Skip to main content

Pattern Detection Framework for MRI Images and Labeling Volume of Interest (VoI)

  • Conference paper
  • First Online:
Proceedings of the Second International Conference on Computer and Communication Technologies

Abstract

In the current scenario of Biomedical Research, the Magnetic Resonance Imaging (MRI) images visual analytics processing applications are facing challenges of the use of different techniques under different frameworks supported by different software tools. The establishment of different frameworks under different software tools and migration of data from one framework to another as well as one tool or environment to another poses critical difficulties and large time consumption. To reduce this hassle, the need of common framework is identified and the same is undertaken in this work. To address this issue, a framework MRI Image Pattern Detection Framework (MIPDF) is proposed to take care for the reduction of cited hassle and improved visual analytics to support medical professionals in their act of detection and diagnosis of diseases by identifying regularity and irregularity with improved visualization and analytics results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soon, C., Qing, W.: Content-based retrieval and data mining of a skin cancer image database, pp. 611–615. IEEE (2001)

    Google Scholar 

  2. Delen, D., Glenn, W., Amit K.: Predicting breast cancer survivability: a comparative of three data mining methods. In Elsevier B.V. Artificial intelligence in medicine, pp. 1–15 (2004)

    Google Scholar 

  3. Yan, Z., Peter, P.J., Richard, B.H.: Visualization of multidimensional and multimodal tomographic medical imaging data, a case study, pp. 1304–1308

    Google Scholar 

  4. Raquel, T., Nuno, C.F., Francisco, C.: Development of a medical image database for data mining and group analysis applications. Elsevier Ltd and SciVerse Sci. Direct Procedia Technol. 5, 912–921(2012)

    Google Scholar 

  5. Richa, M., Rinal, D., Aashish, N.J.: Predictive analysis of biomedical data using clustering data mining techniques. Int. J. Comput. Intell. Commun. Technol. (IJCICT) 1(2), 10–16 (2012)

    Google Scholar 

  6. Mohammad, R., Ahmad, H.B., Farhan, M.: Finger-based gestural interaction for exploration of 3D heart visualization. Elsevier Ltd SciVerse Sci. Direct Procedia Social Behav. Sci. 97, 684–690(2013)

    Google Scholar 

  7. Ringiene, L., Dzemyda, G.: Multidimensional data visualization based on the exponential correlation function in Baltic. J. Modern Comput. 1(3), 9–28 (2013)

    Google Scholar 

  8. Kargupta, H., Stafford, B., Hamzaoglu, I.: Web based parallel/distributed medical data mining using software agents. Los Alamos National Laboratory

    Google Scholar 

  9. Maryam, S., Fairuz, M., Wai, K.: Using fuzzy rough feature selection for image retrieval system. IEEE, pp. 42–48 (2013)

    Google Scholar 

  10. Takabayashi, K.: Temporal abstraction and data mining with visualization of laboratory data

    Google Scholar 

  11. Paul, S., Andrew, M., Owen, O., Nitin, S., Jonathan, W., Daniel, R., Amin, N., Benno, S., Trey, I.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Cold Spring Harbor Laboratory Press, pp. 2498–2504 (2003)

    Google Scholar 

  12. Alkiviadis, S., G.Ioannis, T.: Visualization of biological information with circular drawings. In Springer–Verlag, Berlin Heidelberg, pp. 468–478 (2004)

    Google Scholar 

  13. Chen, X.: A graphical user interface model for scientific data visualization and exploration. University of New Hampshire (2005)

    Google Scholar 

  14. Marcela, R., Agma, T., Caetano, T., Paulo, A.: An Association rule based method to support medical image diagnosis with efficiency. IEEE Trans. Multimedia 10(2), 276–285 (2008)

    Google Scholar 

  15. Steve, P., David, T., Philip, M., James, M., Alice, V., Kell, D., Teresa, A.: Visualizing biological data: a semantic approach to tool and database integration. BMC Bioinform. 10(Suppl 6):S19 (2009)

    Google Scholar 

  16. Changchun, Y., Li, Y.: A data mining model and methods based on multimedia database in IEEE (2010)

    Google Scholar 

  17. Awalin, S., Angela, S., Sohit, K., Paul, R., Ginnah, L., Ben, S.: Community health map: a geospatial and multivariate data visualization tool for public health datasets. Govern. Inform. Quartely J. (2012)

    Google Scholar 

  18. Yingcai, W., Xiaotong, L., Shixia, L., Kwan–Liu, M.: ViSizer-A visualization resizing framework. IEEE Comput. Soc. 19(2), 278–290 (2013)

    Google Scholar 

  19. Robert van, L., Jan, H., de Wim, L.: A distributed blackboard architecture for interactive data visualization. Centre for Mathematics and Computer Science CWI, Amsterdam, pp. 1–15

    Google Scholar 

  20. Carlos, O., Edward, O.: Discovering association rules based on image content

    Google Scholar 

  21. Chung-Hong, L., Chih-Hong, W., Hsiang-Hang, C., Hsin-Chang, Y.: A unified multilingual and multimedia data mining approach for cancer knowledge discovery

    Google Scholar 

  22. Yining, D.: Unsupervised segmentation of color-texture regions in images and video

    Google Scholar 

  23. Sun, H., Davulun, R.: Java –based application framework for visualization of gene regulatory region annotations Bioinformatics 20(5) @Oxford University Press, vol. 20, no. 5, pp. 727–734 (2004)

    Google Scholar 

  24. Teng, L.: Contextual Decomposition of Multi-Label Images (2009)

    Google Scholar 

  25. Ganegedara, H.: Self organising map based region of interest labelling for automated defect identification in large sewer pipe image collections (2012)

    Google Scholar 

  26. Yang, Y.: Web and personal image annotation by mining label correlation with relaxed visual graph embedding (2012)

    Google Scholar 

  27. Bao, B.: Hidden-concept driven multilabel image annotation and label ranking (2012)

    Google Scholar 

  28. Rota Bulo, S.: Structured Local Predictors for Image Labelling (2012)

    Google Scholar 

  29. Marko, T., Ante, O., Andrej, K., Jurij, T.: Affecting labeling in a content-based recommender system for images. IEEE Trans. Multi. 15(2), 391–400 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupal Snehkunj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this paper

Cite this paper

Snehkunj, R., Mehta, R., Jani, A.N. (2016). Pattern Detection Framework for MRI Images and Labeling Volume of Interest (VoI). In: Satapathy, S., Raju, K., Mandal, J., Bhateja, V. (eds) Proceedings of the Second International Conference on Computer and Communication Technologies. Advances in Intelligent Systems and Computing, vol 381. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2526-3_34

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2526-3_34

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2525-6

  • Online ISBN: 978-81-322-2526-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics