Biotechnology Implications of Extremophiles as Life Pioneers and Wellspring of Valuable Biomolecules

  • Ilaria Finore
  • Licia Lama
  • Annarita Poli
  • Paola Di Donato
  • Barbara Nicolaus


Studies on extremophiles, microorganisms able to survive in extreme environments, are very helpful for the comprehension of life evolution; in fact they are the unique organisms of the Earth at the origin of life. They lie into the three domains of life (Archaea, Bacteria, and Eukarya) and can be found in environmental niches on Earth such as in hydrothermal vents and springs, in salty lakes, in halite crystals, in polar ice and lakes, in volcanic areas, in deserts, or under anaerobic conditions. The existence of life forms beyond the Earth requires an extension of the classical limits of life: the resistance of extremophilic organisms to harsh conditions in terms of temperature, salinity, pH, pressure, dryness, and desiccation makes these living organisms good putative candidates to assess the habitability of other planets. The ability to survive and proliferate in extreme conditions (pH, temperature, pressure, salt, and nutrients) produces a variety of biotechnologically useful molecules such as lipids, enzymes, polysaccharides, and compatible solutes that are employed in several industrial processes. There are many extremophilic enzymes and also endogenous compounds that are used with success for food industry, for preparation of the detergents, for pharmacological applications, and also for genetic studies. In particular enzymes that derive from thermophiles, and for this reason called thermozymes, represent an excellent sources of new catalysts of interest in industrial sectors.


Bacillus Licheniformis Ether Lipid Halophilic Archaea Halophilic Microorganism Tetraether Lipid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been implemented in the frame of the project PON01_01966 “Integrated agro-industrial chains with high energy efficiency for the development of eco-compatible processes of energy and biochemicals production from renewable sources and for the land valorization” funded by MIUR.


  1. Akondi KB, Lakshmi VV (2013) Emerging trends in genomic approaches for microbial bioprospecting. OMICS 17:61–70. doi: 10.1089/omi.2012.0082 PubMedCrossRefGoogle Scholar
  2. Albers SV, Konings WN, Driessen AJM (2006) Membranes of thermophiles and other extremophiles. In: Rainey FA, Oren A (eds) Methods in microbiology: extremophiles, vol 35. Elsevier, New York, pp 161–171. doi: 10.1016/S0580-9517(08)70010-2 Google Scholar
  3. Antranikian G, Vorgias CE, Bertoldo C (2005) Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262. doi: 10.1007/b135786 PubMedGoogle Scholar
  4. Archana A, Satyanarayana T (2003) Purification and characterization of a cellulase-free xylanase of a moderate thermophile Bacillus licheniformis A99. World J Microbiol Biotechnol 19:53–57. doi: 10.1023/A:1022527702400 CrossRefGoogle Scholar
  5. Arias S, Del Moral A, Ferrer M, Tallon R, Quesada E, Bejar V (2003) Mauran, an exopolysaccharides produced by the halophilic bacterium Halomonas maura, with a novel composition and interesting properties. Extremophiles 7:319–326. doi: 10.1007/s00792-003-0325-8 PubMedCrossRefGoogle Scholar
  6. Ateş Ö, Toksoy Öner E, Arga KY (2011) Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043. BMC Syst Biol 5:12. doi: 10.1186/1752-0509-5-12 PubMedCentralPubMedCrossRefGoogle Scholar
  7. Ateş Ö, Arga KY, Toksoy Öner E (2013) The stimulatory effect of mannitol on levan biosynthesis: lessons from metabolic systems analysis of Halomonas smyrnensis AAD6(T). Biotechnol Prog 29:1386–1397. doi: 10.1002/btpr.1823 PubMedCrossRefGoogle Scholar
  8. Ayub N, Tribelli P, López N (2009) Polyhydroxyalkanoates are essential for maintenance of redox state in the Antarctic bacterium Pseudomonas sp. 14-3 during low temperature adaptation. Extremophiles 13:59–66. doi: 10.1007/s00792-008-0197-z PubMedCrossRefGoogle Scholar
  9. Berezovsky IN, Shakhnovich EI (2005) Physics and evolution of thermophilic adaptation. Proc Natl Acad Sci U S A 102:12742–12747. doi: 10.1073/pnas.0503890102 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bhat A, Riyaz-Ul-Hassan S, Ahmad N, Srivastava N, Johri S (2013) Isolation of cold-active, acidic endocellulase from Ladakh soil by functional metagenomics. Extremophiles 17:229–239. doi: 10.1007/s00792-012-0510-8 PubMedCrossRefGoogle Scholar
  11. Bhattacharyya A, Saha J, Haldar S, Bhowmic A, Mukhopadhyay U, Mukherjee J (2014) Production of poly-3-(hydroxybutyrate-co-hydroxyvalerate) by Haloferax mediterranei using rice-based ethanol stillage with simultaneous recovery and re-use of medium salts. Extremophiles 18:463–470. doi: 10.1007/s00792-013-0622-9 PubMedCrossRefGoogle Scholar
  12. Biver S, Steels S, Portetelle D, Vandenbol M (2013) Bacillus subtilis as a tool for screening soil metagenomic libraries for antimicrobial activities. J Microbiol Biotechnol 23:850–855. doi: 10.4014/jmb.1212.12008 PubMedCrossRefGoogle Scholar
  13. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321. doi: 10.1016/S0079-6352(99)80123-4 CrossRefGoogle Scholar
  14. Boucher Y (2007) Lipids: biosynthesis, function, and evolution. In: Cavicchioli R (ed) Archaea: molecular and cellular biology. ASM Press, Washington, DC, pp 341–353. ISBN 978-1-55581-391-8CrossRefGoogle Scholar
  15. Bowers KJ, Mesbah NM, Wiegel J (2009) Biodiversity of poly-extremophilic bacteria: does combining the extremes of high salt, alkaline pH and elevated temperature approach a physico-chemical boundary for life? Saline Syst 5:9. doi: 10.1186/1746-1448-5-9p PubMedCentralPubMedCrossRefGoogle Scholar
  16. Canganella F, Wiegel J (2014) Anaerobic thermophiles; thermal ecosystems; extremophiles; deep-sea; taxonomy; biotechnology. Life 4:77–104. doi: 10.3390/life4010077 PubMedCentralPubMedCrossRefGoogle Scholar
  17. Cavicchioli R, Siddiqui KS, Andrews D, Sowers KR (2002) Low-temperature extremophiles and their applications. Curr Opin Biotechnol 13:253–261. doi: 10.1016/S0958-1669(02)00317-8 PubMedCrossRefGoogle Scholar
  18. Cheng J, Pinnell L, Engel K, Neufeld JD, Charles TC (2014) Versatile broad-host-range cosmids for construction of high quality metagenomic libraries. J Microbiol Methods 99:27–34. doi: 10.1016/j.mimet.2014.01.015 PubMedCrossRefGoogle Scholar
  19. Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443. doi: 10.1016/S0958-1669(03)00099-5 PubMedCrossRefGoogle Scholar
  20. Chugunov AO, Volynsky PE, Krylov NA, Boldyrev IA, Efremov RG (2014) Liquid but durable: molecular dynamics simulations explain the unique properties of archaeal-like membranes. Sci Rep 12(4):7462. doi: 10.1038/srep07462 CrossRefGoogle Scholar
  21. Corcelli A (2009) The cardiolipin analogues of Archaea. Biochim Biophys Acta 1788(10):2101–2106. doi: 10.1016/j.bbamem.2009.05.010 PubMedCrossRefGoogle Scholar
  22. Corcelli A, Lobasso S (2006) Characterization of lipids of halophilic Archaea. In: Rainey FA, Oren A (eds) Methods in microbiology: extremophiles. Elsevier, New York, pp 585–613. ISBN 978-0-12-521537-4CrossRefGoogle Scholar
  23. Couto GH, Glogauer A, Faoro H, Chubatsu LS, Souza EM, Pedrosa FO (2010) Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genet Mol Res 9:514–523. doi: 10.4238/vol9-1gmr738 PubMedCrossRefGoogle Scholar
  24. de Carvalho CC, Caramujo MJ (2012) Lipids of prokaryotic origin at the base of marine food webs. Mar Drugs 10:2698–2714. doi: 10.3390/md10122698 PubMedCentralPubMedCrossRefGoogle Scholar
  25. De Rosa M, Gambacorta A, Huber R, Lanzotti V, Nicolaus B, Stetter KO, Trincone A (1989) Microbiology of extreme environments and its potential for biotechnology. In: da Costa MS, Duarte JC, Williams RAD (eds) Springer, New York, pp 167–173. ISBN 978-1-85166-361-3Google Scholar
  26. Deming JW (2002) Psychrophiles and polar regions. Curr Opin Microbiol 5:301–309. doi: 10.1016/S1369-5274(02)00329-6 PubMedCrossRefGoogle Scholar
  27. Demirjian DC, Moris-Varas F, Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5:144–151. doi: 10.1016/S1367-5931(00)00183-6 PubMedCrossRefGoogle Scholar
  28. Dipasquale L, Calandrelli V, Romano I, Nicolaus B, Gambacota A, Lama L (2008) Purification and characterisation of a highly thermostable extracellular protease from Bacillus thermantarcticus, strain M1. Ann Microbiol 58(2):253–259. doi: 10.1007/BF03175325 CrossRefGoogle Scholar
  29. Dipasquale L, Romano I, Picariello G, Calandrelli V, Lama L (2014) Characterization of a native cellulase activity from an anaerobic thermophilic hydrogen-producing bacterium Thermosipho sp., strain 3. Ann Microbiol. doi: 10.1007/s13213-013-0792-9
  30. Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278. doi: 10.1016/S0734-9750(01)00061-1 PubMedCrossRefGoogle Scholar
  31. Ekkers DM, Cretoiu MS, Kielak AM, Elsas JD (2012) The great screen anomaly—a new frontier in product discovery through functional metagenomics. Appl Microbiol Biotechnol 93:1005–1020. doi: 10.1007/s00253-011-3804-3 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes – biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123. doi: 10.1016/j.copbio.2014.04.003 PubMedCrossRefGoogle Scholar
  33. Fenel F, Zitting AJ, Kantelinen A (2006) Increased alkali stability in Trichoderma reesei endo-1, 4-b-xylanase II by site directed mutagenesis. J Biotechnol 121:102–107. doi: 10.1016/j.jbiotec.2005.07.010 PubMedCrossRefGoogle Scholar
  34. Finore I, Kasavi C, Poli A, Romano I, Toksoy Oner E, Kirdar B, Dipasquale L, Nicolaus B, Lama L (2011) Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. Nov. World J Microbiol Biotechnol 27:2425–2433. doi: 10.1007/s11274-011-0715-5 CrossRefGoogle Scholar
  35. Finore I, Di Donato P, Mastascusa V, Nicolaus B, Poli A (2014a) Fermentation technologies for the optimization of marine microbial exopolysaccharide production. Mar Drugs 12:3005–3024. doi: 10.3390/md12053005 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Finore I, Di Donato P, Poli A, Kirdar B, Kasavi C, Oner Toksoy E, Nicolaus B, Lama L (2014b) Use of agro waste biomass for alpha-amylase production by Anoxybacillus amylolyticus. Purification and properties. J Microb Biochem Technol 6:320–326. doi: 10.4172/1948-5948.1000162 Google Scholar
  37. Fu J, Leiros HK, de Pascale D, Johnson KA, Blencke HM, Landfald B (2013) Functional and structural studies of a novel cold-adapted esterase from an Arctic intertidal metagenomic library. Appl Microbiol Biotechnol 97:3965–3978. doi: 10.1007/s00253-012-4276-9 PubMedCrossRefGoogle Scholar
  38. Gabani P, Singh OV (2013) Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl Microbiol Biotechnol 97:993–1004. doi: 10.1007/s00253-012-4642-7 PubMedCrossRefGoogle Scholar
  39. Georlette D, Blaise V, Collins T, D’Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G, Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28:25–42. doi: 10.1016/j.femsre.2003.07.003 PubMedCrossRefGoogle Scholar
  40. Gliozzi A, Rolandi R, de Rosa M, Gambacorta A (1983) Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes. J Membr Biol 75(1):45–56. doi: 10.1007/BF01870798 PubMedCrossRefGoogle Scholar
  41. Gupta GN, Srivastava S, Khare SK, Prakash V (2014) Extremophiles: an overview of microorganism from extreme environment. Int J Agric Environ Biotechnol 7(2):371–380. doi: 10.5958/2230-732X.2014.00258.7 CrossRefGoogle Scholar
  42. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34. doi: 10.1016/S0960-8524(03)00033-6 PubMedCrossRefGoogle Scholar
  43. Hamamoto T, Takata N, Kudo T, Horikoshi K (1999) Characteristic presence of polyunsaturated fatty acids in marine psychrophilic vibrios. FEMS Microbiol Lett 129(1):51–56. doi: 10.1016/0378-1097(95)00134-Q CrossRefGoogle Scholar
  44. Han J, Lu Q, Zhou L, Zhou J, Xiang H (2007) Molecular characterization of the phaECHm genes, required for biosynthesis of poly(3-hydroxybutyrate) in the extremely halophilic archaeon Haloarcula marismortui. Appl Environ Microbiol 73:6058–6065. doi: 10.1128/AEM.00953-07 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Han J, Wu LP, Hou J, Zhao D, Xiang H (2015) Biosynthesis, characterization and hemostasis potential of tailor-made poly(3-hydroxybutyrate-co-3-hydroxyvalerate) produced by Haloferax mediterranei. Biomacromolecules. doi: 10.1021/bm5016267
  46. Hanford MJ, Peeples TL (2002) Archaeal tetraether lipids: unique structures and applications. Appl Biochem Biotechnol 97(1):45–62. doi: 10.1385/ABAB:97:1:45 PubMedCrossRefGoogle Scholar
  47. Hayashi R (1996) Use of high pressure in bioscience and biotechnology. In: Hayashi R, Balny C (eds) High pressure bioscience and biotechnology. Elsevier, New York, pp 1–6. ISBN 0080544614/9780080544618Google Scholar
  48. Hezayen F, Rehm B, Eberhardt R, Steinbüchel A (2000) Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol 54:319–325. doi: 10.1007/s002530000394 PubMedCrossRefGoogle Scholar
  49. Horikoshi K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 6(4):735–750, ISSN: 1098-5557Google Scholar
  50. Hough DW, Danson MJ (1999) Extremozymes. Curr Opin Chem Biol 3:39–46. doi: 10.1016/S1367-5931(99)80008-8 PubMedCrossRefGoogle Scholar
  51. Irwin JA (2010) Extremophiles and their application to veterinary medicine. Environ Technol 31(8-9):857–869. doi: 10.1080/09593330.2010.484073 PubMedCrossRefGoogle Scholar
  52. Irwin JA, Baird AW (2004) Extremophiles and their application to veterinary. Ir Vet J 57(6):348–354. doi: 10.1186/2046-0481-57-6-348 PubMedCentralPubMedCrossRefGoogle Scholar
  53. Jacquemet A, Barbeau J, Lemiègre L, Benvegnu T (2009) Archaeal tetraether bipolar lipids: structures, functions and applications. Biochimie 91(6):711–717. doi: 10.1016/j.biochi.2009.01.006 PubMedCrossRefGoogle Scholar
  54. Jain S, Caforio A, Fodran P, Lolkema JS, Minnaard AJ, Driessen AJM (2014) Identification of CDP-archaeol synthase, a missing link of ether lipid biosynthesis in archaea. Chem Biol 21:1392–1401. doi: 10.1016/j.chembiol.2014.07.022 PubMedCrossRefGoogle Scholar
  55. Jeon JH, Kim JT, Lee HS, Kim SJ, Kang SG, Choi SH, Lee JH (2011) Novel lipolytic enzymes identified from metagenomic library of deep-sea sediment. Evid Based Complement Alternat Med 2011:271419. doi: 10.1155/2011/271419 PubMedCentralPubMedGoogle Scholar
  56. Kaledin A, Sliusarenko A, Gorodetski S (1980) Isolation and properties of DNA polymerase from extreme thermophilic bacteria Thermus aquticus YT-1. Biokhimiia 45:644–651, ISSN: 0006-2979PubMedGoogle Scholar
  57. Kates M (1978) The phytanyl ether-linked polar lipids and isoprenoid neutral lipids of extremely halophilic bacteria. Prog Chem Fats Other Lipids 15(4):301–342. doi: 10.1016/0079-6832(77)90011-8 PubMedCrossRefGoogle Scholar
  58. Kates M, Moldoveanu N, Stewart LC (1993) On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim Biophys Acta 1169(1):46–53. doi: 10.1016/0005-2760(93)90080-S PubMedCrossRefGoogle Scholar
  59. Kim M, Lee KH, Yoon SW, Kim BS, Chun J, Yi H (2013) Analytical tools and databases for metagenomics in the next-generation sequencing era. Genomics Inform 11:102–113. doi: 10.5808/GI.2013.11.3.102 PubMedCentralPubMedCrossRefGoogle Scholar
  60. Klibanov AM (2001) Improving enzymes by using them in organic solvents. Nature 409:241–246. doi: 10.1038/35051719 PubMedCrossRefGoogle Scholar
  61. Knappy CS, Nunn CEM, Morgan HW, Keely BJ (2011) The major lipid cores of the archaeon Ignisphaera aggregans: implications for the phylogeny and biosynthesis of glycerol monoalkyl glycerol tetraether isoprenoid lipids. Extremophiles 15:517–528. doi: 10.1007/s00792-011-0382-3 PubMedCrossRefGoogle Scholar
  62. Koga Y, Morii H (2007) Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol Rev 71:97–120. doi: 10.1128/MMBR.00033-0 PubMedCentralPubMedCrossRefGoogle Scholar
  63. Korkegian A, Black ME, Baker D, Stoddard BL (2005) Computational thermostabilization of an enzyme. Science 308:857–860. doi: 10.1126/science.1107387 PubMedCentralPubMedCrossRefGoogle Scholar
  64. Ksouri R, Ksouri WM, Jallali I, Debez A, Magné C, Hiroko I, Abdelly C (2012) Medicinal halophytes: potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit Rev Biotechnol 32(4):289–326. doi: 10.3109/07388551.2011.630647 PubMedCrossRefGoogle Scholar
  65. Küçükaşik F, Kazak H, Güney D, Finore I, Poli A, Yenigün O, Nicolaus B, Oner E (2010) Molasses as fermentation substrate for levan production by Halomonas sp. Appl Microbiol Biotechnol 89(6):1729–1740. doi: 10.1007/s00253-010-3055-8 PubMedCrossRefGoogle Scholar
  66. Lai MC, Yang DR, Chuang MJ (1999) Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl Environ Microbiol 65(2):828–833, ISSN: 1098-5336PubMedCentralPubMedGoogle Scholar
  67. Lama L, Calandrelli V, Gambacorta A, Nicolaus B (2004) Purification and characterization of thermostable xylanase and β-xylosidase by the thermophilic bacterium Bacillus thermantarcticus. Res Microbiol 155:283–289. doi: 10.1016/j.resmic.2004.02.001 PubMedCrossRefGoogle Scholar
  68. Lama L, Romano I, Calandrelli V, Nicolaus B, Gambacorta A (2005) Purification and characterization of a protease produced by an aerobic haloalkaliphilic species belonging to the Salinivibrio genus. Res Microbiol 156:478–484. doi: 10.1016/j.resmic.2004.12.004 PubMedCrossRefGoogle Scholar
  69. Lama L, Poli A, Nicolaus B (2013) Geobacillus thermantarcticus as source of biotechnological thermozymes and exopolysaccharides: a review. Curr Trends Microbiol 8:1–12, ISSN: 0972-7736Google Scholar
  70. Lama L, Tramice A, Finore I, Anzelmo G, Calandrelli V, Pagnotta E, Tommonaro G, Poli A, Di Donato P, Nicolaus B, Fagnano M, Mori M, Impagliazzo A, Trincone A (2014) Degradative actions of microbial xylanolytic activities on hemicelluloses from rhizome of Arundo donax. AMB Express 4:55. doi: 10.1186/s13568-014-0055-6 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Liebl W, Angelov A, Juergensen J, Chow J, Loeschcke A, Drepper T, Classen T, Pietruzska J, Ehrenreich A, Streit WR, Jaeger KE (2014) Alternative hosts for functional (meta)genome analysis. Appl Microbiol Biotechnol 98:8099–8109. doi: 10.1007/s00253-014-5961-7 PubMedCrossRefGoogle Scholar
  72. Liu SB, Qiao LP, He HL, Zhang Q, Chen XL, Zhou WZ, Zhou BC, Zhang YZ (2011) Optimization of fermentation conditions and rheological properties of exopolysaccharide produced by deep-sea bacterium Zunongwangia profunda SM-A87. PLoS One 6:e26825. doi: 10.1371/journal.pone.0026825 PubMedCentralPubMedCrossRefGoogle Scholar
  73. Llamas L, Amjres H, Mata J, Quesada E, Béjar V (2012) The potential biotechnological applications of the exopolysaccharide produced by the halophilic bacterium Halomonas almeriensis. Molecules 17:7103–7120. doi: 10.3390/molecules17067103 PubMedCrossRefGoogle Scholar
  74. Lloyd JR, Renshaw JC (2005) Bioremediation of radioactive waste: radionuclide–microbe interactions in laboratory and field-scale studies. Curr Opin Biotechnol 16(3):254–260. doi: 10.1016/j.copbio.2005.04.012 PubMedCrossRefGoogle Scholar
  75. Lo Giudice A, Bruni V, De Domenico M, Michaud L (2010) Psychrophiles – cold adapted hydrocarbon – degrading microorganisms in: handbook of hydrocarbon and lipid microbiology, pp 1897–1921. doi: 10.1007/978-3-540-77587-4_139
  76. Lombard J, Ló pez-García P, Moreira D (2012a) The early evolution of lipid membranes and the three domains of life. Nat Rev Microbiol 10:507–515. doi: 10.1038/nrmicro2815 PubMedGoogle Scholar
  77. Lombard J, Ló pez-García P, Moreira D (2012b) Phylogenomic investigation of phospholipid synthesis in archaea. Archaea 630910. doi: 10.1155/2012/630910
  78. MacElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75. doi: 10.1016/0303-2647(74)90026-4 CrossRefGoogle Scholar
  79. Madern D, Ebel C, Zaccai G (2000) Halophilic adaptation of enzymes. Extremophiles 4:91–98. doi: 10.1007/s007920050142 PubMedCrossRefGoogle Scholar
  80. Maida I, Fondi M, Papaleo MC, Perrin E, Orlandini V, Emiliani G, de Pascale D, Parrilli E, Tutino ML, Michaud L, Lo Giudice A, Romoli R, Bartolucci G, Fani R (2014) Phenotypic and genomic characterization of the Antarctic bacterium Gillisia sp. CAL575, a producer of antimicrobial compounds. Extremophiles 18:35–49. doi: 10.1007/s00792-013-0590-0 PubMedCrossRefGoogle Scholar
  81. Manca MC, Lama L, Esposito E, Improta R, Gambacorta A, Nicolaus B (1996) Chemical composition of two exopolysaccharides from Bacillus thermoantarcticus. Appl Environ Microbiol 62(9):3265–3269, ISSN: 1098-5336PubMedCentralPubMedGoogle Scholar
  82. Matsumi R, Atomi H, Driessen AJM, van der Oost J (2011) Isoprenoid biosynthesis in Archaea—biochemical and evolutionary implications. Res Microbiol 162:39–52. doi: 10.1016/j.resmic.2010.10.003 PubMedCrossRefGoogle Scholar
  83. Meister A, Blume A (2007) Self-assembly of bipolar amphiphiles. Curr Opin Colloid Interface Sci 12:138–147. doi: 10.1016/j.cocis.2007.05.003 CrossRefGoogle Scholar
  84. Mesbah NM, Wiegel J (2012) Life under multiple extreme conditions: diversity and physiology of the halophilic alkalithermophiles. Appl Environ Microbiol 78(12):4074. doi: 10.1128/AEM.00050-12 PubMedCentralPubMedCrossRefGoogle Scholar
  85. Muller S, Pfannmoller M, Teuscher N, Heilmann A, Rothe U (2006) New method for surface modification of nanoporous aluminum oxide membranes using tetraether lipid. J Biomed Nanotechnol 2:16–22. doi: 10.1166/jbn.2006.003 CrossRefGoogle Scholar
  86. Nicolas JP (2005) A molecular dynamics study of an archaeal tetraether lipid membrane: comparison with a dipalmitoylphosphatidylcholine lipid bilayer. Lipids 40:1023–1030. doi: 10.1007/s11745-005-1465-2 PubMedCrossRefGoogle Scholar
  87. Nicolaus B, Trincone A, Esposito E, Vaccaro MR, Gambacorta A, De Rosa M (1990) Calditol tetraether lipids of the archaebacterium Sulfolobus solfataricus. Biosynth Stud Biochem J 266:785–791, ISSN Electronic: 1470-8728Google Scholar
  88. Nicolaus B, Trincone A, Lama L, Palmieri G, Gambacorta A (1992) Quinone composition in Sulfolobus solfataricus grown under different conditions. Syst Appl Microbiol 15:18–20. doi: 10.1016/S0723-2020(11)80131-1 CrossRefGoogle Scholar
  89. Nicolaus B, Manca MC, Romano I, Lama L (1993) Production of an exopolysaccharide from two thermophilic archaea belonging to the genus Sulfolobus. FEMS Microbiol Lett 109:203–206. doi: 10.1111/j.1574-6968.1993.tb06168.x CrossRefGoogle Scholar
  90. Nicolaus B, Schiano Moriello V, Lama L, Poli A, Gambacorta A (2004) Polysaccharides from extremophilic microorganisms. Orig Life Evol Biosph 34:159–169. doi: 10.1023/B:ORIG.0000009837.37412.d3 PubMedCrossRefGoogle Scholar
  91. Norris PR, Burton NP, Faulis NAM (2000) Acidophiles in bioreactor mineral processing. Extremophiles 4(2):71–76. doi: 10.1007/s007920050139 PubMedCrossRefGoogle Scholar
  92. Oren A (2006) Life at high salt conditions. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes, a handbook on the biology of bacteria: ecophysiology and biochemistry. Springer, New York, pp 263–282. ISBN 978-0-387-30742-8CrossRefGoogle Scholar
  93. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:8–9. doi: 10.1080/09593330903370026 CrossRefGoogle Scholar
  94. Özdemir S, Kilink E, Nicolaus B, Poli A (2013) Resistance and bioaccumulation of Cd, Cu, Co and Mn by thermophilic bacteria, Bacillus thermantarcticus and Anoxybacillus amylolyticus. World J Microbiol Biotechnol 28(1):155–6363. doi: 10.1007/s13213-013-0598-9 CrossRefGoogle Scholar
  95. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209. doi: 10.1080/10408410701451948 PubMedCrossRefGoogle Scholar
  96. Poli A, Schiano Moriello V, Esposito E, Lama L, Gambacorta A, Nicolaus B (2004) Exopolysaccharide production by a new Halomonas strain CRSS isolated from saline lake Cape Russell in Antarctica growing on complex and defined media. Biotechnol Lett 26:1635–1638. doi: 10.1007/s10529-004-3187-y PubMedCrossRefGoogle Scholar
  97. Poli A, Kazak H, Gurleyendag B, Tommonaro G, Pieretti G, Toksoy Oner E, Nicolaus B (2009) High level synthesis of levan by a novel Halomonas species growing on defined media. Carbohydr Polym 78:651–657. doi: 10.1016/j.carbpol.2009.05.031 CrossRefGoogle Scholar
  98. Poli A, Anzelmo G, Nicolaus B (2010) Bacterial exopolysaccharides from extreme marine habitats: production, characterization and biological activities. Mar Drugs 8:1779–1802. doi: 10.3390/md8061779 PubMedCentralPubMedCrossRefGoogle Scholar
  99. Poli A, Di Donato P, Abbamondi GR, Nicolaus B (2011) Synthesis, production and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Review article in Archaea, Article ID 693253. doi: 10.1155/2011/693253
  100. Qin QL, Zhang XY, Wang XM, Liu GM, Chen XL, Xi BB, Dang HY, Zhou BC, Yu J, Zhang YZ (2010) The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. Genomics 11:247. doi: 10.1186/1471-2164-11-247 PubMedCentralPubMedGoogle Scholar
  101. Raveendran S, Dhandayuthapani B, Nagaoka Y, Yoshida Y, Maekawa T, Kumar D (2013) Biocompatible nanofibers based on extremophilic bacterial polysaccharide, Mauran from Halomonas Maura. Carbohydr Polym 92:1225–1233. doi: 10.1016/j.carbpol.2012.10.033 PubMedCrossRefGoogle Scholar
  102. Reith F (2011) Life in the deep subsurface. Geology 39:287–288. doi: 10.1130/focus032011.1 CrossRefGoogle Scholar
  103. Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101. doi: 10.1038/35059215 PubMedCrossRefGoogle Scholar
  104. Salgaonkar B, Mani K, Braganca J (2013) Accumulation of polyhydroxyalkanoates by halophilic archaea isolated from traditional solar salterns of India. Extremophiles 17:787–795. doi: 10.1007/s00792-013-0561-5 PubMedCrossRefGoogle Scholar
  105. Sellek GA, Chaudhuri JB (1999) Biocatalysis in organic media using enzymes from extremophiles. Enzyme Microb Technol 25:471–48228. doi: 10.1016/S0141-0229(99)00075-7 CrossRefGoogle Scholar
  106. Solbak AI, Richardson TH, McCann RT, Kline KA, Bartnek F, Tomlinson G, Tan X, Parra-Gessert L, Frey GJ, Podar M, Luginbühl P, Gray KA, Mathur EJ, Robertson DE, Burk MJ, Hazlewood GP, Short JM, Kerovuo J (2005) Discovery of pectin-degrading enzymes and directed evolution of a novel pectate lyase for processing cotton fabric. J Biol Chem 11:9431–9438. doi: 10.1074/jbc.M411838200 CrossRefGoogle Scholar
  107. Soto G, Setten L, Lisi C, Maurelis C, Mozzicafreddo M, Cuccioloni M, Angeletti M, Ayub N (2012) Hydroxybutyrate prevents protein aggregation in the halotolerant bacterium Pseudomonas sp. CT13 under abiotic stress. Extremophiles 16:455–462. doi: 10.1007/s00792-012-0445-0 PubMedCrossRefGoogle Scholar
  108. Spanò A, Gugliandolo C, Lentini V, Maugeri T, Anzelmo G, Poli A, Nicolaus B (2013) A novel EPS-producing strain of Bacillus licheniformis isolated from a shallow vent off Panarea Island (Italy). Curr Microbiol 67:21–29. doi: 10.1007/s00284-013-0327-4 PubMedCrossRefGoogle Scholar
  109. Sprott GD (1992) Structures of archaebacterial membrane lipids. J Bioenerg Biomembr 24(6):555–566. doi: 10.1007/BF00762348 PubMedCrossRefGoogle Scholar
  110. van de Vossenberg JL, Driessen AJ, Konings WN (1998) The essence of being extremophilic: the role of the unique archaeal membrane lipids. Extremophiles 2(3):163–170. doi: 10.1007/s007920050056 PubMedCrossRefGoogle Scholar
  111. van den Burg B (2003) Extremophiles as a source for novel enzymes. Curr Opin Microbiol 6:213–218. doi: 10.1016/S1369-5274(03)00060-2 PubMedCrossRefGoogle Scholar
  112. Vester JK, Glaring MA, Stougaard P (2013) Improving diversity in cultures of bacteria from an extreme environment. Can J Microbiol 59:581–586. doi: 10.1139/cjm-2013-0087 PubMedCrossRefGoogle Scholar
  113. Vester JK, Glaring MA, Stougaard P (2014) Discovery of novel enzymes with industrial potential from a cold and alkaline environment by a combination of functional metagenomics and culturing. Microb Cell Fact 13:72. doi: 10.1186/1475-2859-13-72 PubMedCentralPubMedCrossRefGoogle Scholar
  114. Vester JK, Glaring MA, Stougaard P (2015) Improved cultivation and metagenomics as new tools for bioprospecting in cold environments. Extremophiles 19:17–29. doi: 10.1007/s00792-014-0704-3 PubMedCentralPubMedCrossRefGoogle Scholar
  115. Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65:1–43. doi: 10.1128/MMBR.65.1.1-43 PubMedCentralPubMedCrossRefGoogle Scholar
  116. Villanueva L, Damsté JSS, Schouten S (2014) A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nat Rev Microbiol 12:438–448. doi: 10.1038/nrmicro3260 PubMedCrossRefGoogle Scholar
  117. Wei X, Ji Z, Chen S (2010) Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-γ-glutamic acid. Appl Biochem Biotechnol 160:1332–1340. doi: 10.1007/s12010-009-8681 PubMedCrossRefGoogle Scholar
  118. Wiegel J, Kevbrin VV (2004) Alkalithermophiles. Biochem Soc Trans 32:193–198, ISSN Electronic: 1470-8752PubMedCrossRefGoogle Scholar
  119. Woodley JM (2013) Protein engineering of enzymes for process applications. Curr Opin Chem Biol 17:310–316. doi: 10.1016/j.cbpa.2013.03.017 PubMedCrossRefGoogle Scholar
  120. Yamasaki D, Minouchi Y, Ashiuchi M (2010) Extremolyte-like applicability of an archaeal exopolymer, poly-γ-L-glutamate. Environ Technol 31(10):1129–1134. doi: 10.1080/09593331003592279 PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Ilaria Finore
    • 1
  • Licia Lama
    • 1
  • Annarita Poli
    • 1
  • Paola Di Donato
    • 2
    • 3
  • Barbara Nicolaus
    • 1
  1. 1.Council of National Research (C.N.R.)Institute of Biomolecular Chemistry (I.C.B.)Pozzuoli (Na)Italy
  2. 2.Council of National Research (C.N.R.)Institute of Biomolecular Chemistry (I.C.B.)Pozzuoli (Na)Italy
  3. 3.University of Naples ParthenopeNaplesItaly

Personalised recommendations