Advertisement

Chaos

  • G. c. LayekEmail author
Chapter
  • 3k Downloads

Abstract

In the development of science in the twentieth century, philosophers and scientists convinced that there could be a motion even for a simple system which is erratic in nature, not simply periodic or quasiperiodic. Moreover, the behaviors of the motion may be unpredictable and therefore long-range prediction is impossible. The science of unpredictability has immense interest.

Keywords

Lyapunov exponentLyapunov Exponent chaosChaos Period-doubling Bifurcation Sequence mapsMaps Periodic Points 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Simmons, G.F.: Introduction to Topology and Modern Analysis. Tata McGraw-Hill (2004)Google Scholar
  2. 2.
    Munkres, J.R.: Topology. Prentice Hall (2000)Google Scholar
  3. 3.
    Copson, E.T.: Metric Spaces. Cambridge University Press (1968)Google Scholar
  4. 4.
    Reisel, R.B.: Elementary Theory of Metric Spaces. Springer-Verlag (1982)Google Scholar
  5. 5.
    Bahi, J.M., Guyeux, C.: Discrete Dynamical Systems and Chaotic Mechanics: Theory and Applications. CRC Press (2013)Google Scholar
  6. 6.
    Ott, E.: Chaos in Dynamical Systems, 2nd edition. Cambridge University press (2002)Google Scholar
  7. 7.
    Yorke, J.A., Grebogi, C., Ott, E., Tedeschini-Lalli, L.: Scaling behavior of windows in dissipative dynamical systems. Phys. Rev. Lett. 54, 1095–1098 (1985)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Grebogi, C., Ott, E., Yorke, J.A.: Chaos, Strange attractors, and fractal basin boundaries in nonlinear dynamics. Science 238, 632–638 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Devaney, R.L.: An Introduction to Chaotic Dynamical systems. Westview Press (2003)Google Scholar
  10. 10.
    Metropolis, N., Stein, M.L., Stein, P.R.: On finite limit sets for transformations on the unit interval. J. Comb. Theory (A) 15, 25–44 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Feigenbaum, M.J.: The universal metric properties of nonlinear transformations. J. Stat. Phys. 21, 669–706 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Royden, H.L.: Real Analysis. Pearson Education (1988)Google Scholar
  13. 13.
    Li, T., Yorke, J.A.: Period three implies chaos. Am. Math. Monthly 82, 985–992 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Glendinning, P.: Stability, Instability and Chaos: An Introduction to the Theory of Nonlinear Differential Equations. Cambridge University Press (1994)Google Scholar
  15. 15.
    Gluckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer (1983)Google Scholar
  16. 16.
    Jordan, D.W., Smith, P.: Non-linear Ordinary Differential Equations. Oxford University Press (2007)Google Scholar
  17. 17.
    McCauley, J.L.: Chaos, Dynamics and Fractals. Cambridge University Press (1993)Google Scholar
  18. 18.
    Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Pomeau, Y., Manneville, P.: Intermittent transition to turbulence in dissipative dynamical systems. Commun. Math. Phys. 74, 189 (1980)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Benettin, G., Cercignani, C., Galgani, L., Giorgilli, A.: Universal properties in conservative dynamical systems. Lett. Nuovo Cimento 28, 1–4 (1980)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Gleick, J.: Chaos: Making a new science. Viking, New York (1987)zbMATHGoogle Scholar
  22. 22.
    Devaney, R.L.: A First Course in Chaotic Dynamical Systems: Theory and Experiment. Westview Press (1992)Google Scholar
  23. 23.
    Davies, B.: Exploring Chaos. Westview Press (2004)Google Scholar
  24. 24.
    Cvitanović, P.: Universality in Chaos, 2nd edn. IOP, Bristol and Philadelphia (1989)zbMATHGoogle Scholar
  25. 25.
    Arrowsmith, D.K., Place, L.M.: Dynamical Systems: Differential Equations, Maps and Chaotic Behavior. Chapman and Hall/CRC (1992)Google Scholar
  26. 26.
    Addison, P.S.: Fractals and Chaos: An Illustrated Course. Overseas Press (2005)Google Scholar
  27. 27.
    Manneville, P.: Instabilities, An introduction to Nonlinear Dynamics and Complex Systems. Imperial College Press, Chaos and Turbulence (2004)zbMATHGoogle Scholar
  28. 28.
    Lorenz, E.: The Essence of Chaos. University of Washington Press (1993)Google Scholar
  29. 29.
    Tél, T., Gruiz, M.: Chaotic Dynamics: An Introduction Based on Classical Mechanics. Cambridge University Press (2006)Google Scholar
  30. 30.
    Sternberg, S.: Dynamical Systems. Dover Publications (2010)Google Scholar
  31. 31.
    Parker, T.S., Chua, L.O.: Practical Numerical Algorithms for Chaotic Systems. Springer-Verlag New York Inc. (1989)Google Scholar
  32. 32.
    Stewart, I.: Does God play dice?: The Mathematics of Chaos. Oxford (1990)Google Scholar
  33. 33.
    Gulick, D.: Encounters with Chaos and Fractals. CRC Press (2012)Google Scholar
  34. 34.
    Bhi-lin, H.: Elementary Symbolic Dynamics and Chaos in Dissipative Systems. World Scientific (1989)Google Scholar
  35. 35.
    Baker, G.L., Gollub, J.P.: Chaotic Dynamics: An Introduction. Cambridge University Press (1990)Google Scholar
  36. 36.
    McMullen, C.T.: Complex Dynamics and Renormalization. Princeton University Press (1994)Google Scholar
  37. 37.
    Medio, A., Lines, M.: Nonlinear Dynamics: A Primer. Cambridge University Press (2001)Google Scholar
  38. 38.
    Feigenbaum, M.J.: Universal behavior in nonlinear systems. Los Alamos Science 1, 4–27 (1980)MathSciNetGoogle Scholar
  39. 39.
    Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press (2000)Google Scholar
  40. 40.
    Lichtenberg, A.J., Lieberman, M.A.: Regular and Stochastic Motion. Springer, Berlin (1983)CrossRefzbMATHGoogle Scholar
  41. 41.
    Schuster, H.G.: Deterministic Chaos, Chaps. 1, 2. Physik-Verlag, Weinheim (1984)Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of MathematicsThe University of BurdwanBardhamanIndia

Personalised recommendations