Skip to main content

Bose Einstein Condensation, Geometry of Local Scale Invariance, and Turbulence

  • Conference paper
  • First Online:
Applied Mathematics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 146))

  • 1317 Accesses

Abstract

Turbulent excitations have been observed in superfluid liquid helium, a Bose Einstein system, that obeys the Kolmogoroc \(\frac{5}{3}\) scaling law for its energy spectrum. In recent joint work with Kouskik Ray of IACS we show how by regarding superfluid helium as a Bose Einstein quantum field theory with local 3 dimensional scale invariance leads to the Kolmogorov scaling law observed. In order to get local 3 dimensional scale invariance geometrical methods are needed, while in order to derive the observed turbulence scaling law the Bose Einstein condensation description of superfluid helium and Zakharov’s weak wave turbulence method are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Ray, S. Sen, Scale invariance and superfluid turbulence. Nucl. Phys. B [FS], 637 (2013)

    Google Scholar 

  2. H. Weyl, Gravitation and electricity. Sitzungsber. Preuss. Akad. Berlin 465 (1918) (Collected in [3])

    Google Scholar 

  3. L. O’Raifeartaigh, The Dawning of Gauge Theory, Princeton Series in Physics (1997)

    Google Scholar 

  4. F. London, Quantum-mechanical interpretation of Weyl’s theory. Zeit. F. Phys. 42, 375 (1927)

    Article  MATH  Google Scholar 

  5. M. Tsubota, Quantum turbulence. J. Phys. Soc. Jpn. 77, 111006 (2008) arXiv:0806.2737(cond-mat)

  6. M. Paoletti et al., Velocity statistics distinguish quantum turbulence from classical turbulence. Phys. Rev. Lett. 101, 154501 (2008)

    Google Scholar 

  7. E. Gross, Structure of a quantized vortex in boson systems, Il. Nuovo Cimento 20, 454 (1961)

    Google Scholar 

  8. L. Pitaevskii, Vortex Lines in an Imperfect Bose Gas, Soviet Physics JETP-USSR, vol. 13, pp. 451 (American Institute of Physics, New York, 1961)

    Google Scholar 

  9. K. Schwarz, Three-dimensional vortex dynamics in superfluid \({}^4\text{ He }\): line-line and line-boundary interactions. Phys. Rev. B 31, 5782 (1985)

    Article  Google Scholar 

  10. D. Kivotides et al., Velocity spectra of superfluid turbulence. Europhys. Lett. 57, 845 (2002)

    Google Scholar 

  11. M. Kobayashi, M. Tsubota, Kolmogorov spectrum of superfluid turbulence: numerical analysis of the Gross-Pitaevskii equation with a small-scale dissipation. Phys. Rev. Lett. 94, 065302 (2005)

    Article  Google Scholar 

  12. C. Connaughton, S. Sen, Local scale invariance and weak wave Turbulenc (Unpublished)

    Google Scholar 

  13. T. Padmanabhan, Conformal invariance, gravity and massive gauge theories. Class. Quantum Grav. 2, L105 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Iorio, L. O’Raifeartaigh, I. Sachs et al., Weyl gauging and conformal invariance. Nucl. Phys. B 495, 433 (1997) [hep-th/9607110]

    Google Scholar 

  15. S. Musher, A. Rubenchik, V. Zakharov, Weak Langmuir turbulence. Phys. Rep. 252, 177 (1995)

    Article  Google Scholar 

  16. M. Rakowski, S. Sen, Quantum kinetic equation in weak turbulence. Phys. Rev. E 53, 586590 (1996). arXiv:cond-mat/9510107

  17. V. Zakharov, V. L’vov, G. Falkovich, Kolmogorov Spectra of Turbulence (Springer, New York, 1992)

    Google Scholar 

  18. A.M. Balk, On the Kolmogorov Zakharov spectra of weak turbulence. Phys. D 139, 137157 (2000)

    Article  MathSciNet  Google Scholar 

  19. D. Sanyal, S. Sen, Quantum weak turbulence. Ann. Phys. 321 1327 (2006). arXiv:cond-mat/0402395

Download references

Acknowledgments

SS acknowledges the hospitality of the Department of Theoretical Physics, IACS, during the period this work and Koushik Ray for an enjoyable collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddhartha Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Sen, S. (2015). Bose Einstein Condensation, Geometry of Local Scale Invariance, and Turbulence. In: Sarkar, S., Basu, U., De, S. (eds) Applied Mathematics. Springer Proceedings in Mathematics & Statistics, vol 146. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2547-8_5

Download citation

Publish with us

Policies and ethics