosyltransferases that modify threonine and glutamine. Curr Top Microbiol Immunol 384:53–67. doi: 10.1007/82_2014_382 PubMedGoogle Scholar
  2. Benfarhat-Touzri D, Amira AB, Benkhedher S, Givaudan A, Jaoua S, Tounsi S (2014) Combinatorial effect of Bacillus thuringiensis kurstaki and Photorhabdus luminescens against Spodoptera littoralis (Lepidoptera: Noctuidae). J Basic Microbiol 54:1160–1165. doi: 10.1002/jobm.201300142 CrossRefPubMedGoogle Scholar
  3. Blackburn MB, Martin PA, Kuhar D, Farrar RR Jr, Gundersen-Rindal DE (2011) The occurrence of photorhabdus-like toxin complexes in Bacillus thuringiensis. PLoS One 6, e18122. doi: 10.1371/journal.pone.0018122 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bowen D, Rocheleau TA, Blackburn M, Andreev O, Golubeva E, Bhartia R, ffrench-Constant RH (1998) Insecticidal toxins from the bacterium Photorhabdus luminescens. Science 280:2129–2132. doi: 10.1126/science.280.5372.2129 CrossRefPubMedGoogle Scholar
  5. Bowen DJ, Rocheleau TA, Grutzmacher CK, Meslet L, Valens M, Marble D, Dowling A, ffrench-Constant R, Blight MA (2003) Genetic and biochemical characterization of PrtA, an RTX-like metalloprotease from Photorhabdus. Microbiol 149:1581–1591. doi: 10.1099/mic.0.26171-0
  6. Clarke DJ (2008) Photorhabdus: a model for the analysis of pathogenicity and mutualism. Cell Microbiol 10:2159–2167. doi: 10.1111/j.1462-5822.2008.01209.x CrossRefPubMedGoogle Scholar
  7. Daborn PJ, Waterfield N, Silva CP, Au CP, Sharma S, Ffrench-Constant RH (2002) A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc Natl Acad Sci U S A 99:10742–10747. doi: 10.1073/pnas.102068099 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Dowling AJ, Daborn PJ, Waterfield NR, Wang P, Streuli CH, ffrench-Constant RH (2004) The insecticidal toxin makes caterpillars floppy (Mcf) promotes apoptosis in mammalian cells. Cell Microbiol 6:345–353. doi: 10.1016/S0378-1097(03)00846-2 CrossRefPubMedGoogle Scholar
  9. Dowling AJ, Waterfield NR, Hares MC, Le Goff G, Streuli CH, ffrench-Constant RH (2007) The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain. Cell Microbiol 9:2470–2484. doi: 10.1111/j.1462-5822.2007.00974.x CrossRefPubMedGoogle Scholar
  10. Duchaud E, Rusniok C, Frangeul L, Buchrieser C, Givaudan A, Taourit S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, Dassa E, Derose R, Derzelle S, Freyssinet G, Gaudriault S, Medigue C, Lanois A, Powell K, Siguier P, Vincent R, Wingate V, Zouine M, Glaser P, Boemare N, Danchin A, Kunst F (2003) The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 21:1307–1313. doi: 10.1038/nbt886 CrossRefPubMedGoogle Scholar
  11. ffrench-Constant R, Bowen D (1999) Photorhabdus toxins: novel biological insecticides. Curr Opin Microbiol 2(3):284–288. doi: 10.1016/S1369-5274(99)80049-6 CrossRefPubMedGoogle Scholar
  12. ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:436–451. doi: 10.1016/j.toxicon.2006.11.019 CrossRefPubMedGoogle Scholar
  13. Forst S, Dowds B, Boemare N, Stackebrandt E (1997) Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu Rev Microbiol 51:47–72. doi: 10.1146/annurev.micro.51.1.47 CrossRefPubMedGoogle Scholar
  14. Gatsogiannis C, Lang AE, Meusch D, Pfaumann V, Hofnagel O, Benz R, Aktories K, Raunser S (2013) A syringe-like injection mechanism in Photorhabdus luminescens toxins. Nature 495:520–523. doi: 10.1038/nature11987 CrossRefPubMedGoogle Scholar
  15. Hurst MR, Glare TR, Jackson TA, Ronson CW (2000) Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 182:5127–5138. doi: 10.1128/JB.182.18.5127-5138.2000 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Lacey LA, Shapiro-Ilan DI (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 53:121–144. doi: 10.1146/annurev.ento.53.103106.093419 CrossRefPubMedGoogle Scholar
  17. Meusch D, Gatsogiannis C, Efremov RG, Lang AE, Hofnagel O, Vetter IR, Aktories K, Raunser S (2014) Mechanism of Tc toxin action revealed in molecular detail. Nature 508:61–65. doi: 10.1038/nature13015 CrossRefPubMedGoogle Scholar
  18. Mohan S, Raman R, Gaur HS (2003) Foliar application of Photorhabdus luminescens, symbiotic bacteria from entomopathogenic nematode Heterorhabditis indica, to kill cabbage butterfly Pieris brassicae. Curr Sci 84:1397Google Scholar
  19. Munch A, Stingl L, Jung K, Heermann R (2008) Photorhabdus luminescens genes induced upon insect infection. BMC Genomics 9:229. doi: 10.1186/1471-2164-9-229 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Rodou A, Ankrah DO, Stathopoulos C (2010) Toxins and secretion systems of Photorhabdus luminescens. Toxins 2:1250–1264. doi: 10.3390/toxins2061250 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Somvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim KS, Clardy J, Ciche TA (2012) A single promoter inversion switches Photorhabdus between pathogenic and mutualistic states. Science 337:88–93. doi: 10.1126/science.1216641 PubMedCentralCrossRefPubMedGoogle Scholar
  22. Ullah I, Khan AL, Ali L, Khan AR, Waqas M, Lee IJ, Shin JH (2014) An insecticidal compound produced by an insect-pathogenic bacterium suppresses host defenses through phenoloxidase inhibition. Molecules 19:20913–20928. doi: 10.3390/molecules191220913 CrossRefPubMedGoogle Scholar
  23. Ullah I, Khan AL, Ali L, Khan AR, Waqas M, Hussain J, Lee IJ, Shin JH (2015) Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021. J Microbiol 53:127–133. doi: 10.1007/s12275-015-4632-4 CrossRefPubMedGoogle Scholar
  24. Visschedyk DD, Perieteanu AA, Turgeon ZJ, Fieldhouse RJ, Dawson JF, Merrill AR (2010) Photox, a novel actin-targeting mono-ADP-ribosyltransferase from Photorhabdus luminescens. J Biol Chem 285:13525–13534. doi: 10.1074/jbc.M109.077339 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Volgyi A, Fodor A, Szentirmai A, Forst S (1998) Phase variation in Xenorhabdus nematophilus. Appl Environ Microbiol 64:1188–1193PubMedCentralPubMedGoogle Scholar
  26. Waterfield NR, Daborn PJ, Dowling AJ, Yang G, Hares M, ffrench-Constant RH (2003) The insecticidal toxin makes caterpillars floppy 2 (Mcf2) shows similarity to HrmA, an avirulence protein from a plant pathogen. FEMS Microbiol Lett 229:265–270. doi: 10.1016/S0378-1097(03)00846-2 CrossRefPubMedGoogle Scholar
  27. Waterfield NR, Ciche T, Clarke D (2009) Photorhabdus and a host of hosts. Annu Rev Microbiol 63:557–574. doi: 10.1146/annurev.micro.091208.073507 CrossRefPubMedGoogle Scholar
  28. Wilkinson P, Waterfield NR, Crossman L, Carton C, Sanchez-Contreras M, Vlisidou I, Barron A, Bignell A, Clark L, Ormond D, Mayho M, Banson N, Smith M, Churcher C, Harris D, Thompson NR, Quail M, Parkhill J, ffrench-Constant RH (2009) Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 10:302PubMedCentralCrossRefPubMedGoogle Scholar
  29. Yang G, Dowling AJ, Gerike U, ffrench-Constant RH, Waterfield NR (2006) Photorhabdus virulence cassettes confer injectable insecticidal activity against the wax moth. J Bacteriol 188:2254–2261. doi:10.1128/JB.188.6.2254-2261.2006PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.EPN Genomics Lab, Division of NematologyIndian Agricultural Research Institute (IARI)New DelhiIndia
  2. 2.#314, Division of NematologyICAR-Indian Agricultural Research Institute, Pusa CampusNew DelhiIndia

Personalised recommendations