Skip to main content

Graph Theoretical Invariants of Chemical and Biological Systems: Development and Applications

  • Conference paper
  • First Online:
Applied Mathematics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 146))

  • 1339 Accesses

Abstract

Chemical graph theory has been extensively applied in the characterization of structure in many areas of science, chemistry and biology in particular. Numerical graph invariants of molecules or topological indices have been used in the characterization of structure, discrimination of pathological structures like isospectral graphs, prediction of property/ bioactivity of molecules for new drug discovery and environment protection as well as quantification of intermolecular similarity. More recently, methods of discrete mathematics have found applications in the characterization of complex biological objects like DNA/ RNA/ protein sequences and proteomics maps. This chapter reviews the latest results in applications of discrete mathematics, graph theory in particular, to chemical and biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Harary, Graph Theory and Theoretical Physics (Academic Press, London, 1967)

    MATH  Google Scholar 

  2. M. Dehmer, S.C. Basak, Statistical and Machine Learning Approaches for Network Analysis (Wiley, Hoboken, 2012)

    Book  MATH  Google Scholar 

  3. S.C. Basak, Philosophy of mathematical chemistry: A personal perspective. HYLE–Int. J. Philos. Chem. 19, 3–17 (2013)

    Google Scholar 

  4. N. Trinajstić, Chemical Graph Theory (CRC Press, Boca Raton, 1983)

    Google Scholar 

  5. G. Bianconi, A. Barabasi, Bose-Einstein condensation in complex networks. Phys. Rev. Lett. 86, 5632–5635 (2001)

    Article  Google Scholar 

  6. S.C. Basak, Mathematical descriptors for the prediction of property, bioactivity, and toxicity of chemicals from their structure: a chemical-cum-biochemical approach. Curr. Comput. Aided Drug Des. 9, 449–462 (2013)

    Article  Google Scholar 

  7. A. Ghosh, A. Nandy, P. Nandy, B.D. Gute, S.C. Basak, Computational study of dispersion and extent of mutated and duplicated sequences of the H5N1 influenza neuraminidase over the period 1997–2008. J. Chem. Inf. Model. 49, 2627–2638 (2009)

    Article  Google Scholar 

  8. S.C. Basak, V.R. Magnuson, G.J. Niemi, R.R. Regal, Determining structural similarity of chemicals using graph theoretic indices. Discrete Appl. Math. 19, 17–44 (1988)

    Article  MathSciNet  Google Scholar 

  9. H. Wiener, Structural determination of paraffin boiling points. J. Am. Chem. Soc. 69, 17–20 (1947)

    Article  Google Scholar 

  10. H. Hosoya, Topological Index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 44, 2332–2339 (1971)

    Article  Google Scholar 

  11. L.B. Kier, L.H. Hall, Molecular Connectivity in Chemistry and Drug Research (Academic Press, New York, 1976)

    Google Scholar 

  12. M. Randić, Characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  Google Scholar 

  13. L.B. Kier, L.H. Hall, Molecular Structure Description: The Electrotopological State (Academic Press, San Diego, 1999)

    Google Scholar 

  14. C.E. Shannon, A mathematical theory of communication. The Bell Syst. Tech. J. 27, 379–423 (1948)

    Google Scholar 

  15. Dragon software, http://www.vcclab.org/lab/edragon/

  16. Molconn-Z Version 3.5, Hall Associates Consulting. Quincy, MA (2000)

    Google Scholar 

  17. S.C. Basak, D.K. Harriss, V.R. Magnuson, POLLY v. 2.3: Copyright of the University of Minnesota (1988)

    Google Scholar 

  18. S.C. Basak, G.D. Grunwald, APProbe. Copyright of the University of Minnesota (1993)

    Google Scholar 

  19. P.A. Filip, T.S. Balaban, A.T. Balaban, A new approach for devising local graph invariants: derived topological indices with low degeneracy and good correlation ability. J. Math. Chem. 1, 61–83 (1987)

    Article  MathSciNet  Google Scholar 

  20. S.C. Basak, in Topological Indices and Related Descriptors in QSAR and QSPR, ed. by J. Devillers, A.T. Balaban (Gordon and Breach Science Publishers, Netherlands, 1999), pp. 563-593

    Google Scholar 

  21. K. Balasubramanian, S.C. Basak, Characterization of isospectral graphs using graph invariants and derived orthogonal parameters. J. Chem. Inf. Comput. Sci. 38, 367–373 (1998)

    Article  Google Scholar 

  22. S.C. Basak, B.D. Gute, D. Mills, Similarity methods in analog selection, property estimation and clustering of diverse chemicals. ARKIVOC 9, 157–210 (2006)

    Google Scholar 

  23. S.C. Basak, Role of mathematical chemodescriptors and proteomics-based biodescriptors in drug discovery. Drug Dev. Res. 72, 1–9 (2010)

    Google Scholar 

  24. M. Randić, M. Vracko, A. Nandy, S.C. Basak, On 3-D graphical representation of DNA primary sequences and their numerical characterization. J. Chem. Inf. Comput. Sci. 40, 1235–1244 (2000)

    Article  Google Scholar 

  25. A. Nandy, M. Harle, S.C. Basak, Mathematical descriptors of DNA sequences: Development and applications. ARKIVOC 9, 211–238 (2006)

    Google Scholar 

  26. M. Randić, J. Zupan, A.T. Balaban, D. Vikic-Topic, D. Plavsic, Graphical representation of proteins. Chem. Rev. 111, 790–862 (2011)

    Article  Google Scholar 

  27. S.C. Basak, B.D. Gute, Mathematical biodescriptors of proteomics maps: background and significance. Curr. Opin. Drug Disc. Dev. 11, 320–326 (2008)

    Google Scholar 

  28. R. Natarajan, S.C. Basak, T.J. Neumann, A novel approach for the numerical characterization of molecular chirality. J. Chem. Inf. Model. 47, 771–775 (2007)

    Article  Google Scholar 

  29. M. Bunge, Method, Model and Matter (D. Reidel Publishing Co., Boston, 1973)

    Book  Google Scholar 

  30. Hyle: Int. J. Philos. Chem. Available from: http://www.hyle.org/journal/issues/19-1/index.html

  31. Curr. Comput. Aided Drug Des. Available from: http://www.benthamscience.com/ccadd/EBM.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash C. Basak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this paper

Cite this paper

Basak, S.C., Natarajan, R., Sinha, D.K. (2015). Graph Theoretical Invariants of Chemical and Biological Systems: Development and Applications. In: Sarkar, S., Basu, U., De, S. (eds) Applied Mathematics. Springer Proceedings in Mathematics & Statistics, vol 146. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2547-8_12

Download citation

Publish with us

Policies and ethics