Skip to main content

A Survey on Texture Image Retrieval

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 381))

Abstract

Retrieving images from the large databases has always been one challenging problem in the area of image retrieval while maintaining the higher accuracy and lower computational time. Texture defines the roughness of a surface. For the last two decades due to the large extent of multimedia database, image retrieval has been a hot issue in image processing. Texture images are retrieved in a variety of ways. This paper presents a survey on various texture image retrieval methods. It provides a brief comparison of various texture image retrieval methods on the basis of retrieval accuracy and computation time with the benchmark databases. Image retrieval techniques vary with feature extraction methods and various distance measures. In this paper, we present a survey on various texture feature extraction methods by applying variants of wavelet transform. This survey paper facilitates the researchers with background of progress of image retrieval methods that will help researchers in the area to select the best method for texture image retrieval appropriate to their requirements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Candès, E.J., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Google Scholar 

  2. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Google Scholar 

  3. Velisavljevic, V., Beferull-Lozano, B., Vetterli, M., Dragotti, P.L.: Directionlets: anisotropic multi-directional representation with separable filtering. IEEE Trans. Image Process. 17(7), 1916–1933 (2006)

    Google Scholar 

  4. Reddy, A.H., Chandra. N.S.: Local oppugnant color space extrema patterns for content based natural and texture image retrieval. Int. J. Electron. Commun. (AEÜ) 69(1), 290–298 (2014)

    Google Scholar 

  5. MIT Vision and Modeling Group, Vision Texture. http://vismod.www.media.mit.edu

  6. Pi, M.H., Tong, C.S., Choy, S.K., Zhang, H.: A fast and effective model for wavelet subband histograms and its application in texture image retrieval. IEEE Trans. Image Process. 15(10), 3078–3088 (2006)

    Google Scholar 

  7. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)

    Google Scholar 

  8. Kokare, M., Biswas, P.K., Chatterji, B.N.: Rotation invariant texture image retrieval using rotated complex wavelet filters. IEEE Trans. Syst. Man Cybern. 36(6), 1273–1282 (2006)

    Google Scholar 

  9. Kokare, M., Biswas, P.K., Chatterji, B.N.: Texture image retrieval using new rotated complex wavelet filters. IEEE Trans. Syst. Man, Cybern. 35(6), 1168–1178 (2005)

    Google Scholar 

  10. Randen, T., Husoy, J.H.: Filtering for texture classification: a comparative study. IEEE Trans. Pattern Anal. Mach. Intell. 21(4), 291–310 (1999)

    Google Scholar 

  11. Wouwer, G.V., Scheunders, P., Dyck, D.V.: Stastical texture characterization from discrete wavelet representation. IEEE Trans. Image Process. 8(4), 592–598 (1999)

    Google Scholar 

  12. Kingsbury, N.G.: Image processing with complex wavelet. Phil. Trans. Roy. Soc. London A 357, 2543–2560 (1999)

    Google Scholar 

  13. Zujovic, J., Pappas, T.N., Neuhoff, D.L.: Structural texture similarity metrics for image analysis and retrieval. IEEE Trans. Image Process. 22(7), 2545–2558 (2013)

    Google Scholar 

  14. Corbis Stock Photography. http://www.corbis.com (2011). Accessed 23 March 2011

  15. CUReT: Columbia-Utrecht Refelctance and Texture Database. http://www1.cs.columbia.edu/CAVE/software/curet (2002). Accessed 4 Aug 2002

  16. Dong, Y., Tao, D., Li, X., Ma, J., Pu, J.: Texture classification and retrieval using shearlets and linear regression. IEEE Trans. Cybern. 45(3), 358–369 (2015)

    Google Scholar 

  17. Shrivastava, N., Tyagi, V.: A review of ROI image retrieval techniques. Adv. Intell. Syst. Comput. 328, 509–520 (2015). doi:10.1007/978-3-319-12012-6_56

    Google Scholar 

  18. Jeena Jacob, I., Srinivasagan, K.G., Jayapriya, K.: Local oppugnant color texture pattern for image retrieval system. Pattern Recogn. Lett. 42, 72–78 (2014)

    Google Scholar 

  19. Mukhopadhyay, S., Dash, J.K., Das Gupta, R.: Content-based texture image retrieval using fuzzy class membership. Pattern Recogn. Lett. 34(6), 646–654 (2013)

    Google Scholar 

  20. Verma, M., Raman, B., Murala, S.: Local extrema co-occurrence pattern for color and texture image retrieval. Neurocomputing (2015). doi:10.1016/j.neucom.2015.03.015

    Google Scholar 

  21. Kwitt, R., Uhl, A.: Lightweight probabilistic texture retrieval. IEEE Trans. Image Process. 19(1), 241–253 (2010)

    Google Scholar 

  22. Choy, S.K., Tong, C.S.: Statistical wavelet subband characterization based on generalized gamma density and its application in texture retrieval. IEEE Trans. Image Process. 19(2), 281–289 (2010)

    Google Scholar 

  23. Pi, M., Li, H.: Fractal indexing with the joint statistical properties and its application in texture. IET Image Process 2(4), 218–230 (2008)

    Google Scholar 

  24. Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and Kullback–Leibler distance. IEEE Trans. Image Process. 11(2), 146–158 (2002)

    Google Scholar 

  25. Nava, R., Escalante-Ramírez, B., Cristóbal, G.: Texture image retrieval based on log-gabor features. Progress Pattern Recogn. Image Anal. Comput. Vis. Appl. 7441, 414–421 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghanshyam Raghuwanshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Raghuwanshi, G., Tyagi, V. (2016). A Survey on Texture Image Retrieval. In: Satapathy, S., Raju, K., Mandal, J., Bhateja, V. (eds) Proceedings of the Second International Conference on Computer and Communication Technologies. Advances in Intelligent Systems and Computing, vol 381. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2526-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2526-3_44

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2525-6

  • Online ISBN: 978-81-322-2526-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics