Synthetic Biology in Aid of Bioactive Molecules

  • Shilpi Jain
  • Swati Shalini


Synthetic biology emerged to understand the basic biological processes by designing the novel metabolic systems. The microorganisms are being engineered for the production of fuel, complex chemical compounds, and potential pharmaceutical drugs by using cheaper substrates. Synthetic biology provides essential components needed for engineering cellular metabolism. The well-characterized gene expression, chemical synthesis of metabolites, computer-aided modeling of desired metabolic pathway, and novel mechanism for biological product formation are the main tools of synthetic biology, which ultimately are used for the production of biomolecules. In this chapter, we will discuss different synthetic biology approaches for the production of various valuable biomolecules.


Synthetic Biology Therapeutic Protein Shikimic Acid Quinic Acid Pathway Engineering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank CSIR-HRDG for the research fellowship granted, Dr. V. C. Kalia for giving us the opportunity to write this chapter and Ms. Neha Dhasmana for inspiration.


  1. Andersen DC, Krummen L (2002) Recombinant protein expression for therapeutic applications. Curr Opin Biotechnol 13:117–123. doi: 10.1016/S0958-1669(02)00300-2 CrossRefPubMedGoogle Scholar
  2. Andrianantoandro E, Basu S, Karig DK, Weiss R (2006) Synthetic biology: new engineering rules for an emerging discipline. Mol Syst Biol 2:0028. doi: 10.1038/msb4100073 CrossRefPubMedGoogle Scholar
  3. Benner SA, Sismour AM (2005) Synthetic biology. Nat Rev Genet 6:533–543. doi: 10.1038/nrg1637 CrossRefPubMedGoogle Scholar
  4. Bochkov DV, Sysolyatin SV, Kalashnikov AI, Surmacheva IA (2011) Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources. J Chem Biol 5:5–17. doi: 10.1007/s12154-011-0064-8 PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814. doi: 10.1021/bp025769p CrossRefPubMedGoogle Scholar
  6. Chotani G, Dodge T, Hsu A, Kumar M, LaDuca R, Trimbur D, Sanford K (2000) The commercial production of chemicals using pathway engineering. Biochim Biophys Acta Protein Struct Mol Enzymol 1543:434–455. doi: 10.1016/S0167-4838(00)00234-X CrossRefGoogle Scholar
  7. Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121:1603–1604CrossRefGoogle Scholar
  8. Gerngross TU (2004) Advances in the production of human therapeutic proteins in yeasts and filamentous fungi. Nat Biotechnol 22(11):1409–1414. doi: 10.1038/nbt1204-1589e CrossRefPubMedGoogle Scholar
  9. Ghosh S, Chisti Y, Banerjee UC (2012) Production of shikimic acid. Biotechnol Adv 30(6):1425–1431. doi: 10.1016/j.biotechadv.2012.03.001 CrossRefPubMedGoogle Scholar
  10. Hale V, Keasling JD, Renninger N, Diagana TT (2007) Microbially derived artemisinin: a biotechnology solution to the global problem of access to affordable antimalarial drugs. Am J Trop Med Hyg 77:198–202PubMedGoogle Scholar
  11. Indumathi C, Durgadevi G, Nithyavani S, Gayathri PK (2014) Estimation of terpenoid content and its antimicrobial property in Enicostemma littorale. Int J ChemTech Res 6(9):4264–4267Google Scholar
  12. Ito H, Sato K, Enei H, Hirose Y (1990) Improvement in microbial production of L-tyrosine by gene dosage effect of aroL gene encoding shikimate kinase. Agric Biol Chem 54(3):823–824. doi: 10.1271/bbb1961.54.823 CrossRefPubMedGoogle Scholar
  13. Jasmine R, Selvakumar B, Daisy P (2011) Investigating the mechanism of action of terpenoids and the effect of interfering substances on an Indian medicinal plant extract demonstrating antibacterial activity. Int J Pharm Stud Res 2:19–24Google Scholar
  14. Johansson L, Lidén G (2006) Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon and phosphate-limited conditions. J Biotechnol 126(4):528–545. doi: 10.1016/j.jbiotec.2006.05.007 CrossRefPubMedGoogle Scholar
  15. Kamionka M (2011) Engineering of therapeutic proteins production in Escherichia coli. Curr Pharm Biotechnol 12:268–274. doi: 10.2174/138920111794295693 PubMedCentralCrossRefPubMedGoogle Scholar
  16. Keasling JD (2008) Synthetic biology for synthetic chemistry. ACS Chem Biol 3(1):64–76. doi: 10.1021/cb7002434 CrossRefPubMedGoogle Scholar
  17. Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379. doi: 10.1038/nrg2775 PubMedCentralCrossRefPubMedGoogle Scholar
  18. Klayman DL (1985) Qinghaosu (artemisinin): an antimalarial drug from China. Science 228(4703):1049–1055. doi: 10.1126/science.3887571 CrossRefPubMedGoogle Scholar
  19. Lei Y, Luo W, Zhu Y (2011) A matching algorithm for catalytic residue site selection in computational enzyme design. Protein Sci 20:1566–1575. doi: 10.1002/pro.685 PubMedCentralCrossRefPubMedGoogle Scholar
  20. Lu JJ, Dang YY, Huang M, Xu WS, Chen XP, Wang YT (2012) Anti-cancer properties of terpenoids isolated from Rhizoma Curcumae – a review. J Ethnopharmacol 143(2):406–411. doi: 10.1016/j.jep.2012.07.009 CrossRefPubMedGoogle Scholar
  21. Martin VJJ, Pitera DJ, Withers ST, Newman JD, Keasling JD (2003) Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol 21(7):796–802. doi: 10.1038/nbt833 CrossRefPubMedGoogle Scholar
  22. Misawa N (2011) Pathway engineering for functional isoprenoids. Curr Opin Biotechnol 22(5):627–633. doi: 10.1016/j.copbio.2011.01.002 CrossRefPubMedGoogle Scholar
  23. Nerem RM (1991) Cellular engineering. Ann Biomed Eng 19:529–545. doi: 10.1007/BF02367396 CrossRefPubMedGoogle Scholar
  24. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–444. doi: 10.1038/nature08817 CrossRefPubMedGoogle Scholar
  25. Nielsen AZ, Ziersen B, Jensen K, Mu L, Olsen CE, Møller BL, Jensen PE (2013) Redirecting photosynthetic reducing power toward bioactive natural product synthesis. J Am Chem Soc Synth Biol. doi: 10.1021/sb400136f Google Scholar
  26. Paddon CJ, Keasling JD (2014) Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development. Nat Rev Microbiol 12:355–367. doi: 10.1038/nrmicro3240 CrossRefPubMedGoogle Scholar
  27. Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10:410–422. doi: 10.1038/nrm2698 CrossRefPubMedGoogle Scholar
  28. Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943. doi: 10.1038/nature04640 CrossRefPubMedGoogle Scholar
  29. Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, Betker J, Baker D (2008) Kemp elimination catalysts by computational enzyme design. Nature 453:190–195. doi: 10.1038/nature06879 CrossRefPubMedGoogle Scholar
  30. Serrano L (2007) Synthetic biology: promises and challenges. Mol Syst Biol. doi: 10.1038/msb4100202 PubMedCentralPubMedGoogle Scholar
  31. Yoshikuni Y, Ferrin TE, Keasling JD (2006) Designed divergent evolution of enzyme function. Nature 440:1078–1082. doi: 10.1038/nature04607 CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.RNA II Laboratory, Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyDelhiIndia
  2. 2.Plant Cell Culture Laboratory, Department of Biochemical Engineering and BiotechnologyIndian Institute of TechnologyDelhiIndia

Personalised recommendations