Challenges in Preserving Salivary Gland Functions

Part of the Head and Neck Cancer Clinics book series (HNCC)


Challenges in the field of oncology include not only improving success rates of current cancer therapies, but also reducing the morbidity associated with successful treatment modalities. For instance, preserving the function of the salivary glands in patients undergoing radiation for head and neck cancer (HNC) is challenging, but the question is how to achieve this. This chapter explores techniques for preserving salivary gland function in patients undergoing radiation for oral cancers.


Salivary Gland Parotid Gland Salivary Flow Rate Saliva Substitute Salivary Gland Function 


  1. 1.
    Bjordal K, Kaasa S, Mastekaasa A. Quality of life in patients treated for head and neck cancer: A follow-up study 7 to 11 years after radiotherapy. Int J Radiat Oncol Biol Phys 1994;28:847–56.CrossRefPubMedGoogle Scholar
  2. 2.
    Eisbruch A, Kim HM, Terrell JE, et al. Xerostomia and its predictors following parotid-sparing irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys 2001;50:695–704.CrossRefPubMedGoogle Scholar
  3. 3.
    Kaplan MD, Baum BJ. The functions of saliva. Dysphagia 2005;8:225–9.CrossRefGoogle Scholar
  4. 4.
    Bahar G, Feinmesser R, Shpitzer T, et al. Salivary analysis in oral cancer patients: DNA and protein oxidation, reactive nitrogen species, and antioxidant profile. Cancer 2007;109:54–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Ship JA, Hu K. Radiotherapy-induced salivary dysfunction. Semin Oncol 2004;31:29–36.CrossRefPubMedGoogle Scholar
  6. 6.
    Chao KSC, Low D, Perez CA, et al. Intensity-modulated radiation therapy in head and neck cancer: The mallincrodt experience. Int J Cancer 2000;90:92–103.CrossRefPubMedGoogle Scholar
  7. 7.
    Parliament MB, Scrimger RA, Anderson SG, et al. Preservation of oral health-related quality of life and salivary flow rates after inverse-planned intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2004;58:663–73.CrossRefPubMedGoogle Scholar
  8. 8.
    Eisbruch A, Ship JA, Martel MK, et al. Parotid gland sparing in patients undergoing bilateral head and neck irradiation: Techniques and early results. Int J Radiat Oncol Biol Phys 1996;36:469–80.CrossRefPubMedGoogle Scholar
  9. 9.
    Kam MMK, Leung SF, Zee B, et al. Impact of intensity modulated radiotherapy (IMRT) on salivary gland function in early stage nasopharyngeal carcinoma patients: A prospective randomized study. J Clin Oncol 2007;25:4873–9.CrossRefPubMedGoogle Scholar
  10. 10.
    Lee N, Xia P, Quivey JM, et al. Intensity modulated radiotherapy in the treatment of nasopharyngeal carcinoma: An update of the UCSF experience. Int J Radiat Oncol Biol Phys 2002;53:12–22.CrossRefPubMedGoogle Scholar
  11. 11.
    Tabak LA. In defense of the oral cavity: Structure, biosynthesis, and function of salivary mucins. Annual Rev Physiol 1995;57:547–64.CrossRefPubMedGoogle Scholar
  12. 12.
    Liu R, Seikaly H, Jha N. Anatomic study of submandibular gland transfer in an attempt to prevent postradiation xerostomia. J Otolaryngol 2002;31:76–9.CrossRefPubMedGoogle Scholar
  13. 13.
    Heck K. Prevention of radiation induced xerostomia and improved quality of life: submandibular salivary gland transfer. Can J Med Radiat Technol 2003;34:10–16.CrossRefGoogle Scholar
  14. 14.
    Hodges D. Moving salivary glands may prevent dry-mouth. Med Post 2003;39:1–60.Google Scholar
  15. 15.
    Vineberg KA, Eisbruch A, Coselmon MM, et al. Is uniform target dose possible in IMRT plans in the head and neck? Int J Radiat Oncol Biol Phys 2002;52:1159–72.CrossRefPubMedGoogle Scholar
  16. 16.
    Munter MW, Karger CP, Hoffner SG, et al. Evaluation of salivary gland function after treatment of head-and-neck tumors with intensity-modulated radiotherapy by quantitative pertechnetate scintigraphy. Int J Radiat Oncol Biol Phys 2004;58:175–84.CrossRefPubMedGoogle Scholar
  17. 17.
    University of Washington Surgical Outcomes and Research. Copies of the UW-QOL Scale. Available at Accessed March 1, 2005.
  18. 18.
    Bhatnagar A, Deutsch M. The role for intensity modulated radiation therapy (IMRT) in pediatric population. Technol Cancer Res Treat 2006;5:591–6.CrossRefPubMedGoogle Scholar
  19. 19.
    Penagaricano JA, Papanikolaou N, Yan Y, et al. Application of intensity-modulated radiation therapy for pediatric malignancies. Med Dosim 2004;29:247–53.CrossRefPubMedGoogle Scholar
  20. 20.
    Paulino AC, Skwarchuk M. Intensity-modulated radiation therapy in the treatment of children. Med Dosim 2002;27:115–20.CrossRefPubMedGoogle Scholar
  21. 21.
    Teh BS, Mai WY, Grant WH 3rd, et al. Intensity modulated radiotherapy (IMRT) decreases treatment-related morbidity and potentially enhances tumor control. Cancer Invest 2002;20:437–51.CrossRefPubMedGoogle Scholar
  22. 22.
    Rembielak A, Woo TC. Intensity-modulated radiation therapy for the treatment of pediatric cancer patients. Nat Clin Pract Oncol 2005;2:211–17.CrossRefPubMedGoogle Scholar
  23. 23.
    Huang E, Teh BS, Strother DR, et al. Intensity-modulated radiation therapy for pediatric medulloblastoma: Early report on the reduction of ototoxicity. Int J Radiat Oncol Biol Phys 2002;52:599–605.CrossRefPubMedGoogle Scholar
  24. 24.
    Penagaricano JA, Yan Y, Corry P, et al. Retrospective evaluation of pediatric cranio-spinal axis irradiation plans with the Hi-ART tomotherapy system. Technol Cancer Res Treat 2007;6:355–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Jain N, Krull KR, Brouwers P, et al. Neuropsychological outcome following intensity-modulated radiation therapy for pediatric medulloblastoma. Pediatr Blood Cancer 2008;51:275–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Krasin MJ, Crawford BT, Zhu Y, et al. Intensity-modulated radiation therapy for children with intraocular retinoblastoma: Potential sparing of the bony orbit. Clin Oncol (R Coll Radiol) 2004;16:215–22.CrossRefGoogle Scholar
  27. 27.
    Schroeder TM, Chintagumpala M, Okcu MF, et al. Intensity-modulated radiation therapy in childhood ependymoma. Int J Radiat Oncol Biol Phys 2008;71:987–93.CrossRefPubMedGoogle Scholar
  28. 28.
    Jha N, Seikaly H, Harris J, et al. Prevention of radiation induced xerostomia by surgical transfer of submandibular salivary gland into the submental space. Radiother Oncol 2003;66:283–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Jha N, Seikaly H, Jacobs JR, et al. A phase II study of submandibular salivary gland transfer to the submental space prior to start of radiation treatment for prevention of radiation-induced xerostomia in head and neck cancer patients: RTOG 0244. Philadelphia: Radiation Therapy Oncology Group, American College of Radiology; 2003.Google Scholar
  30. 30.
    Seikaly H, Jha N, McGaw T, et al. Submandibular gland transfer: A new method of preventing radiation induced xerostomia. Laryngoscope 2001;111:347–52.CrossRefPubMedGoogle Scholar
  31. 31.
    Suntharalingam M, Jaboin J, Taylor R, et al. The evaluation of amifostine for mucosal protection in patients with advanced loco-regional squamous cell carcinomas of the head and neck (SCCHN) treated with concurrent weekly carboplatin, paclitaxel, and daily radiotherapy (RT). Semin Oncol 2004;31:2–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Brizel DM, Wasserman TH, Henke M, et al. Phase III randomized trial of amifostine as a radioprotector in head and neck cancer. J Clin Oncol 2000;18:3339–45.PubMedGoogle Scholar
  33. 33.
    Capizzi RL. The preclinical basis for broad-spectrum selective cytoprotection of normal tissues from cytotoxic therapies by amifostine. Semin Oncol 1999;26:3–21.PubMedGoogle Scholar
  34. 34.
    Korst AE, Sterre MLV, Gall HE, et al. Influence of amifostine on the pharmacokinetics of cisplatinum in cancer patients. Clin Cancer Res 1998;4:331–6.PubMedGoogle Scholar
  35. 35.
    Koukourakis MI, Kyrias G, Kakolyris S, et al. Subcutaneous administration of amifostine during fractionated radiotherapy: A randomized phase II study. J Clin Oncol 2000;18:2226–33.PubMedGoogle Scholar
  36. 36.
    Koukourakis MI. Subcutaneous injection of Ethyol: An alternative route of administration, in Abstract Book of a Satellite Symposium: Advances in Radiation Oncology. Presented at the 19th Annual Meeting of the European Society for Therapeutic Radiology and Oncology, Istanbul, Turkey, 2000 (abstr).Google Scholar
  37. 37.
    Hamlar DD, Schuller DE, Gahbauer RA, et al. Determination of the efficacy of topical oral pilocarpine for postirradiation xerostomia in patients with head and neck carcinoma [1994 annual meeting paper]. Laryngoscope 1996;106:972–6.CrossRefPubMedGoogle Scholar
  38. 38.
    Johnson JT, Ferretti GA, Nethery WJ, et al. Oral pilocarpine for post-irradiation xerostomia in patients with head and neck cancer. N Engl J Med 1993;329:390–5.CrossRefPubMedGoogle Scholar
  39. 39.
    Horiot JC, Lipinski F, Schraub S, et al. Post-radiation severe xerostomia relieved by pilocarpine: A prospective French cooperative study. Radiother Oncol 2000;55:233–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Warde P, O’Sullivan B, Aslandis J, et al. A phase III placebo-controlled trial of oral pilocarpine in patients undergoing radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2002;54:9–13.CrossRefPubMedGoogle Scholar
  41. 41.
    Zimmerman RP, Mark RJ, Tran LM, et al. Concomitant pilocarpine during head and neck irradiation is associated with decreased posttreatment xerostomia. Int J Radiat Oncol Biol Phy 1997;37:571–5.CrossRefGoogle Scholar
  42. 42.
    Petrone, D, Condemi JJ, Fife R, et al. A double-blind, randomized, placebo-controlled study of cevimeline in Sjögren’s syndrome patients with xerostomia and keratoconjunctivitis sicca. Arthritis Rheum 2002;46:748–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Guggenheimer J, Moore PA. Xerostomia: Etiology, recognition and treatment. JADA 2003;134:61–9.PubMedGoogle Scholar
  44. 44.
    Fife RS, Chase WF, Dore RK, et al. Cevimeline for the treatment of xerostomia in patients with Sjogren syndrome: A randomized trial. Arch Intern Med 2002;162:1293–300.CrossRefPubMedGoogle Scholar
  45. 45.
    Nieuw Amerongen AV, Veerman EC. Current therapies for xerostomia and salivary gland hypofunction associated with cancer thera pies. Support Care Cancer 2003;11:226–31.PubMedGoogle Scholar
  46. 46.
    Porter SR, Scully C, Hegarty AM. An update of the etiology and management of xerostomia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:28–46.CrossRefPubMedGoogle Scholar
  47. 47.
    Markovic N, Abelson DC, Mandel ID. Sorbitol gum in xerostomics: The effect on dental plaque pH and salivary flow rates. Gerodontology 1998;7:71–5.CrossRefGoogle Scholar
  48. 48.
    Rhodus NL, Brown J. The association of xerostomia and inadequate intake in older adults. J Am Diet Assoc 1990;90:1688–92.PubMedGoogle Scholar
  49. 49.
    Van Der Reijden WA, Vissink A, Veerman ECI, et al. Treatment of oral dryness related complaints (xerostomia) in Sjögren’s syndrome. Ann Rheum Dis 1999;58:465–73.PubMedCentralCrossRefPubMedGoogle Scholar
  50. 50.
    Shahdad S, Taylor C, Barclay S, et al. A double-blind, crossover study of Biotène Oralbalance and BioXtra systems as salivary substitutes in patients with post-radiotherapy xerostomia. Eur J Cancer Care (Engl) 2005;14:319–26.CrossRefGoogle Scholar
  51. 51.
    Sreebny LM, Schwartz SS. A reference guide to drugs and dry mouth. 2nd ed. Gerodontology 1997;14:33–47.CrossRefPubMedGoogle Scholar
  52. 52.
    Pray WS. Consult your pharmacist. Help for patients with dry mouth. US Pharmacist 2000;25:16–22.Google Scholar
  53. 53.
    Epstein JB, Emerton S, Le ND, et al. A double-blind crossover trial of oral balance gel and biotene toothpaste versus placebo in patients with xerostomia following radiation therapy. Oral Oncol 1999;35:132–7.CrossRefPubMedGoogle Scholar
  54. 54.
    Dirix P, Nuyts S, Vander Poorten V, et al. Efficacy of the BioXtra dry mouth care system in the treatment of radiotherapy-induced xerostomia. Support Care Cancer 2007;15:1429–36.CrossRefPubMedGoogle Scholar
  55. 55.
    Dyke S. Clinical management and review of Sjögren’s syndrome. Int J Pharm Compound 2000;4:338–41.Google Scholar
  56. 56.
    Ukai Y, Taniguchi N, Takeshita K, et al. Enhancement of salivary secretion by chronic anethole trithione treatment. Arch Int Pharmacodyn Ther 1988;294:248–58.PubMedGoogle Scholar
  57. 57.
    Hamada T, Nakane T, Kimura T, et al. Treatment of xerostomia with the bile secretion-stimulant drug anethole trithione: A clinical trial. Am J Med Sci 1999;318:146–51.CrossRefPubMedGoogle Scholar
  58. 58.
    DRUGDEXÒ Editorial Staff. Yohimbine therapy of xerostomia (Drug Consult). In: Hutchison TA, Shahan DR, Anderson ML (eds). DRUGDEXÒ System. MICROMEDEX, Inc., Englewood (CO), edition expires 3/31/01.Google Scholar
  59. 59.
    Bagheri H, Schmitt L, Berlan M, et al. A comparative study of the effects of yohimbine and anetholtrithione on salivary secretion in depressed patients treated with psychotropic drugs. Eur J Clin Pharmacol 1997;52:339–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Aass N, DeMoulder PH, Mickisch GH et al. Randomized phase II/III trial of interferon alpha 2A with and without 13 cisretinoic acidin patients with renal cell cancer EORTC (30951). J Clin Oncol 2005;23:4172–8.CrossRefPubMedGoogle Scholar
  61. 61.
    Yamada S, Mori K, Matsuo K, et al. Interferon alfa treatment for Sjogren’s syndrome associated neuropathy. J Neurol Neurosurg Psychiatry 2005;76:576–8.PubMedCentralCrossRefPubMedGoogle Scholar
  62. 62.
    La Vecchia C. Mouthwash and oral cancer risk. Oral Oncology 2009;45:198–200.CrossRefPubMedGoogle Scholar
  63. 63.
    Johnstone PAS, Riffenburgh RH, Niemtzow RC. Acupuncture for xerostomia: Clinical update. Cancer 2002;94:1151–6.CrossRefPubMedGoogle Scholar
  64. 64.
    Blom M, Davidson I, Fernberg JO, et al. Acupuncture treatment of patients with radiation-induced xerostomia. Eur J Cancer B Oral Oncol 1996;32B:182–90.CrossRefPubMedGoogle Scholar
  65. 65.
    Blom M, Lundeberg T. Long-term follow-up of patients treated with acupuncture for xerostomia and the influence of additional treatment. Oral Dis 2000;6:15–24.CrossRefPubMedGoogle Scholar
  66. 66.
    Thomson WM, Williams SM. Further testing of the xerostomia inventory. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2000;89:46–50.CrossRefPubMedGoogle Scholar
  67. 67.
    Thomson WM, Chalmers JM, Spencer AJ, et al. The Xerostomia Inventory: A multiitem approach to measuring dry mouth. Community Dent Health 1999;16:12–17.PubMedGoogle Scholar
  68. 68.
    Johnstone PAS, Peng YP, May BC, et al. Acupuncture for pilocarpine-resistant xerostomia following radiotherapy for head and neck malignancies. Int J Radiat Oncol Biol Phys 2001;50:353–7.CrossRefPubMedGoogle Scholar
  69. 69.
    Cheng Xinnong. Chinese acupuncture and moxibustion (3rd ed. 2010). Foreign Language Press. China International Publishing Group, 24 Baiwanzhuang Str., Xicheng District, Beijing 100037, China.Google Scholar
  70. 70.
    Fargas-Babjak AM, Pomeranz B, Rooney PJ. Acupuncture-like stimulation with codetron for rehabilitation of patients with chronic pain syndrome and osteoarthritis. Acupunct Electrother Res 1992;17:95–105.PubMedGoogle Scholar
  71. 71.
    Wong RKW, Jones GE, Sagar SM, et al. A phase I-II study in the use of acupuncture like transcutaneous nerve stimulation in the treatment of radiation-induced xerostomia in head-and-neck cancer patients treated with radical radiotherapy. Int J Radiat Oncol Biol Phys 2003;57:472–80.CrossRefPubMedGoogle Scholar
  72. 72.
    Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. Auton Neurosci 2007;133:3–18.CrossRefPubMedGoogle Scholar
  73. 73.
    Murakami T, Ishizuka K, Uchiyama M. Convergence of excitatory inputs from the chorda tympani, glossopharyngeal and vagus nerves onto superior salivatory nucleus neurons in the cat Original Research Article. Neuroscience Letters 1989;105:96–100.CrossRefPubMedGoogle Scholar
  74. 74.
    Fox RI, Konttinen Y, Fisher A. Use of muscarinic agonists in the treatment of Sjögren’s syndrome. Clin Immunol 2001;101:249–63.CrossRefPubMedGoogle Scholar
  75. 75.
    Jonsson R, Gordon TP, Konttinen YT. Recent advances in understanding molecular mechanisms in the pathogenesis and antibody profile of Sjögren’s syndrome. Curr Rheumatol Rep 2003;5:311–16.CrossRefPubMedGoogle Scholar
  76. 76.
    Izumi H, Karita K. Low-frequency subthreshold sympathetic stimulation augments maximal reflex parasympathetic salivary secretion in cats. Am J Physiol 1995;268:R1188–95.PubMedGoogle Scholar
  77. 77.
    Schneyer CA, Hall HD. Comparison of rat saliva’s evoked by auriculo-temporal and pilocarpine stimulation. Am J Physiol 1965;209:484–8.PubMedGoogle Scholar
  78. 78.
    Steller M, Chou L, Daniels TE. Electrical stimulation of salivary flow on patients with Sjogren’s syndrome. J Dent Res 1988;67:1334–7.CrossRefPubMedGoogle Scholar
  79. 79.
    Schneyer CA, Humphreys-Beher MG, Hall HD, et al. Mitogenic activity of rat salivary glands after electrical stimulation of parasympathetic nerves. Am J Physiol 1993;264:G935–8.PubMedGoogle Scholar
  80. 80.
    Talal N, Quinn JH, Daniels TE. The clinical effects of electrostimulation on salivary function of Sjogren’s syndrome patients. A placebo controlled study. Rheumatol Int 1992;12:43–5.CrossRefPubMedGoogle Scholar
  81. 81.
    Clinical trial titled ‘Evaluation of an Electro-Stimulator for the Treatment of Xerostomia (GenNarino)’, Identifier: NCT00509808. [Cited 2008 April 21].Google Scholar
  82. 82.
    Strietzel FP, Martín-Granizo R, Fedele S, et al. Electro-stimulating device in the management of xerostomia. Oral Dis 2007;13:206–13.CrossRefPubMedGoogle Scholar
  83. 83.
    Saliwell Ltd, Wolff A. Evaluation of an electro-stimulator for the treatment of Xerostomia (GenNarino). June 21, 2010. Identifier: NCT00509808.Google Scholar
  84. 84.
    Ami S, Wolff A. Implant-supported electrostimulating device to treat xerostomia: A preliminary study. Clin Implant Dent Relat Res 2010;12:62–71. Epub 2009 Aug 9.CrossRefPubMedGoogle Scholar
  85. 85.
    Fedele S, Wolff A, Strietzel F, et al. Neuro-electro-stimulation in treatment of hypo salivation and Xerostomia in Sjögren. J Rheumatol 2008;35:1489–94.PubMedGoogle Scholar
  86. 86.
    Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003;115:577–90.CrossRefPubMedGoogle Scholar
  87. 87.
    Henry MK, Lynch JT, Eapen AK, et al. DNA damage-induced cell-cycle arrest of hematopoietic cells is overridden by activation of the PI-3 kinase/Akt signaling pathway. Blood 2001;98:834–41.CrossRefPubMedGoogle Scholar
  88. 88.
    Humphries MJ, Limesand KH, Schneider JC, et al. Suppression of apoptosis in the protein Kinase C {delta} null mouse in vivo. J Biol Chem 2006;281:9728–37.CrossRefPubMedGoogle Scholar
  89. 89.
    Burdelya LG, Krivokrysenko VI, Tallant TC, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008;320:226–30.PubMedCentralCrossRefPubMedGoogle Scholar
  90. 90.
    Garcia-Barros M, Paris F, Cordon-Cardo C, et al. Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 2003;300:1155–9.CrossRefPubMedGoogle Scholar
  91. 91.
    Hiramatsu Y, Nagler RM, Fox PC, et al. Rat salivary gland blood flow and blood-to-tissue partition coefficients following X-irradiation. Arch Oral Biol 1994;39:77–80.CrossRefPubMedGoogle Scholar
  92. 92.
    Sholley MM, Sodicoff M, Pratt NE. Early radiation injury in the rat parotid gland. Reaction of acinar cells in vascular endothelium. Lab Invest 1974;31:340–54.PubMedGoogle Scholar
  93. 93.
    Lin AL, Johnson DA, Wu Y, et al. Measuring short-term [gamma]-irradiation effects on mouse salivary gland function using a new saliva collection device. Arch Oral Biol 2001;46:1085–9.CrossRefPubMedGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of Saskatchewan, Staff Radiation Oncologist, Allan Blair Cancer CentreReginaCanada

Personalised recommendations