Advertisement

Microbial CRISPR–Cas System: From Bacterial Immunity to Next-Generation Antimicrobials

  • Alka Mehra

Abstract

Microbes live in multi-microbial communities called microbiome. Discoveries that can help in the regulation of the composition of the microbiome are likely to impact diverse functions of microbes from health, environment, to biotechnology. Antimicrobials offer such regulatory potential and are slowly but surely evolving for the benefit of human health and biotechnology. Antibiotics are the first discovered antimicrobials which are low molecular weight natural microbial products that inhibit the growth of other microbes. However, emergence of microbial resistance to conventional antibiotics has presented an urgent need for novel antimicrobials. Here, we describe another native microbial machinery, CRISPR (“clustered regularly interspaced short palindromic repeats”)–Cas (“CRISPR associated”) system, that confers adaptive immunity to microbes by employing CRISPR RNAs to recognize and destroy complementary nucleic acids of invasive foreign genetic elements. Further, sequence-based targeting by CRISPR–Cas system has been leveraged for the development of sequence-specific novel antimicrobials, genome editing, and genome regulation tools.

Keywords

Horizontal Gene Transfer Genome Editing CRISPR Locus CRISPR System Protospacer Adjacent Motif 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Alka Mehra thanks Dr. V. C. Kalia and Dr. Yogendra Singh of CSIR-Institute of Genomics and Integrative Biology (IGIB) for providing this opportunity.

References

  1. Bae T, Schneewind O (2006) Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55:58–63. doi: 10.1016/j.plasmid.2005.05.005 CrossRefPubMedGoogle Scholar
  2. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. doi: 10.1126/science.1138140 CrossRefPubMedGoogle Scholar
  3. Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res 41:7429–7437. doi: 10.1093/nar/gkt520 PubMedCentralCrossRefPubMedGoogle Scholar
  4. Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA (2014) Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 32:1146–1150. doi: 10.1038/nbt.3043 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561. doi: 10.1099/mic.0.28048-0 CrossRefPubMedGoogle Scholar
  6. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, Dickman MJ, Makarova KS, Koonin EV, van der Oost J (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964. doi: 10.1126/science.1159689 CrossRefPubMedGoogle Scholar
  7. Bult CJ, White O, Olsen GJ, Zhou L, Fleischmann RD, Sutton GG, Blake JA, FitzGerald LM, Clayton RA, Gocayne JD, Kerlavage AR, Dougherty BA, Tomb JF, Adams MD, Reich CI, Overbeek R, Kirkness EF, Weinstock KG, Merrick JM, Glodek A, Scott JL, Geoghagen NS, Venter JC (1996) Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–1073CrossRefPubMedGoogle Scholar
  8. Carte J, Wang R, Li H, Terns RM, Terns MP (2008) Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes. Genes Dev 22:3489–3496. doi: 10.1101/gad.1742908 PubMedCentralCrossRefPubMedGoogle Scholar
  9. Carte J, Pfister NT, Compton MM, Terns RM, Terns MP (2010) Binding and cleavage of CRISPR RNA by Cas6. RNA 16:2181–2188. doi: 10.1261/rna.2230110 PubMedCentralCrossRefPubMedGoogle Scholar
  10. Chylinski K, Le Rhun A, Charpentier E (2013) The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol 10:726–737. doi: 10.4161/rna.24321 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Citorik RJ, Mimee M, Lu TK (2014) Sequence-specific antimicrobials using efficiently delivered RNA-guided nucleases. Nat Biotechnol 32:1141–1145. doi: 10.1038/nbt.3011 PubMedCentralCrossRefPubMedGoogle Scholar
  12. Cong L, Zhou R, Kuo YC, Cunniff M, Zhang F (2012) Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat Commun 3:968. doi: 10.1038/ncomms1962 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823. doi: 10.1126/science.1231143 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Datsenko KA, Pougach K, Tikhonov A, Wanner BL, Severinov K, Semenova E (2012) Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat Commun 3:945. doi: 10.1038/ncomms1937 CrossRefPubMedGoogle Scholar
  15. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433. doi: 10.1128/MMBR.00016-10 PubMedCentralCrossRefPubMedGoogle Scholar
  16. DeLeo FR, Chambers HF (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474. doi: 10.1172/JCI38226 PubMedCentralCrossRefPubMedGoogle Scholar
  17. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607. doi: 10.1172/JCI38226 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Deng L, Garrett RA, Shah SA, Peng X, She Q (2013) A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol Microbiol 87:1088–1099. doi: 10.1111/mmi.12152 CrossRefPubMedGoogle Scholar
  19. Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6, e280. doi: 10.1111/mmi.12152 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Diep BA, Gill SR, Chang RF, Phan TH, Chen JH, Davidson MG, Lin F, Lin J, Carleton HA, Mongodin EF, Sensabaugh GF, Perdreau-Remington F (2006) Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet 367:731–739. doi: 10.1016/S0140-6736(06)68231-7 CrossRefPubMedGoogle Scholar
  21. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71. doi: 10.1038/nature09523 CrossRefPubMedGoogle Scholar
  22. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109:E2579–E2586. doi: 10.1073/pnas.1208507109 PubMedCentralCrossRefPubMedGoogle Scholar
  23. Gesner EM, Schellenberg MJ, Garside EL, George MM, Macmillan AM (2011) Recognition and maturation of effector RNAs in a CRISPR interference pathway. Nat Struct Mol Biol 18:688–692. doi: 10.1038/nsmb.2042 CrossRefPubMedGoogle Scholar
  24. Gomaa AA, Klumpe HE, Luo ML, Selle K, Barrangou R, Beisel CL (2014) Programmable removal of bacterial strains by use of genome-targeting CRISPR-Cas systems. mBio 5:e00928-13. doi: 10.1128/mBio.00928-13 PubMedCentralCrossRefPubMedGoogle Scholar
  25. Grissa I, Vergnaud G, Pourcel C (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinf 8:172. doi: 10.1186/1471-2105-8-172 CrossRefGoogle Scholar
  26. Groenen PM, Bunschoten AE, van Soolingen D, van Embden JD (1993) Nature of DNA polymorphism in the direct repeat cluster of Mycobacterium tuberculosis; application or strain differentiation by a novel typing method. Mol Microbiol 10:1057–1065CrossRefPubMedGoogle Scholar
  27. Haft DH, Selengut J, Mongodin EF, Nelson KE (2005) A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol 1, e60. doi: 10.1371/journal.pcbi.0010060 PubMedCentralCrossRefPubMedGoogle Scholar
  28. Hale C, Kleppe K, Terns RM, Terns MP (2008) Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. RNA 14:2572–2579. doi: 10.1261/rna.1246808 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM, Terns MP (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 13:945–956. doi: 10.1016/j.cell.2009.07.040 CrossRefGoogle Scholar
  30. Hatoum-Aslan A, Maniv I, Marraffini LA (2011) Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site. Proc Natl Acad Sci U S A 10:21218–21222. doi: 10.1073/pnas.1112832108 CrossRefGoogle Scholar
  31. Hoe N, Nakashima K, Grigsby D, Pan X, Dou SJ, Naidich S, Garcia M, Kahn E, Bergmire-Sweat D, Musser JM (1999) Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains. Emerg Infect Dis 5:254–263. doi: 10.3201/eid0502.990210 PubMedCentralCrossRefPubMedGoogle Scholar
  32. Horinouchi S, Weisblum B (1982) Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815–825PubMedCentralPubMedGoogle Scholar
  33. Huisman O, D’Ari R (1981) An inducible DNA replication-cell division coupling mechanism in E. coli. Nature 290:797–799CrossRefPubMedGoogle Scholar
  34. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433PubMedCentralPubMedGoogle Scholar
  35. Jansen R, Embden JD, Gaastra W, Schouls LM (2002a) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575CrossRefPubMedGoogle Scholar
  36. Jansen R, van Embden JD, Gaastra W, Schouls LM (2002b) Identification of a novel family of sequence repeats among prokaryotes. Omics J Int Biol 6:23–33CrossRefGoogle Scholar
  37. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239. doi: 10.1038/nbt.2508 PubMedCentralCrossRefPubMedGoogle Scholar
  38. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. doi: 10.1126/science.1225829 CrossRefPubMedGoogle Scholar
  39. Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ (2011) Structural basis for CRISPR RNA-guided DNA recognition by cascade. Nat Struct Mol Biol 18:529–536. doi: 10.1038/nsmb.2019 CrossRefPubMedGoogle Scholar
  40. Karvelis T, Gasiunas G, Miksys A, Barrangou R, Horvath P, Siksnys V (2013) crRNA and tracrRNA guide Cas9-mediated DNA interference in Streptococcus thermophilus. RNA Biol 10:841–851. doi: 10.4161/rna.24203 PubMedCentralCrossRefPubMedGoogle Scholar
  41. Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4:42. doi: 10.1186/1745-6150-4-42 PubMedCentralCrossRefPubMedGoogle Scholar
  42. Kunin V, Sorek R, Hugenholtz P (2007) Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol 8:R61PubMedCentralCrossRefPubMedGoogle Scholar
  43. Kusano K, Naito T, Handa N, Kobayashi I (1995) Restriction-modification systems as genomic parasites in competition for specific sequences. Proc Natl Acad Sci U S A 92:11095–11099PubMedCentralCrossRefPubMedGoogle Scholar
  44. Lillestol RK, Redder P, Garrett RA, Brugger K (2006) A putative viral defence mechanism in archaeal cells. Archaea 2:59–72. doi: 10.1155/2006/542818 PubMedCentralCrossRefPubMedGoogle Scholar
  45. Lillestol RK, Shah SA, Brugger K, Redder P, Phan H, Christiansen J, Garrett RA (2009) CRISPR families of the crenarchaeal genus Sulfolobus: bidirectional transcription and dynamic properties. Mol Microbiol 72:259–272. doi: 10.1111/j.1365-2958.2009.06641 CrossRefPubMedGoogle Scholar
  46. Lutz R, Bujard H (1997) Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. Nucleic Acids Res 25:1203–1210PubMedCentralCrossRefPubMedGoogle Scholar
  47. Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV (2006) A putative RNA- interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol Direct 1:7. doi: 10.1186/1745-6150-1-7 PubMedCentralCrossRefPubMedGoogle Scholar
  48. Malachowa N, DeLeo FR (2010) Mobile genetic elements of Staphylococcus aureus. Cell Mol Life Sci 67:3057–3071. doi: 10.1007/s00018-010-0389-4 PubMedCentralCrossRefPubMedGoogle Scholar
  49. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826. doi: 10.1126/science.1232033 PubMedCentralCrossRefPubMedGoogle Scholar
  50. Manica A, Zebec Z, Teichmann D, Schleper C (2011) In vivo activity of CRISPR-mediated virus defence in a hyperthermophilic archaeon. Mol Microbiol 80:481–491. doi: 10.1111/j.1365-2958.2011.07586.x CrossRefPubMedGoogle Scholar
  51. Marraffini LA, Sontheimer EJ (2008) CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science 322:1843–1845. doi: 10.1126/science.1165771 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Masepohl B, Gorlitz K, Bohme H (1996) Long tandemly repeated repetitive (LTRR) sequences in the filamentous cyanobacterium Anabaena sp. PCC 7120. Biochim Biophys Acta 1307:26–30CrossRefPubMedGoogle Scholar
  53. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625. doi: 10.1038/nature07008 CrossRefPubMedGoogle Scholar
  54. Mojica FJ, Ferrer C, Juez G, Rodriguez-Valera F (1995) Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning. Mol Microbiol 17:85–93CrossRefPubMedGoogle Scholar
  55. Mojica FJ, Diez-Villasenor C, Soria E, Juez G (2000) Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol 36:244–246CrossRefPubMedGoogle Scholar
  56. Mojica FJ, Diez-Villasenor C, Garcia-Martinez J, Soria E (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182. doi: 10.1007/s00239-004-0046-3 CrossRefPubMedGoogle Scholar
  57. Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36:760–766. doi: 10.1038/ng1381 CrossRefPubMedGoogle Scholar
  58. Nam KH, Haitjema C, Liu X, Ding F, Wang H, DeLisa MP, Ke A (2012) Cas5d protein processes pre-crRNA and assembles into a cascade-like interference complex in subtype I-C/Dvulg CRISPR-Cas system. Structure 20:1574–1584. doi: 10.1016/j.str.2012.06.016 PubMedCentralCrossRefPubMedGoogle Scholar
  59. Nordmann P, Dortet L, Poirel L (2012) Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med 18:263–272. doi: 10.1016/j.molmed.2012.03.003 CrossRefPubMedGoogle Scholar
  60. Paez-Espino D, Morovic W, Sun CL, Thomas BC, Ueda K, Stahl B, Barrangou R, Banfield JF (2013) Strong bias in the bacterial CRISPR elements that confer immunity to phage. Nat Commun 4:1430. doi: 10.1038/ncomms2440 CrossRefPubMedGoogle Scholar
  61. Pul U, Wurm R, Arslan Z, Geissen R, Hofmann N, Wagner R (2010) Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75:1495–1512. doi: 10.1111/j.1365-2958.2010.07073.x CrossRefPubMedGoogle Scholar
  62. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi: 10.1016/j.cell.2013.02.022 PubMedCentralCrossRefPubMedGoogle Scholar
  63. Ramarao N, Nielsen-Leroux C, Lereclus D (2012) The insect Galleria mellonella as a powerful infection model to investigate bacterial pathogenesis. J Visual Exp JoVE: e4392. doi: 10.3791/4392
  64. Sashital DG, Jinek M, Doudna JA (2011) An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat Struct Mol Biol 18:680–687. doi: 10.1038/nsmb.2043 CrossRefPubMedGoogle Scholar
  65. Semenova E, Nagornykh M, Pyatnitskiy M, Artamonova II, Severinov K (2009) Analysis of CRISPR system function in plant pathogen Xanthomonas oryzae. FEMS Microbiol Lett 296:110–116. doi: 10.1111/j.1574-6968.2009.01626.x CrossRefPubMedGoogle Scholar
  66. Sharan SK, Thomason LC, Kuznetsov SG, Court DL (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223. doi: 10.1038/nprot.2008.227 PubMedCentralCrossRefPubMedGoogle Scholar
  67. Sinkunas T, Gasiunas G, Fremaux C, Barrangou R, Horvath P, Siksnys V (2011) Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system. EMBO J 30:1335–1342. doi: 10.1038/emboj.2011.41 PubMedCentralCrossRefPubMedGoogle Scholar
  68. Stern A, Keren L, Wurtzel O, Amitai G, Sorek R (2010) Self-targeting by CRISPR: gene regulation or autoimmunity? Trends Genet 26:335–340. doi: 10.1016/j.tig.2010.05.008 PubMedCentralCrossRefPubMedGoogle Scholar
  69. Sung CK, Li H, Claverys JP, Morrison DA (2001) An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol 67:5190–5196. doi: 10.1128/AEM.67.11.5190-5196.2001 PubMedCentralCrossRefPubMedGoogle Scholar
  70. Swarts DC, Mosterd C, van Passel MW, Brouns SJ (2012) CRISPR interference directs strand specific spacer acquisition. PLoS One 7, e35888PubMedCentralCrossRefPubMedGoogle Scholar
  71. Tang TH, Bachellerie JP, Rozhdestvensky T, Bortolin ML, Huber H, Drungowski M, Elge T, Brosius J, Huttenhofer A (2002) Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci U S A 99:7536–7541. doi: 10.1073/pnas.112047299 PubMedCentralCrossRefPubMedGoogle Scholar
  72. Tang TH, Polacek N, Zywicki M, Huber H, Brugger K, Garrett R, Bachellerie JP, Huttenhofer A (2005) Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus. Mol Microbiol 55:469–481. doi: 10.1111/j.1365-2958.2004.04428.x CrossRefPubMedGoogle Scholar
  73. Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat Rev Microbiol 3:711–721. doi: 10.1038/nrmicro1234 CrossRefPubMedGoogle Scholar
  74. Vercoe RB, Chang JT, Dy RL, Taylor C, Gristwood T, Clulow JS, Richter C, Przybilski R, Pitman AR, Fineran PC (2013) Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9, e1003454. doi: 10.1371/journal.pgen.1003454 PubMedCentralCrossRefPubMedGoogle Scholar
  75. Wang R, Preamplume G, Terns MP, Terns RM, Li H (2011) Interaction of the Cas6 riboendonuclease with CRISPR RNAs: recognition and cleavage. Structure 19:257–264. doi: 10.1016/j.str.2010.11.014 PubMedCentralCrossRefPubMedGoogle Scholar
  76. Westra ER, van Erp PB, Kunne T, Wong SP, Staals RH, Seegers CL, Bollen S, Jore MM, Semenova E, Severinov K, de Vos WM, Dame RT, de Vries R, Brouns SJ, van der Oost J (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46:595–605. doi: 10.1016/j.molcel.2012.03.018 PubMedCentralCrossRefPubMedGoogle Scholar
  77. Yosef I, Goren MG, Kiro R, Edgar R, Qimron U (2011) High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system. Proc Natl Acad Sci U S A 108:20136–20141. doi: 10.1073/pnas.1113519108 PubMedCentralCrossRefPubMedGoogle Scholar
  78. Yosef I, Goren MG, Qimron U (2012) Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli. Nucleic Acids Res 40:5569–5576. doi: 10.1093/nar/gks216 PubMedCentralCrossRefPubMedGoogle Scholar
  79. Zhang F, Cong L, Lodato S, Kosuri S, Church GM, Arlotta P (2011) Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol 29:149–153. doi: 10.1038/nbt.1775 PubMedCentralCrossRefPubMedGoogle Scholar
  80. Zhang J, Rouillon C, Kerou M, Reeks J, Brugger K, Graham S, Reimann J, Cannone G, Liu H, Albers SV, Naismith JH, Spagnolo L, White MF (2012) Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity. Mol Cell 45:303–313. doi: 10.1016/j.molcel.2011.12.013 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Allergy and Infectious DiseasesCSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB)DelhiIndia

Personalised recommendations