Advertisement

Biopolymers and Their Application as Biodegradable Plastics

  • Scott Lambert

Abstract

Plastics have gained widespread use because of their plasticity in form and function, and their benefits are wide-ranging. The drawbacks to petrochemical plastics are that they are considered to be biologically inert. This in turn represents a waste management problem, especially for plastic materials with a short use phase. Presently, the development of biodegradable plastics as an alternative to petrochemical plastics is seen as an important waste management option. Polyhydroxyalkanoates (PHAs) are polyesters produced by the bacterial fermentation of sugars and lipids. PHAs have attracted commercial and academic interest because they are considered to be highly biodegradable. One of the most promising areas of application for PHAs is in the production of thin film materials for use as packaging materials. Presently, about 40 % of the plastics produced worldwide are utilised for packaging purposes. The disposable nature of packaging materials makes the use of PHA plastics an attractive alternative. As such PHAs may help to solve some of the waste management issues associated with single-use plastic items.

Keywords

Natural Rubber Packaging Material Life Cycle Analysis Natural Rubber Latex Waste Management Option 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author would like to thank Dr. V. C. Kalia for his critical reading of the manuscript. The author received no financial support for the research, authorship and/or publication of this article.

References

  1. Ahn WS, Park SJ, Lee SY (2000) Production of Poly(3-Hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl Environ Microbiol 66(8):3624–3627PubMedCentralCrossRefPubMedGoogle Scholar
  2. Álvarez-Chávez CR, Edwards S, Moure-Eraso R, Geiser K (2012) Sustainability of bio-based plastics: general comparative analysis and recommendations for improvement. J Cleaner Prod 23(1):47–56, doi:http://dx.doi.org/  10.1016/j.jclepro.2011.10.003 CrossRefGoogle Scholar
  3. Askham C (2012) REACH and LCA—methodological approaches and challenges. Int J Life Cycle Assess 17(1):43–57. doi: 10.1007/s11367-011-0329-z CrossRefGoogle Scholar
  4. Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44(5):509–515, doi:http://dx.doi.org/  10.1016/j.procbio.2009.01.008 CrossRefGoogle Scholar
  5. Chen G-Q, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578, doi:http://dx.doi.org/  10.1016/j.biomaterials.2005.04.036 CrossRefPubMedGoogle Scholar
  6. Cheng H, Hu Y (2010) Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour Technol 101(11):3816–3824CrossRefPubMedGoogle Scholar
  7. Garlotta D (2001) A literature review of Poly(lactic acid). J Polym Environ 9(2):63–84. doi: 10.1023/a:1020200822435 CrossRefGoogle Scholar
  8. Haas R, Jin B, Zepf FT (2008) Production of Poly(3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem 72(1):253–256. doi: 10.1271/bbb.70503 CrossRefPubMedGoogle Scholar
  9. Harding KG, Dennis JS, von Blottnitz H, Harrison STL (2007) Environmental analysis of plastic production processes: comparing petroleum-based polypropylene and polyethylene with biologically-based poly-β-hydroxybutyric acid using life cycle analysis. J Biotechnol 130(1):57–66, doi:http://dx.doi.org/ 10.1016/j.jbiotec.2007.02.012 CrossRefPubMedGoogle Scholar
  10. Jiang Y, Song X, Gong L, Li P, Dai C, Shao W (2008) High poly(β-hydroxybutyrate) production by Pseudo-monas fluorescens A2a5 from inexpensive substrates. Enzym Microb Technol 42:167–172. doi: 10.1016/j.enzmictec.2007.09.003
  11. Kim DY, Kim HW, Chung MG, Rhee YH (2007) Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates. J Microbiol 45(2):87–97PubMedGoogle Scholar
  12. Kim DY, Kim YB, Rhee YH (2000) Evaluation of various carbon substrates for the biosynthesis of polyhydroxyalkanoates bearing functional groups by Pseudomonas putida. Int J Biol Macromol 28(1):23–29CrossRefPubMedGoogle Scholar
  13. Kim EY, Lee JK, Lee WK (2006) Hydrolytic kinetics of langmuir monolayers of enantiorneric poly(lactide)s. Curr Appl Phys 6:735–738. doi:  10.1016/j.cap.2005.04.029 CrossRefGoogle Scholar
  14. Koller M, Bona R, Braunegg G, Hermann C, Horvat P, Kroutil M, Martinz J, Neto J, Pereira L, Varila P (2005) Production of polyhydroxyalkanoates from agricultural waste and surplus materials†. Biomacromolecules 6(2):561–565. doi: 10.1021/bm049478b CrossRefPubMedGoogle Scholar
  15. Koller M, Atlić A, Dias M, Reiterer A, Braunegg G (2010) Microbial PHA production from waste raw materials. In: Chen GG-Q (ed) Plastics from bacteria, vol 14, Microbiology monographs. Springer, Berlin/Heidelberg, pp 85–119. doi: 10.1007/978-3-642-03287-5_5 CrossRefGoogle Scholar
  16. Kulpreecha S, Boonruangthavorn A, Meksiriporn B, Thongchul N (2009) Inexpensive fed-batch cultivation for high poly(3-hydroxybutyrate) production by a new isolate of Bacillus megaterium. J Biosci Bioeng 107(3):240–245CrossRefPubMedGoogle Scholar
  17. Kunioka M, Kawaguchi Y, Doi Y (1989) Production of biodegradable copolymers of 3-hydroxybutyrate and 4-hydroxybutyrate by Alcaligenes-eutrophus. Appl Microbiol Biotechnol 30(6):569–573CrossRefGoogle Scholar
  18. Lambert S, Sinclair CJ, Boxall ABA (2014) Occurrence, degradation and effects of polymer-based materials in the environment. Rev Environ Contam Toxicol 227:1–53. doi: 10.1007/978-3-319-01327-5_1 PubMedGoogle Scholar
  19. Luo S, Netravali AN (2003) A study of physical and mechanical properties of poly(hydroxybutyrate-co-hydroxyvalerate) during composting. Polym Degrad Stab 80(1):59–66. doi: 10.1016/s0141-3910(02)00383-x CrossRefGoogle Scholar
  20. Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63(1):21–53PubMedCentralPubMedGoogle Scholar
  21. Mergaert J, Webb A, Anderson C, Wouters A, Swings J (1993) Microbial-degradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in soils. Appl Environ Microbiol 59(10):3233–3238PubMedCentralPubMedGoogle Scholar
  22. Mergaert J, Wouters A, Anderson C, Swings J (1995) In-situ biodegradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) in natural-waters. Can J Microbiol 41:154–159CrossRefPubMedGoogle Scholar
  23. Mergaert J, Glorieux G, Hauben L, Storms V, Mau M, Swings J (1996) Biodegradation of Poly (3 -hYdroxYalkanoates) in Anaerobic Sludge and Characterization of a Poly (3 -hYdroxYalkanoates) Degrading Anaerobic Bacterium. Systematic and Applied Microbiology 19(3):407–413, doi:http://dx.doi.org/  10.1016/S0723-2020(96)80070-1 CrossRefGoogle Scholar
  24. NRS (2011) Natural rubber statistics 2011. http://www.lgm.gov.my/nrstat/nrstats.pdf. Accessed 30 July 2012
  25. Ohkita T, Lee S-H (2006) Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. Journal of Applied Polymer Science 100 (4):3009–3017. doi: 10.1002/app.23425
  26. Page WJ (1992) Production of polyhydroxyalkanoates by Azotobacter vinelandii UWD in beet molasses culture. FEMS Microbiol Lett 103(2–4):149–157, doi:http://dx.doi.org/  10.1016/0378-1097(92)90304-7 CrossRefGoogle Scholar
  27. Page WJ, Manchak J, Rudy B (1992) Formation of poly(hydroxybutyrate-co-hydroxyvalerate) by Azotobacter vinelandii UWD. Appl Environ Microbiol 58(9):2866–2873PubMedCentralPubMedGoogle Scholar
  28. Peelman N, Ragaert P, De Meulenaer B, Adons D, Peeters R, Cardon L, Van Impe F, Devlieghere F (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32(2):128–141, doi:http://dx.doi.org/  10.1016/j.tifs.2013.06.003 CrossRefGoogle Scholar
  29. Reddy CSK, Ghai R, Rashmi KVC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146CrossRefPubMedGoogle Scholar
  30. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities.Prog Polym Sci 38(10–11):1653–1689. doi: 10.1016/j.progpolymsci.2013.05.006 CrossRefGoogle Scholar
  31. Saad GR, Khalil TM, Sabaa MW (2010) Photo- and bio-degradation of poly(ester-urethane)s films based on poly[(R)-3-Hydroxybutyrate] and poly(epsilon-Caprolactone) blocks. J Polym Res 17(1):33–42CrossRefGoogle Scholar
  32. Sadi RK, Fechine GJM, Demarquette NR (2010) Photodegradation of poly(3-hydroxybutyrate). Polym Degrad Stab 95(12):2318–2327CrossRefGoogle Scholar
  33. Shen L, Haufe J, Patel M (2009) Product overview and market projection of emerging biobased plastics. Report no: NWS-E-2009-32. Universiteit Utrecht, The NetherlandsGoogle Scholar
  34. Shogren RL, Doane WM, Garlotta D, Lawton JW, Willett JL (2003) Biodegradation of starch/polylactic acid/poly(hydroxyester-ether) composite bars in soil. Polym Degrad Stab 79(3):405–411, doi:http://dx.doi.org/  10.1016/S0141-3910(02)00356-7 CrossRefGoogle Scholar
  35. Singh B, Sharma N (2008) Mechanistic implications of plastic degradation. Polym Degrad Stab 93(3):561–584CrossRefGoogle Scholar
  36. Soroudi A, Jakubowicz I (2013) Recycling of bioplastics, their blends and biocomposites: a review. Eur Polym J 49(10):2839–2858, doi:http://dx.doi.org/  10.1016/j.eurpolymj.2013.07.025 CrossRefGoogle Scholar
  37. Tabone MD, Cregg JJ, Beckman EJ, Landis AE (2010) Sustainability metrics: life cycle assessment and green design in polymers. Environ Sci Technol 44(21):8264–8269. doi: 10.1021/es101640n CrossRefPubMedGoogle Scholar
  38. Tokiwa Y, Calabia BP (2006) Biodegradability and biodegradation of poly(lactide). Appl Microbiol Biotechnol 72(2):244–251. doi: 10.1007/s00253-006-0488-1 CrossRefPubMedGoogle Scholar
  39. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10(9):3722–3742. doi: 10.3390/ijms10093722 PubMedCentralCrossRefPubMedGoogle Scholar
  40. Woolnough CA, Charlton T, Yee LH, Sarris M, Foster LJR (2008) Surface changes in polyhydroxyalkanoate films during biodegradation and biofouling. Polym Int 57(9):1042–1051. doi: 10.1002/pi.2444 CrossRefGoogle Scholar
  41. Woolnough CA, Yee LH, Charlton T, Foster LJR (2010) Environmental degradation and biofouling of ‘green’ plastics including short and medium chain length polyhydroxyalkanoates. Polym Int 59(5):658–667. doi: 10.1002/pi.2746 Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Goethe University Frankfurt am MainFrankfurtGermany

Personalised recommendations