From Microbial Biopolymers to Bioplastics: Sustainable Additives for PHB Processing and Stabilization

  • Stefania Angelini
  • Pierfrancesco Cerruti
  • Barbara Immirzi
  • Merima Poskovic
  • Gabriella Santagata
  • Gennaro Scarinzi
  • Mario Malinconico


The term biopolymers refers to a broad class of materials that derive from naturally occurring resources. Biopolymers can be obtained through extraction from biomasses, but also through chemical or biotechnological methods from raw natural substrates. They are used to produce bioplastics, which could substitute fossil fuel-derived commodities. Among them, polyhydroxyalkanoates (PHAs) are polyesters synthesized by microorganisms as energy reserve. The most important member of PHA family is poly(3-hydroxybutyrate) (PHB). PHB is mechanically similar to polypropylene, even though its thermal instability, brittleness, and stiffness hinder its applicability. Improving PHB physical properties can be achieved by blending it with natural additives or by-products of industrial processes. This work takes the form of a case study about the effects of three natural, phenol-based, and polysaccharidic compounds on PHB properties. In particular, data on blending of two PHB matrices with a grape pomace extract (EP), a lignocellulosic biomass (LC), and tannic acid (TA) are reported. The preparation and characterization of PHB compounds and the effects of the additives on processing, thermal and photooxidative stability, crystallization rate, and microbial digestion of PHB are also shown. An overall improvement of polymer processability and photostability, along with changes in crystallization rates, was observed. The study provides evidence that natural additives have the potential for promoting the transition from biopolymers to bioplastics in a sustainable way, both from an environmental and economical point of view.


Differential Scanning Calorimetry Tannic Acid Lignocellulosic Biomass Differential Scanning Calorimetry Trace Natural Additive 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to thank the Italian Minister of Research for the financial support (Enerbiochem PON01_01966).


  1. Alvarez VA, Ruseckaite R, Vazquez A (2006) Degradation of sisal fibre/Mater Bi-biocomposites buried in soil. Polym Degrad Stab 91:3156–3162. doi: 10.1016/j.polymdegradstab.2006.07.011 CrossRefGoogle Scholar
  2. Angelini S, Cerruti P, Immirzi B, Santagata G, Scarinzi G, Malinconico M (2014) From biowaste to bioresource: effect of a lignocellulosic filler on the properties of poly(3-hydroxybutyrate). Int J Biol Macromol 71:163–173. doi: 10.1016/j.ijbiomac.2014.07.038 CrossRefPubMedGoogle Scholar
  3. Ariffin H, Nishida H, Shirai Y, Hassan MA (2008) Determination of multiple thermal degradation mechanisms of poly(3-hydroxybutyrate). Polym Degrad Stab 93:1433–1439. doi: 10.1016/j.polymdegradstab.2008.05.020 CrossRefGoogle Scholar
  4. Arza CR, Jannasch P, Johansson P, Magnusson P, Werker A, Maurer FHJ (2014) Effect of additives on the melt rheology and thermal degradation of poly[(R)-3-hydroxybutyric acid]. J Appl Polym Sci 132:41836–41844. doi: 10.1002/app.41836 Google Scholar
  5. Auriemma M, Piscitelli A, Pasquino R, Cerruti P, Malinconico M, Grizzuti N (2015) Blending poly(3-hydroxybutyrate) with tannic acid: influence of a polyphenolic natural additive on the rheological and thermal behaviour. Eur Polym J 63:123–131. doi: 10.1016/j.eurpolymj.2014.12.021 CrossRefGoogle Scholar
  6. Avella M, Martuscelli E (1988) Poly-D(-)(3-hydroxybutyrate)/poly(ethylene oxide) blends: phase diagram, thermal and crystallization behaviour. Polymer 29:1731–1737. doi: 10.1016/0032-3861(88)90384-9 CrossRefGoogle Scholar
  7. Avella M, Martuscelli E, Orsello G, Raimo M (1997) Poly(3-hydroxybutyrate)/poly(methyleneoxide) blends: thermal, crystallization and thermal behaviour. Polymer 38:6135–6143. doi: 10.1016/S0032-3861(97)00166-3 CrossRefGoogle Scholar
  8. Bastioli C (1998) Properties and application of Mater-Bi starch-based material. Polym Degrad Stab 59:263–272. doi: 10.1016/S0141-3910(97)00156-0 CrossRefGoogle Scholar
  9. Boyandin A, Prudnikova S (2012) Biodegradation of polyhydroxyalkanoates by soil microbial communities of different structures and detection of PHA degrading microorganisms. Appl Biochem Microbiol 48:28–36. doi: 10.1134/S0003683812010024 CrossRefGoogle Scholar
  10. Briassoulis D (2007) Analysis of the mechanical and degradation performances of optimised agricultural biodegradable films. Polym Degrad Stab 92:1115–1132. doi: 10.1016/j.polymdegradstab.2007.01.024 CrossRefGoogle Scholar
  11. Buchanan CM, Gedon SC, White AW, Wood MD (1992) Cellulose acetate butyrate and poly(hydroxybutyrate-co-valerate) copolymer blends. Macromolecules 25:7373–7381. doi: 10.1021/ma00052a046 CrossRefGoogle Scholar
  12. Bugnicourt E, Cinelli P, Lazzeri A, Alvarez V (2014) Polyhydroxyalkanoate (PHA): review of synthesis, characteristics, processing and potential applications in packaging. Express Polym Lett 8:791–808. doi: 10.3144/expresspolymlett.2014.82 CrossRefGoogle Scholar
  13. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112. doi: 10.1016/S0141-8130(98)00040-3 CrossRefPubMedGoogle Scholar
  14. Cerruti P, Santagata G, Gomez d'Ayala G, Ambrogi V, Carafagna C, Malinconico M, Persico P (2011) Effects of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Polym Degrad Stab 96:839–846. doi: 10.1016/j.polymdegradstab.2011.02.003 CrossRefGoogle Scholar
  15. Chen C, Fei B, Peng S, Zhuang Y, Dong L, Feng Z (2002) The kinetics of the thermal decomposition of poly(3-hydroxybutyrate) and maleated poly(3-hydroxybutyrate). J Appl Polym Sci 84:1789–1796. doi: 10.1002/app.10463 CrossRefGoogle Scholar
  16. Chen Y, Chou IN, Tsai YH, Wu HS (2013) Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in drying treatment. J Appl Polym Sci 130:3659–3667. doi: 10.1002/app.39616
  17. Chodak I (2002) Polyhydroxyalkanoates: properties and modifications for high volume applications, biodegradable polymers (book). Kluwer, DordrechtGoogle Scholar
  18. Coelho LF, De Lima CJB, Bernardo MP, Alvarez GM, Contiero J (2010) Improvement of L(+) –lactic acid production from cassava wastewater by Lactobacillus rhamnosus B 103. J Sci Food Agric 90:1944–1950. doi: 10.1002/jsfa.4039 PubMedGoogle Scholar
  19. Dawes EA, Senior PJ (1973) The role and regulation of energy reserve polymers in micro-organisms. Adv Microb Physiol 10:135–266. doi:4594739CrossRefPubMedGoogle Scholar
  20. de Koning GJM, Lemstra PJ (1993) Crystallization phenomena in bacterial poly[3-hydroxybutyrate]: 2. Embrittlement and rejuvenation. Polymer 34:4089–4094. doi: 10.1016/0032-3861(93)90671-V CrossRefGoogle Scholar
  21. Dintcheva NT, Jilov N, La Mantia FP (1997) Recycling of plastics from packaging. Polym Degrad Stab 57:191–203. doi: 10.1016/S0141-3910(96)00232-7 CrossRefGoogle Scholar
  22. Dong X, Dong M, Lu Y, Turley A, Jin T, Wu C (2011) Antimicrobial and antioxidant activities of lignin from residue of corn stover to ethanol production. Ind Crop Prod 34:1629–1634. doi: 10.1016/j.indcrop.2011.06.002 CrossRefGoogle Scholar
  23. Dubois M, Gilles DA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for the determination of sugars and related substances. Anal Chem 28:350–356. doi: 10.1021/ac60111a017 CrossRefGoogle Scholar
  24. El-Hadi A, Schnabel R, Straube E, Muller G (2002a) Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) PHAs and their blends. Polym Test 21:665–674. doi: 10.1016/S0142-9418(01)00142-8 CrossRefGoogle Scholar
  25. El-Hadi A, Schnabel R, Straube E, Müller G, Riemschneider M (2002b) Effect of melt processing on crystallization behavior and rheology of poly(3-hydroxybutyrate) (PHB) and its blends. Macromol Mater Eng 287:363–372. doi: 10.1002/1439-2054(20020501)287:5<363::AID-MAME363>3.0.CO;2-D CrossRefGoogle Scholar
  26. Ellis RP, Cochrane MP, Dale MFB, Duþus CM, Lynn A, Morrison IM, Prentice RDM, Swanston JS, Tiller SA (1998) Starch production and industrial use. J Sci Food Agric 77:289–311. doi: 10.1002/(SICI)1097-0010(199807)77:3 CrossRefGoogle Scholar
  27. Felix JM, Gatenholm P (1991) The nature of adhesion in composites of modified cellulose fibers and polypropylene. J Appl Polym Sci 42:609–620. doi: 10.1002/app.1991.070420307 CrossRefGoogle Scholar
  28. Ferreira WH, Carmo MMIB, Silva ALN, Andrade CT (2015) Effect of structure and viscosity of the components on some properties of starch-rich hybrid blends. Carbohydr Polym 117:988–995. doi: 10.1016/j.carbpol.2014.10.018 CrossRefPubMedGoogle Scholar
  29. Garaguso I, Nardini M (2015) Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines. Food Chem 179:336–342. doi: 10.1016/j.foodchem.2015.01.144 CrossRefPubMedGoogle Scholar
  30. Gáspár M, Benkő Z, Dogossy G, Réczey K, Czigány T (2005) Reducing water absorption in compostable starch-based plastics. Polym Degrad Stab 90:563–569. doi: 10.1016/j.polymdegradstab.2005.03.012 CrossRefGoogle Scholar
  31. Gordobil O, Eguès I, Llano-Ponte R, Labidi J (2014) Physicochemical properties of PLA lignin blends. Polym Degrad Stab 108:330–338. doi: 10.1016/j.polymdegradstab.2014.01.002 CrossRefGoogle Scholar
  32. Greco P, Martuscelli E (1989) Crystallization behaviour of poly (ethylene oxide) from poly (3-hydroxybutyrate)/poly (ethylene oxide) blends: phase structuring, morphology and thermal behaviour. Polymer 30:1475–1483. doi: 10.1016/0032-3861(91)90401-4 CrossRefGoogle Scholar
  33. Gunning MA, Geever LM, Killion JA, Lyons JG, Higginbotha CL (2013) Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites. Polym Test 32:1603–1611. doi: 10.1016/j.polymertesting.2013.10.011 CrossRefGoogle Scholar
  34. Guo J, Xu Z (2009) Recycling of non-metallic fractions from waste printed circuit boards: a review. J Hazard Mater 168:567–590. doi: 10.1186/2193-1801-2-521 CrossRefPubMedGoogle Scholar
  35. Guzman-Sielicka A, Janik H, Sielicki P (2013) Proposal of new starch-blends composition quickly degradable in marine environment. J Polym Environ 21:802–806. doi: 10.1007/s10924-012-0558-7 CrossRefGoogle Scholar
  36. Huneault MA, Li H (2007) Morphology and properties of compatibilized polylactide/thermoplastic starch blends. Polymer 48:270–280. doi: 10.1016/j.polymer.2006.11.023 CrossRefGoogle Scholar
  37. Ibrahim NA (2009) Effect of fiber treatment on mechanical properties of kenaf fiber-Ecoflex composites. J Reinf Plast Compos 29:2192–2198. doi: 10.1177/0731684409347592 CrossRefGoogle Scholar
  38. Ikejima T, Inoue Y (2000) Crystallization behaviour and environmental biodegradability of the blend films of poly(3-hydroxybutyric acid) with chitin and chitosan. Carbohydr Polym 41:351–356. doi: 10.1016/S0144-8617(99)00105-8 CrossRefGoogle Scholar
  39. Immirzi B, Malinconico M, Martuscelli E, Volpe MG (1994) Reactive blending of bioaffine polyesters through free-radical processes initiated by organic peroxides. Macromol Symp 78:243–258. doi: 10.1002/masy.19940780121 CrossRefGoogle Scholar
  40. Innocentini-Mei LH, Bartoli JR, Baltieri RC (2003) Mechanical and thermal properties of poly(3-hydroxybutyrate) blends with starch and starch derivatives. Macromol Symp 197:77–87. doi: 10.1002/masy.200350708 CrossRefGoogle Scholar
  41. Kalambar S, Rizvi SSH (2006) An overview of starch-based plastic blends from reactive extrusion. J Plast Film Sheet 22:39–58. doi: 10.1177/8756087906062729 CrossRefGoogle Scholar
  42. Kammerer D, Claus A, Carle R, Schieber A (2004) Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J Agric Food Chem 52:4360–4367. doi: 10.1021/jf049613b CrossRefPubMedGoogle Scholar
  43. Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54(2):165–176. doi: 10.1134/S0965545X1202006X CrossRefGoogle Scholar
  44. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529. doi: 10.1007/s13593 CrossRefGoogle Scholar
  45. Kim BK, Hwang GC, Bae SY, Yi SC, Kumazawa H (2001) Depolymerization of polyethyleneterephthalate in supercritical methanol. J Appl Polym Sci 81:2102–2108. doi: 10.1002/app.1645 CrossRefGoogle Scholar
  46. Kumagai Y, Doi Y (1992) Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxybutyrate) with poly(ε-caprolactone), poly(1,4-butylene adipate) and poly(vinyl acetate). Polym Degrad Stab 36:241–248. doi: 10.1016/0141-3910(92)90062-A CrossRefGoogle Scholar
  47. Larif M, Ouhssine M, Soulaymani A, Elmidaoui A (2013) Potential effluent oil mills and antibacterial activity polyphenols against some pathogenic strains. Res Chem Intermed 41:1213–1225. doi: 10.1007/s11164 CrossRefGoogle Scholar
  48. Law A, Simon L, Lee-Sullivan P (2008) Effects of thermal aging on isotactic polypropylene crystallinity. Polym Eng Sci 48:627–633. doi: 10.1002/pen.20987 CrossRefGoogle Scholar
  49. Lee HW, Cho HJ, Yim JH, Kim JM, Sohn JM, Yoo KS, Kim SS, Jeon JK, Park YK (2011) Removal of Cu(II)-ion over amine-functionalized mesoporous silica materials. J Ind Eng Chem 17:504–509. doi: 10.1016/j.jiec.2010.09.022 CrossRefGoogle Scholar
  50. Li J, Zhu B, He Y, Inoue Y (2003) Thermal and infrared spectroscopic studies on hydrogen-bonding interaction between poly(3-hydroxybutyrate) and catechin. Polym J 35:384–392. doi: 10.1295/polymj.35.384 CrossRefGoogle Scholar
  51. Lopes GKB, Shulman HM, Hermes-Lima M (1999) Polyphenol tannic acid inhibits hydroxyl radical formation from Fenton reaction by complexing ferrous ions. Biochim Biophys Acta 1472:142–152. doi: 10.1016/S0304-4165(99)00117-8 CrossRefPubMedGoogle Scholar
  52. Lotti N, Scandola M (1992) Miscibility of bacterial poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with ester substituted celluloses. Polym Bull 29:407–413. doi: 10.1007/BF00944838 CrossRefGoogle Scholar
  53. Lotti N, Pizzoli M, Ceccorulli G, Scandola M (1993) Binary blends of microbial poly(3-hydroxybutyrate) with polymethacrylates. Polymer 34:4935–4940. doi: 10.1016/0032-3861(93)90022-3 CrossRefGoogle Scholar
  54. Lv S, Cao J, Tan H, Zhang Y (2015) Effect of annealing on the thermal properties of poly(lactic acid)/starch blends. Int J Biol Macromol 74:297–303. doi: 10.1016/j.ijbiomac.2014.12.022 CrossRefPubMedGoogle Scholar
  55. Macedo J de S, Costa MF, Travares MIB, Thirè RMSM (2010) Preparation and characterization of composites based on polyhydroxybutyrate and waste powder from coconut fibers processing. Polym Eng Sci 50:1466–1475. doi: 10.1002/pen.21669
  56. MacGregor EA (2001) Biopolymers. In: Meyers RA (ed) Encyclopedia of physical science and technology, polymers. Academic, New YorkGoogle Scholar
  57. Mahieu A, Terrie C, Agoulon A, Leblanc N, Youssef B (2013) Thermoplastic starch and poly(epsilon-caprolactone) blends: morphology and mechanical properties as a function of relative humidity. J Polym Res 20:229. doi: 10.1007/s10965-013-0229-y CrossRefGoogle Scholar
  58. Marsano E, Vicini S, Skopinska J, Sionkowska A (2004) Chitosan and poly(vinyl pyrrolidone): compatibility and miscibility of blends. Macromol Symp 218:251–260. doi: 10.1002/masy.200451426 Google Scholar
  59. Mekonnen T, Mussone P, Khalil H, Bressler DJ (2013) Progress in bio-based plastics and plasticizing modifications. J Mater Chem 1:13379–13398. doi: 10.1039/C3TA12555F CrossRefGoogle Scholar
  60. Miao M, Li R, Huang C, Jiang B, Zhang T (2015) Impact of β-amylase degradation on properties of sugary maize soluble starch particles. Food Chem 177:1–7. doi: 10.1016/j.foodchem.2014.12.101 CrossRefPubMedGoogle Scholar
  61. Mitra T, Sailakshmi G, Gnanamani A (2014) Could glutaric acid (GA) replace glutaraldehyde in the preparation of biocompatible biopolymers with high mechanical and thermal properties? J Chem Sci 126:127–140. doi: 10.1007/s12039-013-0543-2 CrossRefGoogle Scholar
  62. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26. doi: 10.1023/A:1021013921916 CrossRefGoogle Scholar
  63. Mohee R, Unmar GD, Mudhoo A, Khadoo P (2008) Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions. Waste Manag 28:1624–1629. doi: 10.1016/j.wasman.2007.07.003 CrossRefPubMedGoogle Scholar
  64. Mousavioun P, Doherty WOS, George G (2010) Thermal stability and miscibility of poly(hydroxybutyrate) and soda lignin blends. Ind Crop Prod 34:656–661. doi: 10.1016/j.indcrop.2010.08.001 CrossRefGoogle Scholar
  65. Mousavioun P, George G, Doherty WOS (2012) Environmental degradation of lignin/poly(hydroxybutyrate) blends. Polym Degrad Stab 97:1114–1122. doi: 10.1016/j.polymdegradstab.2012.04.004 CrossRefGoogle Scholar
  66. Niaounakis M (2013) Biopolymers: reuse, recycling, and disposal, PDL handbook series. Willliam Andrew, NorwichGoogle Scholar
  67. Nugraha E, Suyatma AC, Tighzert L, Coma V (2004) Mechanical and barrier properties of biodegradable films made from chitosan and poly (lactic acid) blends. J Polym Environ 12:1–6. doi: 10.1023/B:JOOE.0000003121.12800.4e CrossRefGoogle Scholar
  68. Ortega-Toro R, Jimenez A, Talens P, Chiralt A (2014) Properties of starch-hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydr Polym 109:155–165. doi: 10.1016/j.carbpol.2014.03.059 CrossRefPubMedGoogle Scholar
  69. Pack S, Lewin M, Rafailovich MH (2012) A review of engineering biodegradable polymer blends: morphology, mechanical property, and flame retardancy. ACS Symp Ser 1118:427–443. doi: 10.1021/bk-2012-1118.ch027 CrossRefGoogle Scholar
  70. Paramasivan T, Abdul Kalam APJ (1974) On the study of indigenous natural-fibre composites. Fibre Sci Tech 7:85–88. doi: 10.1016/0015-0568(74)90020-7 CrossRefGoogle Scholar
  71. Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Gross-mann MVE (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108:262–267. doi: 10.1016/j.jfoodeng.2011.09.004 CrossRefGoogle Scholar
  72. Persico P, Ambrogi V, Baroni A, Santagata G, Carfagna C, Malinconico M (2012) Enhancement of poly(3-hydroxybutyrate) thermal and processing stability using a bio-waste derived additive. Int J Biol Macromol 51:1151–1158. doi: 10.1016/j.ijbiomac.2012.08.036 CrossRefPubMedGoogle Scholar
  73. Riggi E, Santagata G, Malinconico M (2011) Bio-based and biodegradable plastics for use in crop production. Recent Pat Food Nutr Agric 3:49–63. doi: 10.2174/2212798411103010049 CrossRefPubMedGoogle Scholar
  74. Rosa DS, Bardi MAG, Machado LDB, Dias DB, Silva LGA, Kodama Y (2009) Starch plasticized with glycerol from biodiesel and polypropylene blends. J Therm Anal Calorim 102:181–186. doi: 10.1007/s10973 CrossRefGoogle Scholar
  75. Rossini G, Toscano G, Duca D, Corinaldesi F, Foppa Pedretti E, Riva G (2013) Analysis of the characteristics of the tomato manufacturing residues finalized to the energy recovery. Biomass Bioenergy 51:177–182. doi: 10.1016/j.biombioe.2013.01.018 CrossRefGoogle Scholar
  76. Sadi RK, Fechine GJM, Demarquette NR (2010) Photodegradation of poly(3-hydroxybutyrate). Polym Degrad Stab 95:2318–2327. doi: 10.1016/j.polymdegradstab.2010.09.003 CrossRefGoogle Scholar
  77. Sahiner N, Sagbas S, Aktas N (2015) Single step natural poly(tannic acid) particle preparation as multitalented biomaterial. Mater Sci Eng C 49:824–834. doi: 10.1016/j.msec.2015.01.076 CrossRefGoogle Scholar
  78. Sarasa J, Gracia JM, Javierre C (2009) Study of the bio disintegration of a bioplastic material waste. Bioresour Technol 100:3764–3768. doi: 10.1016/j.biortech.2008.11.049 CrossRefPubMedGoogle Scholar
  79. Scott G (2000) Green Polymers. Polym Degrad Stab 68:1–7. doi: 10.1016/S0141-3910(99)00182-2 CrossRefGoogle Scholar
  80. Shen L, Haufe J, Patel MK (2009) Product overview and market projection of emerging bio-based plastics. PRO-BIP European Polysaccharide network of Excellence (EPNOE) and European Bioplastics, UtrechtGoogle Scholar
  81. Shogren NR (2009) Starch–poly(hydroxyalkanoate) composites and blends. In: Biodegradable polymer blends and composites from renewable resources. Wiley, Hoboken. doi: 10.1002/9780470391501.ch9 Google Scholar
  82. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36:1254–1276. doi: 10.1016/j.progpolymsci.2011.05.003 CrossRefGoogle Scholar
  83. Stepto RFT (2006) Understanding the processes of thermoplastic starch. Macromol Symp 246–245:571–577. doi: 10.1002/masy.200651382 CrossRefGoogle Scholar
  84. Thunwall M, Kuthanova V, Boldizar A, Rigdahl M (2008) Film blowing of thermoplastic starch. Carbohydr Polym 71:583–590. doi: 10.1016/j.carbpol.2007.07.001 CrossRefGoogle Scholar
  85. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21:433–442. doi: 10.1016/S0142-9418(01)00107-6 CrossRefGoogle Scholar
  86. Vogel C, Morita S, Sato H, Noda I, Ozaki Y, Siesler HW (2007) Thermal degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) in nitrogen and oxygen studied by thermogravimetric-Fourier transform infrared spectroscopy. Appl Spectrosc 61:755–764. doi: 10.1366/000370207781393370 CrossRefPubMedGoogle Scholar
  87. Volova TG, Boyandin AN, Vasiliev AD, Karpov VA, Prudnikova SV, Mishukova OV, Boyarskikh UA, Filipenko ML, Rudnev VP, Xuan BB, Dung VV, Gitelson II (2010) Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria. Polym Degrad Stab 95:2350–2359. doi: 10.1016/j.polymdegradstab.2010.08.023 CrossRefGoogle Scholar
  88. Wang N, Yu J, Ma X (2007) Preparation and characterization of thermoplastic starch/PLA blends by one-step reactive extrusion. Polym Int 56:1440–1447. doi: 10.1002/pi.2302 CrossRefGoogle Scholar
  89. Wang X, Sang L, Luo D, Li X (2011) From collagen–chitosan blends to three-dimensional scaffolds: the influences of chitosan on collagen nanofibrillar structure and mechanical property. Colloids Surf B 82:233–240. doi: 10.1016/j.colsurfb.2010.08.047 CrossRefGoogle Scholar
  90. Weihua K, He Y, Asakawa N, Inoue Y (2004) Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 94:2466–2474. doi: 10.1002/app.21204 CrossRefGoogle Scholar
  91. Wyman CE (1996) Ethanol production from lignocellulosic biomass: overview. In: Handbook on bioethanol: production and utilization. Taylor & Francis, Washington, DCGoogle Scholar
  92. Xia Z, Singh A, Kiratitanavit W, Mosurkal R, Kumarc J, Nagarajan R (2015) Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid. Thermochim Acta 605:78–85. doi: 10.1016/j.tca.2015.02.016 CrossRefGoogle Scholar
  93. Yoon JS, Choi CS, Maing SJ, Choi HJ, Lee H, Choi SJ (1993) Miscibility of poly-d(-)(3-hydroxybutyrate) in poly(ethylene oxide) and poly(methyl methacrylate). Eur Polym J 29:1359–1364. doi: 10.1016/0014-3057(93)90194-K CrossRefGoogle Scholar
  94. Yu L (2009) Starch-poly(hydroxyalkanoate) composite and blends. In: Biodegradable polymer blends and composites from renewable resources. doi:  10.1002/9780470391501.ch9
  95. Zheng B, Lu J, Tong Y, Li H, Chen Q (2015) Isolation and characterization of poly(3-hydroxybutyrate)-producing bacteria from aerobic sludge. Appl Biochem Biotech 175:421–427. doi: 10.1007/s12010-014-1271-x CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Stefania Angelini
    • 1
  • Pierfrancesco Cerruti
    • 1
  • Barbara Immirzi
    • 1
  • Merima Poskovic
    • 2
  • Gabriella Santagata
    • 1
  • Gennaro Scarinzi
    • 1
  • Mario Malinconico
    • 1
  1. 1.Polymer Science, IPCB-Institute for Polymers, Composites and BiomaterialsPozzuoli (NA)Italy
  2. 2.Polymer Science, NovamontNovaraItaly

Personalised recommendations