Advertisement

Abstract

Population genetics deals with the description of genetic variation of population. It provides the experimental and theoretical basis of how that variation changes in time and space. The population genetics investigates both the origin of genetic diversity via agency of mutations and chromosomal variability and the mode of distribution of genetic diversity via selection, drift, and migration. Evolutionary potential of a population is quantitative index of the genetic variation, and studies on population genetics provide fundamental information on the genetic structure of the population of the species concerned. Population variability provides a tool to test the evolutionary variability hypothesis, as analysis from genetic, phenotypic, and physiologic variation throws light on the fundamentals of variation in space and time. Genetic polymorphism is the mechanism that aids in the population adaptability in response to spatial and temporal environmental variation. The phenomenon of polymorphism has been studied extensively by numerous population geneticists due to the fact that the study of genetic polymorphism in populations elucidates the underlying mechanism of interplay of evolutionary forces in maintaining and improving the adaptation of population to their environment.

Keywords

Linkage Disequilibrium Gene Arrangement Laboratory Population Allozyme Locus Marginal Population 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguade M (1988) Restriction map variation at the Adh locus of Drosophila melanogaster in inverted and non-inverted chromosomes. Genetics 119:135–140PubMedCentralPubMedGoogle Scholar
  2. Ananina G, Peixoto AA, Bitnermathe BC et al (2004) Chromosomal inversion polymorphism in Drosophila mediopunctata: seasonal, altitudinal, and latitudinal variation. Genet Mol Biol 27:61–69CrossRefGoogle Scholar
  3. Anderson WW (1968) Further evidence for coadaptation in crosses between geographic populations of Drosophila pseudoobscura. Genet Res 12:317–330PubMedCrossRefGoogle Scholar
  4. Anderson WW (1989) Selection in natural and experimental populations of Drosophila pseudoobscura. Genome 31:239–245PubMedCrossRefGoogle Scholar
  5. Anderson WW, Dobzhansky T, Pavlovsky O et al (1975) Genetics of natural populations. XLII. Three decades of genetic changes in Drosophila pseudoobscura. Evolution 29:24–36CrossRefGoogle Scholar
  6. Aquadro CF, Weaver AL, Schaeffer SW et al (1991) Molecular evolution of inversions in Drosophila pseudoobscura: the amylase gene region. Proc Natl Acad Sci U S A 88:305–309PubMedCentralPubMedCrossRefGoogle Scholar
  7. Arnold J (1982) Statistics of natural populations: Seasonal variation in inversion frequencies of Mexican Drosophila pseudoobscura. Yale University, DissertationGoogle Scholar
  8. Aulard S, David JR, Lemeunier F (2002) Chromosomal inversion polymorphism in Afrotropical populations of Drosophila melanogaster. Genet Res 79:49–63PubMedCrossRefGoogle Scholar
  9. Aulard S, Monti L, Chaminde N, Lemeunier F (2004) Mitotic and polytene chromosomes: comparisons between Drosophila melanogaster and Drosophila simulans. Contemp Iss Genet Evol 11:137–150CrossRefGoogle Scholar
  10. Ayala FJ, Powell JR, Tracey ML (1972) Enzyme variability in the Drosophila willistoni Group. V. Genic variation in natural populations of Drosophila equinoxialis. Genet Res 20:19–42PubMedCrossRefGoogle Scholar
  11. Banerjee R, Singh BN (1995) Evidence for selection and genetic drift in laboratory populations of Drosophila bipectinata. Proc Zool Soc (Calcutta) 47:125–133Google Scholar
  12. Banerjee R, Singh BN (1996) Inversion polymorphism in natural populations of Drosophila bipectinata. Cytobios 87:31–43PubMedGoogle Scholar
  13. Banerjee R, Singh BN (1998) Evidence for coadaptation in geographic populations of Drosophila bipectinata. J Zool Syst Evol Res 36:1–6CrossRefGoogle Scholar
  14. Barker JSF (1979) Inter-locus interactions: a review of experimental evidence. Theor Popul Biol 16:323–346PubMedCrossRefGoogle Scholar
  15. Brncic D (1954) Heterosis and the integration of genotype in geographic populations of Drosophila pseudoobscura. Genetics 39:77–88PubMedCentralPubMedGoogle Scholar
  16. Brncic D (1957a) Chromosomal polymorphism in natural populations of Drosophila pavani. Chromosoma 8:699–708PubMedCrossRefGoogle Scholar
  17. Brncic D (1957b) A comparative study of chromosomal variation in species of mesophragmatica group of Drosophila. Genetics 42:798–805PubMedCentralPubMedGoogle Scholar
  18. Brncic D (1961a) Integration of the genotype in geographic populations of Drosophila pavani. Genetics 46:401–406PubMedCentralPubMedGoogle Scholar
  19. Brncic D (1961b) Non-random associations of inversion in Drosophila pavani. Genetics 46:401–406PubMedCentralPubMedGoogle Scholar
  20. Brncic D (1970) Studies on the evolutionary biology of Chilean species of Drosophila. In: Dobzhansky T (ed) Essays in evolution and genetics in honour of Hecht MK. Steere WC Appleton Century Crofts, New York, pp 401–436Google Scholar
  21. Brncic D (1972) Seasonal fluctuations of inversion polymorphism in Drosophila flavopilosa and the relationship with certain ecological factors. Univ Texas Publ 7213:103–116Google Scholar
  22. Brncic D (1973) Further studies of chromosomal polymorphism in Drosophila pavani. J Hered 64:175–180PubMedGoogle Scholar
  23. Burla H, Goetz W (1965) Veranderlichkeit des chromosomalen polymorphismus bei Drosophila subobscura. Genetica 36:83–104PubMedCrossRefGoogle Scholar
  24. Carracedo MC (1987) Pupation height in Drosophila: sex differences and influence of larval developmental time. Behav Genet 17:523–535PubMedCrossRefGoogle Scholar
  25. Carson HL (1958a) The population genetics of Drosophila robusta. Adv Genet 9:1–40PubMedCrossRefGoogle Scholar
  26. Carson HL (1958b) Response to selection under different conditions of recombination in Drosophila. Cold Spring Harb Symp Quant Biol 23:291–305PubMedCrossRefGoogle Scholar
  27. Carson HL (1961) Relative fitness of genetically open and closed experimental populations of Drosophila robusta. Genetics 46:553–567PubMedCentralPubMedGoogle Scholar
  28. Carson HL (1970) Chromosomal tracers of origin of species. Science 168:1414–1418PubMedCrossRefGoogle Scholar
  29. Carson HL (1987) High fitness of heterokaryotypic individuals segregating naturally within a long-standing laboratory populations of Drosophila silvestris. Genetics 116:415–422PubMedCentralPubMedGoogle Scholar
  30. Carson HL, Lockwood JP, Craddock EM (1990) Extinction and recolonization of local populations on a growing shield volcano. Proc Natl Acad Sci 87:7055–7057PubMedCentralPubMedCrossRefGoogle Scholar
  31. Cirera S, Martin-Campos JM, Seagarra C et al (1995) Molecular characterization of the breakpoints of an inversion fixed between Drosophila melanogaster and Drosophila subobscura. Genetics 139:321–326PubMedCentralPubMedGoogle Scholar
  32. Cláudia R, Degrandi TH, De Toni DC, Valente VLS (2005) Drosophila willistoni polytene chromosomes. I. Pericentric inversion on X chromosome. Caryologia 58:249–254CrossRefGoogle Scholar
  33. Colombo PC (2008) Cytogeography of three parallel Robertsonian polymorphisms in the water-hyacinth grasshopper, Cornops aquaticum (Orthoptera: Acrididae). Eur J Entomol 105:59–64CrossRefGoogle Scholar
  34. Colombo PC (2010) Micro-evolution in grasshoppers mediated by polymorphic robertsonian translocations. J Insect Sci 13:1–22CrossRefGoogle Scholar
  35. Craddock EM, Carson HL (1989) Chromosomal inversion patterning and population differentiation in a younger insular species: Drosophila silvestris. Proc Natl Acad Sci U S A 86:4798–4802PubMedCentralPubMedCrossRefGoogle Scholar
  36. Crumpacker DW, Pyati J, Ehrman L (1977) Ecological genetics and chromosomal polymorphism in Colorado populations of Drosophila pseudoobscura. Evol Biol 10:437–469Google Scholar
  37. Da Cunha AB (1955) Chromosomal polymorphism in Diptera. Adv Genet 7:93–138CrossRefGoogle Scholar
  38. Da Cunha AB (1960) Chromosomal variation and adaptation in insects. Annu Rev Entomol 5:85–110CrossRefGoogle Scholar
  39. Da Cunha AB, Dobzhansky T (1954) A further study of chromosomal polymorphism in Drosophila willistoni in relation to environment. Evolution 8:119–134CrossRefGoogle Scholar
  40. Da Cunha AB, Dobzhansky T, Pavlovsky O et al (1959) Genetics of natural populations. XXVIII. Supplemental data on the chromosomal polymorphism in Drosophila willistoni in relation to the environment. Evolution 13:389–404CrossRefGoogle Scholar
  41. Darlington CD, Mather K (1949) The elements of genetics. Allen and Unwin, LondonGoogle Scholar
  42. Das A, Singh BN (1991) Genetic differentiation and inversion clines in Indian natural populations of Drosophila melanogaster. Genome 34:618–625PubMedCrossRefGoogle Scholar
  43. David JR (1979) Utilization of morphological traits for the analysis of genetic variation in wild populations. Aquilo Ser Zool 20:49–61Google Scholar
  44. Day TH, Dawe C, Dobson T, Hillier PC (1983) A chromosomal inversion polymorphism in Scandinavian populations of the seaweed fly, Coelopa frigida. Hereditas 99:135–145PubMedCrossRefGoogle Scholar
  45. de C Bicudo HEM (1973) Chromosomal polymorphism in the saltans group of Drosophila. I. The saltans subgroup. Genetica 44:520–552CrossRefGoogle Scholar
  46. de C Bicudo HEM, Hosaki MK, Machado J et al (1978) Chromosomal polymorphism in the saltans group of Drosophila. II. Further study on Drosophila prosaltans. Genetica 48: 5–15Google Scholar
  47. De Frutos R (1978) Changes of chromosomal polymorphism in experimental cage populations of Drosophila subobscura. Genetica 49:139–151CrossRefGoogle Scholar
  48. De Souza HL, Da Cunha AB, dos Santos EP (1970) Adaptive polymorphism of behavior evolved in laboratory populations of Drosophila willistoni. Am Nat 124:175–189CrossRefGoogle Scholar
  49. Dobzhansky T (1943) Genetics of natural populations. IX. Temporal changes in the composition of populations of Drosophila pseudoobscura. Genetics 28:162–186PubMedCentralPubMedGoogle Scholar
  50. Dobzhansky T (1948) Genetics of natural populations. XVI. Altitudinal and seasonal changes produced by natural selection in certain populations of Drosophila pseudoobscura. Genetics 33:588–602PubMedCentralGoogle Scholar
  51. Dobzhansky T (1949) Observations and experiments on natural selection in Drosophila (Proc Eighth Int Cong Genet 1948). Hereditas (suppl vol), pp 210–214Google Scholar
  52. Dobzhansky T (1950) Genetics of natural populations. XIX. Origin of heterosis through selection in populations of Drosophila pseudoobscura. Genetics 35:288–302PubMedCentralPubMedGoogle Scholar
  53. Dobzhansky T (1951) Genetics and origin of species, 3rd edn. Columbia University Press, New YorkGoogle Scholar
  54. Dobzhansky T (1955) A review of some fundamental concepts and problems of population genetics. Cold Spring Harb Symp Quant Biol 20:1–15PubMedCrossRefGoogle Scholar
  55. Dobzhansky T (1957) Genetics of natural populations. XXVI. Chromosomal variability in island and continental populations of Drosophila willistoni from Central America and the West Indies. Evolution 11:280–293CrossRefGoogle Scholar
  56. Dobzhansky T (1962) Rigid vs flexible polymorphism in Drosophila. Am Nat 96:321–328CrossRefGoogle Scholar
  57. Dobzhansky T (1970) Genetics of evolutionary process. Columbia University Press, New YorkGoogle Scholar
  58. Dobzhansky T (1971) Evolutionary oscillations in Drosophila pseudoobscura. In: Creed R (ed) Ecological genetics and evolution. Blackwell, Oxford, pp 109–133CrossRefGoogle Scholar
  59. Dobzhansky T, Ayala FJ (1973) Temporal frequency changes of enzyme and chromosomal polymorphisms in natural populations of Drosophila. Proc Natl Acad Sci U S A 70:680–683PubMedCentralPubMedCrossRefGoogle Scholar
  60. Dobzhansky T, Epling C (1944) Contributions to the genetics, taxonomy, and ecology of Drosophila pseudoobscura and its relatives. Carng Instit Wash Publ 554:1–46Google Scholar
  61. Dobzhansky T, Pavlovsky O (1953) Indeterminate outcome of certain experiments of Drosophila populations. Evolution 7:198–210CrossRefGoogle Scholar
  62. Dobzhansky T, Pavlovsky O (1955) An extreme case of heterosis in Central American population of Drosophila tropicalis. Proc Natl Acad Sci U S A 41:289–295PubMedCentralPubMedCrossRefGoogle Scholar
  63. Dobzhansky T, Pavlovsky O (1958) Interracial hybridization and breakdown of coadapted gene complexes in Drosophila paulistorum and Drosophila willistoni. Proc Natl Acad Sci U S A 44:662–629CrossRefGoogle Scholar
  64. Dobzhansky T, Spassky N (1954) Environmental modification of heterosis in Drosophila pseudoobscura. Proc Natl Acad Sci U S A 40:407–415PubMedCentralPubMedCrossRefGoogle Scholar
  65. Dobzhansky T, Spassky NP (1962) Genetic drift and natural selection in experimental populations of Drosophila pseudoobscura. Proc Natl Acad Sci U S A 48:148–156PubMedCentralPubMedCrossRefGoogle Scholar
  66. Dobzhansky T, Wallace B (1953) The genetics of homeostasis in Drosophila. Proc Natl Acad Sci U S A 39:162–171PubMedCentralPubMedCrossRefGoogle Scholar
  67. Dobzhansky T, Anderson WW, Pavlovsky O (1966) Genetics of natural populations. XXXVIII. Continuity and changes in populations of Drosophila pseudoobscura in Western United States. Evolution 20:418–427CrossRefGoogle Scholar
  68. Dodd DMB (1984) Behavioral correlates of the adaptive divergence of Drosophila populations. Dissertation, Yale University, New Haven ConnGoogle Scholar
  69. Dubinin NP, Tiniakov GG (1946) Inversion gradients and natural selection in ecological races of Drosophila funebris. Genetics 31:537–545PubMedCentralPubMedGoogle Scholar
  70. Dyer KA, Charlesworth B, Jaenike J (2007) Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proc Natl Acad Sci U S A 104:1587–1592PubMedCentralPubMedCrossRefGoogle Scholar
  71. Edwards WF (2011) Mathematizing darwin. Behav Ecol Sociobiol 65:421–430PubMedCentralPubMedCrossRefGoogle Scholar
  72. Ehrman L (1967) Further studies on genotype frequency and mating success in Drosophila. Am Nat 101:415–424CrossRefGoogle Scholar
  73. Endler J (1977) Geographic variation, speciation, and clines. Princeton University Press, PrincetonGoogle Scholar
  74. Epling C, Mitchell DF, Mattoni RHT (1957) The relation of an inversion system to recombination in wild populations. Evolution 11:225–247CrossRefGoogle Scholar
  75. Esteban H, Constantina R, Juan JF, Horacio N, Osvaldo AR, Antonio F (1995) The evolutionary history of Drosophila buzzatti. XXVI. Macrogeographic patterns of inversion polymorphism in New World populations. J Evol Biol 8:369–384CrossRefGoogle Scholar
  76. Etges WJ (1984) Genetic structure and change in natural populations of Drosophila robusta: systematic inversion and inversion association frequency shifts in Great Smoky Mountains. Evolution 38:675–678CrossRefGoogle Scholar
  77. Ford EB (1975) Ecological genetics, 4th edn. Wiley, New YorkGoogle Scholar
  78. Gonzalo A, Mauro S, Carlos Z (1983) Selection at sex-linked loci. I. A method of estimating total fitnesses. Heredity 50:147–157CrossRefGoogle Scholar
  79. Gosteli M (1990) Chromosomal polymorphism in natural populations of Drosophila subobscura near Zürich, Switzerland: a contribution to long-term comparisons. Genetica 81:199–204PubMedCrossRefGoogle Scholar
  80. Guzman J, Levene L, Olvera O et al (1975) A new model for secondary nondisjunction: the role of distributive pairing. Genetics 47:1737–1754Google Scholar
  81. Haley CS, Birley AJ (1983) The genetical response to natural selection by varied environments. II. Observations on replicate populations in spatially varied laboratory environments. Heredity 51:581–606PubMedCrossRefGoogle Scholar
  82. Hawthorne DJ (1997) Ecological history and evolution in a novel environment: habitat heterogeneity and insect adaptation. Evolution 51:153CrossRefGoogle Scholar
  83. Hedrick PW (1990) Theoretical analysis of habitat selection and the maintenance of genetic variation. In: Barker JSF, Starmer WT, MacIntyre RJ (eds) Evolutionary genetics of Drosophila. Plenum, New York, pp 209–227CrossRefGoogle Scholar
  84. Hedrick PW, Jain S, Holden L (1978) Multilocus systems in evolution. Evol Biol 11:101–184CrossRefGoogle Scholar
  85. Heritier PL L’, Teissier G (1933) Etude d’une population de Drosophila en equilibre. C R Acad Sci 197:1765Google Scholar
  86. Hoenigsberg HF, Palomino IJ, Chiappae C et al (1977) Population genetics in American tropics. XI. Seasonal and temporal variations in the relative frequencies of species belonging to the willistoni group in Colombia. Oecologia 27:295–304CrossRefGoogle Scholar
  87. Huynh LY, Maney DL, Thomas JW (2011) Chromosome-wide linkage disequilibrium caused by an inversion polymorphism in the white-throated sparrow (Zonotrichia albicollis). Heredity 106:537–546PubMedCentralPubMedCrossRefGoogle Scholar
  88. Inoue Y (1979) The fate of polymorphic inversions of Drosophila melanogaster transferred to laboratory conditions. Jap J Genet 54:83–96CrossRefGoogle Scholar
  89. Inoue Y, Watanabe T, Watanabe TK (1984) Evolutionary change of the chromosomal polymorphism in Drosophila melanogaster populations. Evolution 38:753–765CrossRefGoogle Scholar
  90. Iriarte PF, Hasson E (2000) The role of the use of different host plants in the maintenance of the inversion polymorphism in the cactophilic Drosophila buzzatii. Evolution 54:1295–1302CrossRefGoogle Scholar
  91. Iriarte PJF, Levy E, Devincenzi D, Rodríguez C, Fanara JJ, Hasson E (1999) Temporal and spatial variation of inversion polymorphism in two natural populations of Drosophila buzzatii. Hereditas 131:93–99CrossRefGoogle Scholar
  92. Kennington WJ, Partridge L, Hoffmann AA (2006) Patterns of diversity and linkage disequilibrium within cosmopolitan inversion In (3R) Payne in Drosophila melanogaster are indicative of coadaptation. Genetics 172:1655–1663PubMedCentralPubMedCrossRefGoogle Scholar
  93. Kimura M (1982) Molecular evolution, protein polymorphism and the neutral theory. Japan Scientific Societies Press, TokyoGoogle Scholar
  94. Kimura M, Ohta T (1974) On some principles governing molecular evolution. Proc Natl Acad Sci U S A 71:2848–2852PubMedCentralPubMedCrossRefGoogle Scholar
  95. Kitagawa O (1967) Genetic divergence in M. Vetukhiv’s experimental populations of Drosophila pseudoobscura. Genet Res 10:303–312CrossRefGoogle Scholar
  96. Klepsatel P, Gáliková M, Huber CD (2014) Thomas Flatt1Similarities and differences in altitudinal versus latitudinal variation for morphological traits in Drosophila melanogaster. Evolution 68:1385–1398PubMedCrossRefGoogle Scholar
  97. Kojima KI, Tobari YN (1969) Selective modes associated with karyotypes in Drosophila ananassae. II. Heterosis and frequency dependent selection. Genetics 63:639–651PubMedCentralPubMedGoogle Scholar
  98. Koller P (1936) Structural hybridity in Drosophila pseudoobscura. J Genet 32:79–102CrossRefGoogle Scholar
  99. Krimbas CB (1992) The inversion polymorphism of Drosophila subobscura. In: Krimbas CB, Powell JR (eds) Drosophila inversion polymorphism. CRC Press, Boca Raton, pp 127–220Google Scholar
  100. Krimbas CB, Alevizos V (1973) The genetics of Drosophila subobscura. IV. Further data on inversion polymorphism in Greece. Evidence of microdifferentiation. Egypt J Genet Cytol 2:121–132Google Scholar
  101. Krimbas CB, Loukas M (1980) The inversion polymorphism of Drosophila subobscura. Evol Biol 12:163–234Google Scholar
  102. Krimbas CB, Powell JR (1992) Drosophila inversion polymorphism. CRC Press, Boca RatonGoogle Scholar
  103. Kumar A, Gupta JP (1992) Concentration of chromosomal aberrations on chromosome 3 of Drosophila nasuta. Heredity 69:263–267CrossRefGoogle Scholar
  104. Ladevze V, Aulard S, Chaminade N, Periquet G, Lemeunier F (1998) Hobo transposons causing chromosomal breakpoints. Proc R Soc B Biol Sc 265:1157–1159CrossRefGoogle Scholar
  105. Lemeunier F, Aulard S (1992) Inversion polymorphism in Drosophila melanogaster. In: Krimbas CB, Powell JR (eds) Drosophila inversion polymorphism. CRC Press, Boca Raton, pp 339–406Google Scholar
  106. Lerner IM (1954) Genetic homeostasis. Wiley, New YorkGoogle Scholar
  107. Levene H (1953) Genetic equilibrium when more than one ecological niche is available. Am Nat 87:331–333CrossRefGoogle Scholar
  108. Levene L, Beardmore JA (1959) A study of an experimental Drosophila population in equilibrium. Am Nat 93:35–40CrossRefGoogle Scholar
  109. Levene H, Dobzhansky T (1958) New evidence of heterosis in naturally occurring inversion heterozygotes in Drosophila pseudoobscura. Heredity 12:37–49CrossRefGoogle Scholar
  110. Levitan M (1955) Studies of linkage in populations. I. Associations of second chromosome inversions in Drosophila robusta. Evolution 9:62–74CrossRefGoogle Scholar
  111. Levitan M (1958a) Studies of linkage in populations. II. Recombination between linked inversions of Drosophila robusta. Genetics 43:620–633PubMedCentralPubMedGoogle Scholar
  112. Levitan M (1958b) Non-random associations of inversions. Cold Spring Harb Symp Quant Biol 23:251–268PubMedCrossRefGoogle Scholar
  113. Levitan M (1961) Proof of an adaptive linkage association. Science 134:1617–1618PubMedCrossRefGoogle Scholar
  114. Levitan M (1973) Studies of linkage in populations. VI. Periodic selection for X chromosome gene arrangement combinations. Evolution 27:215–225CrossRefGoogle Scholar
  115. Levitan M (1992) Chromosome variation in Drosophila robusta. In: Krimbas CB, Powell JR (eds) Drosophila inversion polymorphism. CRC Press, Boca Raton, pp 221–338Google Scholar
  116. Levitan M, Salzano FM (1959) Studies of linkage in populations. III. An association of linked inversions in Drosophila guaramunu. Heredity 13:243–248CrossRefGoogle Scholar
  117. Lewontin RC (1974) The genetic basis of evolutionary changes. Columbia University Press, New YorkGoogle Scholar
  118. Lewontin RC, Moore JA, Provine WB et al (eds) (1981) Dobzhansky’s genetics of natural populations. Columbia University Press, New YorkGoogle Scholar
  119. Lyttle TW, Haymer DS (1992) The role of transposable element hobo in the origin of endemic inversions in wild populations of Drosophila melanogaster. Genetica 86:113–126PubMedCrossRefGoogle Scholar
  120. Masry AM (1981) The evolutionary changes of the population structure. I. Seasonal changes in the frequencies of chromosomal inversions in natural populations of Drosophila melanogaster. Egypt J Genet Cytol 10:261–272Google Scholar
  121. Mather WB (1963) Patterns of chromosomal polymorphism in Drosophila rubida. Am Nat 97:59–63CrossRefGoogle Scholar
  122. Mather WB (1964) Temporal variation in Drosophila rubida inversion polymorphism. Heredity 19:20–26CrossRefGoogle Scholar
  123. Mayr E (1959) Where are we? Cold Spring Harb Symp Quant Biol 24:1–14CrossRefGoogle Scholar
  124. Mc Donald JF, Ayala FJ (1974) Genetic response to environmental heterogeneity. Nature 250:572–574CrossRefGoogle Scholar
  125. McAllister BF (2002) Chromosomal and allelic variation in Drosophila americana: Selective maintenance of a chromosomal cline. Genome 45:13–21PubMedCrossRefGoogle Scholar
  126. McFarquhar AM, Robertson FW (1963) The lack of evidence for coadaptation in crosses between geographical races of Drosophila subobscura. Genet Res 4:104–131CrossRefGoogle Scholar
  127. Merrel DJ (1981) Ecological genetics. University of Minnesota Press, MinneapolisGoogle Scholar
  128. Mestres F, Sanz J, Serra L (1998) Chromosomal structure and recombination between inversions in Drosophila subobscura. Hereditas 128:105–13PubMedCrossRefGoogle Scholar
  129. Minawa A, Birely AJ (1978) The genetical response to natural selection by varied environments. I. Short-term observations. Heredity 40:39–50CrossRefGoogle Scholar
  130. Moltó MD, de Frutos R, Martínez-Sebastián MJ (1988) Gene activity of polytene chromosomes in Drosophila species of the obscura group. Chromosoma 96:382–90PubMedCrossRefGoogle Scholar
  131. Moos JR (1955) Comparative physiology of some chromosomal types in Drosophila pseudoobscura. Evolution 9:141–151CrossRefGoogle Scholar
  132. Muntẻ A, Rozas J, Aguadẻ M et al (2005) Chromosomal inversion polymorphism leads to extensive genetic structure: a multilocus survey in Drosophila subobscura. Genetics 169:1573–1581PubMedCentralPubMedCrossRefGoogle Scholar
  133. Nei M (1975) Molecular population genetics and evolution. North Holland Publications, AmsterdamGoogle Scholar
  134. Nevo E (1978) Genetic variation in natural populations: patterns and theory. Theoret Popl Biol 13:121–177CrossRefGoogle Scholar
  135. Nevo E (1984) The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. Lect Notes Biomath 53:13–213CrossRefGoogle Scholar
  136. Oakeshott JG (1979) Selection affecting enzyme polymorphism in laboratory populations of Drosophila melanogaster. Oecologia 43:341–354CrossRefGoogle Scholar
  137. Orengo DJ, Prevosti A (1996) Temporal changes in chromosome polymorphism of Drosophila subobscura related to climatic changes. Evolution 50:1346–1350CrossRefGoogle Scholar
  138. Painter TH (1933) A new method for the study of chromosome rearrangements and the plotting of chromosome maps. Science 78:585–586PubMedCrossRefGoogle Scholar
  139. Parsons PA (1980) Adaptive strategies in natural populations of Drosophila. Theoret App Genet 57:257–266CrossRefGoogle Scholar
  140. Patau K (1935) Chromosomenmorphologie bei Drosophila melanogaster und Drosophila simulans und ihre genetische Bedeutung. Naturwissenschaften 23:537–543CrossRefGoogle Scholar
  141. Pavlovsky O, Dobzhansky T (1966) Genetics of natural populations. XXXVIII. The coadapted system of chromosomal variants in populations of Drosophila pseudoobscura. Genetics 53:843–854PubMedCentralPubMedGoogle Scholar
  142. Pegueroles C, Aquadro CF, Mestres F, Pascual M (2013) Gene flow and gene flux shape evolutionary patterns of variation in Drosophila subobscura. Heredity 110:520–529PubMedCentralPubMedCrossRefGoogle Scholar
  143. Powell JR (1971) Genetic polymorphism in varied environments. Science 174:1035–1036PubMedCrossRefGoogle Scholar
  144. Powell JR (1975) Protein variation in natural populations of animals. Evol Biol 8:79–119Google Scholar
  145. Powell JR (1997) Population genetics-laboratory studies. Progress and prospects in evolutionary biology. The Drosophila model. Oxford University Press, New York, pp 94–142Google Scholar
  146. Powell JR, Richmond RC (1974) Founder effects and linkage disequilibrium in experimental populations of Drosophila. Proc Natl Acad Sci U S A 71:1663–1665PubMedCentralPubMedCrossRefGoogle Scholar
  147. Powell JR, Wistrand H (1978) The effect of heterogeneous environments and a competitor on genetic variation in Drosophila. Am Nat 112:935–947CrossRefGoogle Scholar
  148. Powell JR, Levene H, Dobzhansky T (1972) Chromosomal polymorphism in Drosophila pseudoobscura used for diagnosis of geographical origin. Evolution 26:553–559CrossRefGoogle Scholar
  149. Prakash S (1967) Chromosome interactions in Drosophila robusta. Genetics 57:385–400PubMedCentralPubMedGoogle Scholar
  150. Prakash S (1973) Patterns of gene variation in central and marginal populations of Drosophila robusta. Genetics 75:347–369PubMedCentralPubMedGoogle Scholar
  151. Prakash S, Lewontin RC (1968) A molecular approach to the study of genic heterozygosity. III. Direct evidence of coadaptation in gene arrangements of Drosophila. Proc Natl Acad Sci U S A 59:398–405PubMedCentralPubMedCrossRefGoogle Scholar
  152. Prakash S, Lewontin RC (1971) A molecular approach to the study of genetic heterozygosity in natural populations. V. Further direct evidence of coadaptation in inversions of Drosophila. Genetics 69:405–408PubMedCentralPubMedGoogle Scholar
  153. Pratdesaba R, Segarra C, Aguade M (2015) Inferring the demographic history of Drosophila subobscura from nucleotide variation at regions not affected by chromosomal inversions. Mol Ecol 24:1729–1741PubMedCrossRefGoogle Scholar
  154. Prevosti A (1957) Viabilidad en Cruces entre poblaciones de Drosophila subobscura de distinta procedencia geografica. Publ Inst Biol Apl Barcelona 26:53Google Scholar
  155. Prevosti A (1964) Chromosomal polymorphism in Drosophila subobscura populations from Barcelona. Genet Res 5:27–38CrossRefGoogle Scholar
  156. Prevosti A, Serra L, Ribo G et al (1985) The colonization of Drosophila subobscura in Chile. II. Clines in the chromosomal arrangements. Evolution 39:838–844CrossRefGoogle Scholar
  157. Prevosti A, Ribo G, Serra L et al (1988) Colonization of America by Drosophila subobscura: experiment in natural populations that supports the adaptive role of chromosomal inversion polymorphism. Proc Natl Acad Sci U S A 85:5597–5600PubMedCentralPubMedCrossRefGoogle Scholar
  158. Prevosti A, Serra L, Ribo G et al (1990) Clines of chromosomal arrangements of Drosophila subobscura in South Africa evolve closer to old world patterns. Evolution 44:218–221CrossRefGoogle Scholar
  159. Ranganath HA, Krishnamurthy NB (1978) Chromosomal morphism in Drosophila nasuta II. Coexistence of heteroselection and flexibility in polymorphic system of South India populations. Genetica 48:215–221CrossRefGoogle Scholar
  160. Rendel JM (1967) Canalization and gene control. Academic, New YorkGoogle Scholar
  161. Robertson FW (1987) Variation of body size within and between wild populations of Drosophila buzzatii. Genetica 72:111–125CrossRefGoogle Scholar
  162. Rodriguez L, Sokolowski MB, Shore JS (1992) Habitat selection by Drosophila melanogaster larvae. J Evol Biol 5:61–70CrossRefGoogle Scholar
  163. Rodríguez-Trelles F (2003) Seasonal cycles of allozyme-by-chromosomal-inversion gametic disequilibrium in Drosophila subobscura. Evolution 57:839–848PubMedCrossRefGoogle Scholar
  164. Rozas J, Aguade M (1990) Evidence of extensive genetic exchange in the rp49 region among polymorphic chromosome inversions in Drosophila subobscura. Genetics 126:417–426PubMedCentralPubMedGoogle Scholar
  165. Schaeffer SW, Goetting-Minesky MP, Kovacevic M et al (2003) Evolutionary genomics of inversions in Drosophila pseudoobscura, evidence for epistasis. Proc Natl Acad Sci U S A 100:8319–8324PubMedCentralPubMedCrossRefGoogle Scholar
  166. Singh BN (1972) The lack of evidence for coadaptation in geographic populations of Drosophila ananassae. Genetica 44:602–607CrossRefGoogle Scholar
  167. Singh BN (1973) Recombination between heterozygous inversions in Drosophila ananassae. Genetica 44:602–607CrossRefGoogle Scholar
  168. Singh BN (1982) Persistence of chromosomal polymorphism in various strains of Drosophila ananassae. Genetica 59:151–156CrossRefGoogle Scholar
  169. Singh BN (1985) Heterosis without selectional coadaptation in Drosophila ananassae. Theor Appl Genet 69:437–441PubMedCrossRefGoogle Scholar
  170. Singh RS (1989) Population genetics and evolution of species related to Drosophila melanogaster. Annu Rev Genet 23:425–453PubMedCrossRefGoogle Scholar
  171. Singh BN (1991) Genetic coadaptation in Drosophila. Ind Rev Life Sci 11:205–231Google Scholar
  172. Singh BN (1996) Population and behaviour genetics of Drosophila ananassae. Genetica 97:321–329PubMedCrossRefGoogle Scholar
  173. Singh BN (2008) Chromosomal inversions and linkage disequilibrium in Drosophila. Curr Sci 94:459–464Google Scholar
  174. Singh BN (2013) Genetic polymorphisms in Drosophila. Curr Sci 105(4):25Google Scholar
  175. Singh BN, Banerjee R (1997) Increase in the degree of inversion polymorphism in Drosophila bipectinata populations transferred to laboratory conditions. J Zool Syst Evol Res 35:153–157CrossRefGoogle Scholar
  176. Singh BN, Das A (1990) Inversion polymorphism in Indian natural populations of Drosophila melanogaster. Genome 33:311–316PubMedCrossRefGoogle Scholar
  177. Singh BN, Das A (1991a) Epistatic interaction between unlinked inversions in Indian natural populations of Drosophila melanogaster. Genet Sel Evol 23:371–383PubMedCentralCrossRefGoogle Scholar
  178. Singh BN, Das A (1991b) Linkage disequilibrium between inversions in Drosophila bipectinata. Biol Zent Bl 110:157–162Google Scholar
  179. Singh BN, Das A (1992a) Changes of inversion polymorphism in laboratory populations of Drosophila melanogaster. Z Zool Syst Evol-Forsch 30:268–280CrossRefGoogle Scholar
  180. Singh BN, Das A (1992b) Further evidence for latitudinal inversion clines in natural populations of Drosophila melanogaster from India. J Hered 83:227–230PubMedGoogle Scholar
  181. Singh BN, Singh AK (1990) Linkage disequilibrium in laboratory strains of Drosophila ananassae is due to drift. Hereditas 112:201–208Google Scholar
  182. Singh P, Singh BN (2007) Population genetics of Drosophila ananassae: variation in the degree of genetic divergence in populations transferred to laboratory conditions. Zool Stud 47:704–712Google Scholar
  183. Singh P, Singh BN (2008) Population genetics of Drosophila ananassae. Genet Res 90:409–419CrossRefGoogle Scholar
  184. Singh P, Singh BN (2010) Population genetics of Drosophila ananassae: evidence for population sub-structuring at the level of inversion polymorphism in Indian natural populations. Int J Biol 2:19–28CrossRefGoogle Scholar
  185. Sisodia S, Singh BN (2005) Behaviour genetics of Drosophila: non-sexual behavior. J Genet 84:195–216PubMedCrossRefGoogle Scholar
  186. Sokolowski MB, Bauer SJ, Wai-Ping V et al (1986) Ecological genetics and behavior of Drosophila melanogaster larvae in nature. Anim Behav 32:403–408CrossRefGoogle Scholar
  187. Solé E, Balanyá JG, Sperlich D, Serra L (2002) Long-term changes in the chromosomal inversion polymorphism of Drosophila subobscura. i. mediterranean populations from southwestern Europe. Evolution 56:830–835PubMedCrossRefGoogle Scholar
  188. Soto IM, Soto EM, Carreira VP, Hurtado J, Fanara JJ, Hasson E (2010) Geographic patterns of inversion polymorphism in the second chromosome of the Cactophilic Drosophila buzzatii from Northeastern Argentina. J Insect Sci 10:81CrossRefGoogle Scholar
  189. Sperlich D (1966) Equilibria for inversions induced by X-rays in isogenic strains of Drosophila pseudoobscura. Genetics 53:835–842PubMedCentralPubMedGoogle Scholar
  190. Sperlich D, Feuerbach-Mravlag H (1974) Epistatic gene interaction, crossing-over and linked and unlinked inversions in Drosophila subobscura. Evolution 28:67–75CrossRefGoogle Scholar
  191. Sperlich D, Pfriem P (1986) Chromosomal polymorphism in natural and experimental populations. In: Ashburner M, Carson HL, Thompson JN Jr (eds) The genetics and biology of Drosophila. Academic, New York, pp 257–309Google Scholar
  192. Sperlich D, Pinsker W, El-Abidin Salam AZ (1976) A stable enzyme polymorphism associated with inversion polymorphism in laboratory strains of Drosophila subobscura. Egypt J Genet Cytol 5:153–163Google Scholar
  193. Spiess EB (1950) Experimental populations of Drosophila persimilis from an altitudinal transect of Sierra Nevada. Evolution 4:14–33CrossRefGoogle Scholar
  194. Spiess EB (1957) Relation between frequencies and adaptive values of chromosomal arrangements in Drosophila persimilis. Evolution 11:84–93CrossRefGoogle Scholar
  195. Spiess EB (1966) Chromosomal fitness changes in experimental populations of Drosophila persimilis from the timberline of Sierra Nevada. Evolution 20:82–91CrossRefGoogle Scholar
  196. Spiess EB (1968) Low frequency advantage in mating of Drosophila pseudoobscura karyotypes. Am Nat 102:363–379CrossRefGoogle Scholar
  197. Stalker HD (1964) Chromosomal polymorphism in Drosophila euronotus. Genetics 49:669–687PubMedCentralPubMedGoogle Scholar
  198. Stalker HD (1976) Chromosome studies in wild populations of Drosophila melanogaster. Genetics 82:323–347PubMedCentralPubMedGoogle Scholar
  199. Stalker HD, Carson HL (1948) An altitudinal transect of Drosophila robusta. Evolution 2:295–305PubMedCrossRefGoogle Scholar
  200. Stanton ML, Thiede DA (2005) Statistical convenience vs biological insight: consequences of data transformation for the analysis of fitness variation in heterogeneous environments. New Phytol 166:319–338PubMedCrossRefGoogle Scholar
  201. Stone WS (1942) Heterosis in Drosophila hydei. Univ Texas Publ 4228:16–22Google Scholar
  202. Strickberger MW, Wills CJ (1966) Monthly frequency changes of Drosophila pseudoobscura third chromosome gene arrangements in a California locality. Evolution 20:592–602CrossRefGoogle Scholar
  203. Sturtevant AH (1926) A cross-over reducer in Drosophila melanogaster due to inversion of a section of the third chromosome. Biol Zentralbl 46:697–702Google Scholar
  204. Sturtevant AH, Dobzhansky T (1936) Inversions in the third chromosome of wild races of Drosophila pseudoobscura and their use in the study of the history of the species. Proc Natl Acad Sci U S A 22:448–450PubMedCentralPubMedCrossRefGoogle Scholar
  205. Tan CC (1935) Salivary gland chromosomes in the two races of Drosophila pseudoobscura. Genetics 20:392–402PubMedCentralPubMedGoogle Scholar
  206. Taylor CE, Condra C (1983) Resource partitioning among genotypes of Drosophila pseudoobscura. Evolution 37:135–149CrossRefGoogle Scholar
  207. Thoday JM (1953) Components of fitness. Symp Soc Exp Biol 7:96–113Google Scholar
  208. Tobari YN (ed) (1993) Drosophila ananassae, genetical and biological aspects. Japan Scientific Societies Press, TokyoGoogle Scholar
  209. Vetukhiv M (1953) Viability of hybrids between local populations of Drosophila Pseudoobscura. Proc Natl Acad Sci U S A 39:30–34PubMedCentralPubMedCrossRefGoogle Scholar
  210. Vetukhiv M (1954) Integration of the genotype in local populations of Drosophila pseudoobscura. Evolution 8:241–251CrossRefGoogle Scholar
  211. Vetukhiv M (1957) Longevity of hybrids between geographic populations of Drosophila pseudoobscura. Evolution 11:354–360CrossRefGoogle Scholar
  212. Wallace B (1955) Interpopulation hybrids in Drosophila melanogaster. Evolution 9:302–316CrossRefGoogle Scholar
  213. Wallace B (1984) A possible explanation for observed differences in the geographical distributions of chromosomal arrangements of plants and Drosophila. Egypt J Genet Cytol 13:121–136Google Scholar
  214. Wallace B, Vetukhiv M (1955) Adaptive organization of the gene pools of Drosophila populations. Cold Spring Harb Symp Quant Biol 20:303–310PubMedCrossRefGoogle Scholar
  215. Wallace AG, Detweiler D, Schaeffer SW (2011) Evolutionary history of the third chromosome gene arrangements of Drosophila pseudoobscura inferred from inversion breakpoints. Mol Biol Evol 28:2219–2229PubMedCrossRefGoogle Scholar
  216. Wasserman M (1963) Cytology and phylogeny of Drosophila. Am Nat 47:333–352CrossRefGoogle Scholar
  217. Wassermann M (1992) Cytological evolution of the Drosophila repleta group. In: Krimbas CB, Powell JR (eds) Drosophila inversion polymorphism. CRC Press, Boca Raton, pp 455–552Google Scholar
  218. Watanabe TK, Anderson WW, Dobzhansky T et al (1970) Selection in experimental populations of Drosophila pseudoobscura with different initial frequencies of chromosomal variants. Genet Res 15:123–129PubMedCrossRefGoogle Scholar
  219. Wesely CS, Eanes WF (1994) Isolation and analysis of breakpoint sequences of chromosome inversion In (3L) Payne in Drosophila melanogaster. Proc Natl Acad Sci U S A 91:3132–3136CrossRefGoogle Scholar
  220. Wigan LG (1944) Balance and potence in natural populations. J Genet 46:150–160CrossRefGoogle Scholar
  221. Wright S (1977) Evolution and the genetics of populations. Experimental results and evolutionary deductions. University of Chicago Press, ChicagoGoogle Scholar
  222. Wright S, Dobzhansky T (1946) Genetics of natural populations. XII. Experimental reproduction of some of the changes caused by natural selection in certain populations of Drosophila pseudoobscura. Genetics 31:125–156PubMedCentralGoogle Scholar
  223. Yadav JP, Singh BN (2003) Population genetics of Drosophila ananassae: inversion polymorphism and body size in Indian geographical populations. J Zool Syst Evol Res 41:217–226CrossRefGoogle Scholar
  224. Yadav JP, Singh BN (2007) Evolutionary genetics of Drosophila ananassae: evidence for trade-offs among several fitness traits. Biol J Linn Soc 90:669–685CrossRefGoogle Scholar
  225. Yamazaki T, Kusakabe S, Tachida H et al (1983) Reexamination of diversifying selection of polymorphic allozyme genes by using population cages in Drosophila melanogaster. Proc Natl Acad Sci U S A 80:5789–5792PubMedCentralPubMedCrossRefGoogle Scholar
  226. Zhang P, Friebe B, Gill B, Park RF (2007) Cytogenetics in the age of molecular genetics. Aust J Agr Res 58:498–506CrossRefGoogle Scholar
  227. Zivanovic G, Mestres F (2010) Viabilities of Drosophila subobscura homo- and heterokaryotypes at optimal and stress temperatures. I. Analysis over several years. Hereditas 147:82–90PubMedCrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Pranveer Singh
    • 1
  1. 1.Department of ZoologyIndira Gandhi National Tribal UniversityAmarkantakIndia

Personalised recommendations