Recent Advances in Chitosan-Based Nanomedicines for Cancer Chemotherapy

  • Ankit Saneja
  • Chetan Nehate
  • Noor Alam
  • Prem N. GuptaEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Chitosan, a cationic polysaccharide, has prompted the continuous impetus for the development of tumor targeted drug delivery systems, thanks to the polymer’s biocompatibility, low toxicity, and biodegradability. The presence of primary hydroxyl and amine groups on its backbone allows it for chemical modifications to control its physical properties. The nanomedicines prepared from chitosan and its derivatives can be delivered through different routes, such as oral, intravenous, and intraperitoneal. Chitosan-based nanomedicines including nanoparticles, microspheres, drug conjugates, micelles, hydrogels, etc. are in various stages of development. This polymer is being currently investigated for simultaneous delivery of two chemotherapeutic agents or chemotherapeutic agent with a gene carrier to produce synergistic effects. This chapter summarizes the recent advances in application of chitosan and its derivatives as a carrier for chemotherapeutic agents as well as gene carriers for cancer chemotherapeutics.


Chitosan Delivery systems Nanoparticles Targeted delivery 


  1. 1.
    Saneja A, Dubey RD, Alam N, Khare V, Gupta PN (2014) Co-formulation of P-glycoprotein substrate and inhibitor in nanocarriers: an emerging strategy for cancer chemotherapy. Curr Cancer Drug Targets 14(5):419–433CrossRefGoogle Scholar
  2. 2.
    Saneja A, Khare V, Alam N, Dubey RD, Gupta PN (2014) Advances in P-glycoprotein-based approaches for delivering anticancer drugs: pharmacokinetic perspective and clinical relevance. Expert Opin Drug Deliv 11(1):121–138CrossRefGoogle Scholar
  3. 3.
    Duncan R (2003) The dawning era of polymer therapeutics. Nat Rev Drug Discov 2(5):347–360CrossRefGoogle Scholar
  4. 4.
    Park JH, Saravanakumar G, Kim K, Kwon IC (2010) Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliv Rev 62(1):28–41CrossRefGoogle Scholar
  5. 5.
    Alam N, Khare V, Dubey R, Saneja A, Kushwaha M, Singh G, Sharma N, Chandan B, Gupta PN (2014) Biodegradable polymeric system for cisplatin delivery: development, in vitro characterization and investigation of toxicity profile. Mater Sci Eng C Mater Biol Appl 38:85–93CrossRefGoogle Scholar
  6. 6.
    Gupta PN, Jain S, Nehate C, Alam N, Khare V, Dubey RD, Saneja A, Kour S, Singh SK (2014) Development and evaluation of paclitaxel loaded PLGA:poloxamer blend nanoparticles for cancer chemotherapy. Int J Biol Macromol 69:393–399CrossRefGoogle Scholar
  7. 7.
    Goodarzi N, Varshochian R, Kamalinia G, Atyabi F, Dinarvand R (2013) A review of polysaccharide cytotoxic drug conjugates for cancer therapy. Carbohydr Polym 92(2):1280–1293CrossRefGoogle Scholar
  8. 8.
    Yang J, Han S, Zheng H, Dong H, Liu J (2015) Preparation and application of micro/nanoparticles based on natural polysaccharides. Carbohydr Polym 123:53–66CrossRefGoogle Scholar
  9. 9.
    Gulbake A, Jain SK (2012) Chitosan: a potential polymer for colon-specific drug delivery system. Expert Opin Drug Deliv 9(6):713–729CrossRefGoogle Scholar
  10. 10.
    Prabaharan M (2015) Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 72:1313–1322CrossRefGoogle Scholar
  11. 11.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678CrossRefGoogle Scholar
  12. 12.
    Chenite A, Buschmann M, Wang D, Chaput C, Kandani N (2001) Rheological characterisation of thermogelling chitosan/glycerol-phosphate solutions. Carbohydr Polym 46(1):39–47CrossRefGoogle Scholar
  13. 13.
    Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  14. 14.
    Upadhyaya L, Singh J, Agarwal V, Tewari RP (2014) The implications of recent advances in carboxymethyl chitosan based targeted drug delivery and tissue engineering applications. J Controlled Release 186:54–87CrossRefGoogle Scholar
  15. 15.
    Mao S, Sun W, Kissel T (2010) Chitosan-based formulations for delivery of DNA and siRNA. Adv Drug Deliv Rev 62(1):12–27CrossRefGoogle Scholar
  16. 16.
    Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble chitosan in mice. Biomaterials 20(2):175–182CrossRefGoogle Scholar
  17. 17.
    Freier T, Koh HS, Kazazian K, Shoichet MS (2005) Controlling cell adhesion and degradation of chitosan films by N-acetylation. Biomaterials 26(29):5872–5878CrossRefGoogle Scholar
  18. 18.
    Zhang H, Mardyani S, Chan WC, Kumacheva E (2006) Design of biocompatible chitosan microgels for targeted pH-mediated intracellular release of cancer therapeutics. Biomacromolecules 7(5):1568–1572CrossRefGoogle Scholar
  19. 19.
    Rao SB, Sharma CP (1997) Use of chitosan as a biomaterial: studies on its safety and hemostatic potential. J Biomed Mater Res 34(1):21–28CrossRefGoogle Scholar
  20. 20.
    Illum L (1998) Chitosan and its use as a pharmaceutical excipient. Pharm Res 15(9):1326–1331CrossRefGoogle Scholar
  21. 21.
    Perioli L, Ambrogi V, Venezia L, Pagano C, Ricci M, Rossi C (2008) Chitosan and a modified chitosan as agents to improve performances of mucoadhesive vaginal gels. Colloids Surf B Biointerfaces 66(1):141–145CrossRefGoogle Scholar
  22. 22.
    Baldrick P (2011) The safety of chitosan as a pharmaceutical excipient. Regul Toxicol Pharmacol 56(3):290–299CrossRefGoogle Scholar
  23. 23.
    Zhang J, Xia W, Liu P, Cheng Q, Tahi T, Gu W, Li B (2010) Chitosan modification and pharmaceutical/biomedical applications. Marine drugs 8(7):1962–1987CrossRefGoogle Scholar
  24. 24.
    Sadeghi AM, Dorkoosh FA, Avadi MR, Saadat P, Rafiee-Tehrani M, Junginger HE (2008) Preparation, characterization and antibacterial activities of chitosan, N-trimethyl chitosan (TMC) and N-diethylmethyl chitosan (DEMC) nanoparticles loaded with insulin using both the ionotropic gelation and polyelectrolyte complexation methods. Int J Pharm 355(1–2):299–306CrossRefGoogle Scholar
  25. 25.
    Huang J, Jiang H, Qiu M, Geng X, Yang R, Li J, Zhang C (2013) Antibacterial activity evaluation of quaternary chitin against Escherichia coli and Staphylococcus aureus. Int J Biol Macromol 52:85–91CrossRefGoogle Scholar
  26. 26.
    Hasegawa M, Yagi K, Iwakawa S, Hirai M (2001) Chitosan induces apoptosis via caspase-3 activation in bladder tumor cells. Jpn J Cancer Res 92(4):459–466CrossRefGoogle Scholar
  27. 27.
    Kean T, Thanou M (2010) Biodegradation, biodistribution and toxicity of chitosan. Adv Drug Deliv Rev 62(1):3–11CrossRefGoogle Scholar
  28. 28.
    Varum KM, Myhr MM, Hjerde RJ, Smidsrod O (1997) In vitro degradation rates of partially N-acetylated chitosans in human serum. Carbohydr Res 299(1–2):99–101CrossRefGoogle Scholar
  29. 29.
    Garcia-Fuentes M, Alonso MJ (2012) Chitosan-based drug nanocarriers: where do we stand? J Controlled Release 161(2):496–504CrossRefGoogle Scholar
  30. 30.
    Gorzelanny C, Poppelmann B, Pappelbaum K, Moerschbacher BM, Schneider SW (2010) Human macrophage activation triggered by chitotriosidase-mediated chitin and chitosan degradation. Biomaterials 31(33):8556–8563CrossRefGoogle Scholar
  31. 31.
    Chandy T, Sharma CP (1990) Chitosan-as a biomaterial. Artif Cells Blood Substit Biotechnol 18(1):1–24CrossRefGoogle Scholar
  32. 32.
    Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923CrossRefGoogle Scholar
  33. 33.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRefGoogle Scholar
  34. 34.
    Kato Y, Onishi H, Machida Y (2004) N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates. Biomaterials 25(5):907–915CrossRefGoogle Scholar
  35. 35.
    Thanou MM, Kotze AF, Scharringhausen T, Luessen HL, de Boer AG, Verhoef JC, Junginger HE (2000) Effect of degree of quaternization of N-trimethyl chitosan chloride for enhanced transport of hydrophilic compounds across intestinal caco-2 cell monolayers. J Controlled Release 64(1–3):15–25CrossRefGoogle Scholar
  36. 36.
    Jia Z, shen D, Xu W (2001) Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 333(1):1–6CrossRefGoogle Scholar
  37. 37.
    Xu T, Xin M, Li M, Huang H, Zhou S (2010) Synthesis, characteristic and antibacterial activity of N, N, N-trimethyl chitosan and its carboxymethyl derivatives. Carbohydr Polym 81(4):931–936CrossRefGoogle Scholar
  38. 38.
    Prego C, Torres D, Fernandez-Megia E, Novoa-Carballal R, Quià± oá E, Alonso MJ (2006) Chitosan-PEG nanocapsules as new carriers for oral peptide delivery: effect of chitosan pegylation degree. J Controlled Release 111(3):299–308CrossRefGoogle Scholar
  39. 39.
    Bernkop-Schnurch A, Hornof M, Guggi D (2004) Thiolated chitosans. Eur J Pharm Biopharm 57(1):9–17CrossRefGoogle Scholar
  40. 40.
    Leitner VM, Walker GF, Bernkop-Schnurch A (2003) Thiolated polymers: evidence for the formation of disulphide bonds with mucus glycoproteins. Eur J Pharm Biopharm 56(2):207–214CrossRefGoogle Scholar
  41. 41.
    Roldo M, Hornof M, Caliceti P, Bernkop-Schnurch A (2004) Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. Eur J Pharm Biopharm 57(1):115–121CrossRefGoogle Scholar
  42. 42.
    Sashiwa H, Shigemasa Y (1999) Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydr Polym 39(2):127–138CrossRefGoogle Scholar
  43. 43.
    Alves NM, Mano JF (2008) Chitosan derivatives obtained by chemical modifications for biomedical and environmental applications. Int J Biol Macromol 43(5):401–414CrossRefGoogle Scholar
  44. 44.
    Sashiwa H, S-i Aiba (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29(9):887–908CrossRefGoogle Scholar
  45. 45.
    Ji J, Wang L, Yu H, Chen Y, Zhao Y, Zhang H, Amer WA, Sun Y, Huang L, Saleem M (2014) Chemical modifications of chitosan and its applications. Polym Plast Technol Eng 53(14):1494–1505CrossRefGoogle Scholar
  46. 46.
    Khawar IA, Kim JH, Kuh HJ (2015) Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201C:78–89CrossRefGoogle Scholar
  47. 47.
    Wicki A, Witzigmann D, Balasubramanian V, Huwyler J (2015) Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Controlled Release 200:138–157CrossRefGoogle Scholar
  48. 48.
    Thanki K, Gangwal RP, Sangamwar AT, Jain S (2013) Oral delivery of anticancer drugs: challenges and opportunities. J Controlled Release 170(1):15–40CrossRefGoogle Scholar
  49. 49.
    Chen MC, Mi FL, Liao ZX, Hsiao CW, Sonaje K, Chung MF, Hsu LW, Sung HW (2013) Recent advances in chitosan-based nanoparticles for oral delivery of macromolecules. Adv Drug Deliv Rev 65(6):865–879CrossRefGoogle Scholar
  50. 50.
    Yeh TH, Hsu LW, Tseng MT, Lee PL, Sonjae K, Ho YC, Sung HW (2011) Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 32(26):6164–6173CrossRefGoogle Scholar
  51. 51.
    Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 46(12 Pt 1):6387–6392Google Scholar
  52. 52.
    Yang Y, Wang S, Wang Y, Wang X, Wang Q, Chen M (2014) Advances in self-assembled chitosan nanomaterials for drug delivery. Biotechnol Adv 32(7):1301–1316CrossRefGoogle Scholar
  53. 53.
    Kanapathipillai M, Brock A, Ingber DE (2014) Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev 79–80:107–118CrossRefGoogle Scholar
  54. 54.
    Khare V, Alam N, Saneja A, Dubey RD, Gupta PN (2014) Targeted drug delivery systems for pancreatic cancer. J Biomed Nanotechnol 10(12):3462–3482CrossRefGoogle Scholar
  55. 55.
    Grenha A (2012) Chitosan nanoparticles: a survey of preparation methods. J Drug Target 20(4):291–300CrossRefGoogle Scholar
  56. 56.
    Sarvaiya J, Agrawal YK (2015) Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 72:454–465CrossRefGoogle Scholar
  57. 57.
    Mitra A, Dey B (2011) Chitosan microspheres in novel drug delivery systems. Indian J Pharm Sci 73(4):355–366Google Scholar
  58. 58.
    Huang WT, Larsson M, Wang YR, Chiou SH, Lin HY, Liu DM (2015) Demethoxycurcumin-carrying chitosan-antibody core-shell nanoparticles with multi-therapeutic efficacy toward malignant A549 lung tumor-from in-vitro characterization to in-vivo evaluation. Mol Pharm 12(4):1242–1249CrossRefGoogle Scholar
  59. 59.
    Yu B, Li H, Zhang J, Zheng W, Chen T (2015) Rational design and fabrication of a cancer-targeted chitosan nanocarrier to enhance selective cellular uptake and anticancer efficacy of selenocystine. J Mater Chem B 3(12):2497–2504CrossRefGoogle Scholar
  60. 60.
    Liang J, Cao L, Zhang L, Wan X-C (2014) Preparation, characterization, and in vitro antitumor activity of folate conjugated chitosan coated EGCG nanoparticles. Food Sci Biotechnol 23(2):569–575CrossRefGoogle Scholar
  61. 61.
    Nie X, Zhang J, Xu Q, Liu X, Li Y, Wu Y, Chen C (2014) Targeting peptide iRGD-conjugated amphiphilic chitosan-co-PLA/DPPE drug delivery system for enhanced tumor therapy. J. Mater Chem B 2(21):3232–3242CrossRefGoogle Scholar
  62. 62.
    Snima KS, Jayakumar R, Lakshmanan VK (2014) In vitro and in vivo biological evaluation of O-carboxymethyl chitosan encapsulated metformin nanoparticles for pancreatic cancer therapy. Pharm Res 31(12):3361–3370CrossRefGoogle Scholar
  63. 63.
    Koo H, Min KH, Lee SC, Park JH, Park K, Jeong SY, Choi K, Kwon IC, Kim K (2013) Enhanced drug-loading and therapeutic efficacy of hydrotropic oligomer-conjugated glycol chitosan nanoparticles for tumor-targeted paclitaxel delivery. J Controlled Release 172(3):823–831CrossRefGoogle Scholar
  64. 64.
    Jiang L, Li X, Liu L, Zhang Q (2013) Thiolated chitosan-modified PLA-PCL-TPGS nanoparticles for oral chemotherapy of lung cancer. Nanoscale Res Lett 8(1):1–11CrossRefGoogle Scholar
  65. 65.
    Maya S, Sarmento B, Lakshmanan VK, Menon D, Seabra V, Jayakumar R (2014) Chitosan cross-linked docetaxel loaded EGF receptor targeted nanoparticles for lung cancer cells. Int J Biol Macromol 69:532–541CrossRefGoogle Scholar
  66. 66.
    Tian X, Yin H, Zhang S, Luo Y, Xu K, Ma P, Sui C, Meng F, Liu Y, Jiang Y, Fang J (2014) Bufalin loaded biotinylated chitosan nanoparticles: an efficient drug delivery system for targeted chemotherapy against breast carcinoma. Eur J Pharm Biopharm 87(3):445–453CrossRefGoogle Scholar
  67. 67.
    Sayari E, Dinarvand M, Amini M, Azhdarzadeh M, Mollarazi E, Ghasemi Z, Atyabi F (2014) MUC1 aptamer conjugated to chitosan nanoparticles, an efficient targeted carrier designed for anticancer SN38 delivery. Int J Pharm 473(1–2):304–315CrossRefGoogle Scholar
  68. 68.
    Huang S, Wan Y, Wang Z, Wu J (2013) Folate-conjugated chitosan-polylactide nanoparticles for enhanced intracellular uptake of anticancer drug. J Nanopart Res 15(12):1–15Google Scholar
  69. 69.
    Vivek R, Thangam R, Nipunbabu V, Ponraj T, Kannan S (2014) Oxaliplatin-chitosan nanoparticles induced intrinsic apoptotic signaling pathway: a “smart” drug delivery system to breast cancer cell therapy. Int J Biol Macromol 65:289–297CrossRefGoogle Scholar
  70. 70.
    Song H, Su C, Cui W, Zhu B, Liu L, Chen Z, Zhao L (2013) Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. Biomed Res Int 2013:723158Google Scholar
  71. 71.
    Luo F, Li Y, Jia M, Cui F, Wu H, Yu F, Lin J, Yang X, Hou Z, Zhang Q (2014) Validation of a Janus role of methotrexate-based PEGylated chitosan nanoparticles in vitro. Nanoscale Res Lett 9(1):1–13CrossRefGoogle Scholar
  72. 72.
    Le TMP, Pham VP, Dang TML, La TH, Le TH, Le QH (2013) Preparation of curcumin-loaded pluronic F127/chitosan nanoparticles for cancer therapy. Adv Nat Sci Nanosci Nanotechnol 4(2):025001CrossRefGoogle Scholar
  73. 73.
    Peng Z, Li Z, Zhang F, Peng X (2014) In-vitro degradation and cytotoxicity of gelatin/chitosan microspheres for drug controlled release. J Macromol Sci Part A 51(8):646–652CrossRefGoogle Scholar
  74. 74.
    Zhao X, Liu P (2015) pH-sensitive fluorescent hepatocyte-targeting multilayer polyelectrolyte hollow microspheres as a smart drug delivery system. Mol Pharm 11(5):1599–1610CrossRefGoogle Scholar
  75. 75.
    Park JM, Lee SY, Lee GH, Chung EY, Chang KM, Kwak BK, Kuh HJ, Lee J (2012) Design and characterisation of doxorubicin-releasing chitosan microspheres for anti-cancer chemoembolisation. J Microencapsul 29(7):695–705CrossRefGoogle Scholar
  76. 76.
    Pang X, Du HL, Zhang HQ, Zhai YJ, Zhai GX (2013) Polymer-drug conjugates: present state of play and future perspectives. Drug Discovery Today 18(23–24):1316–1322CrossRefGoogle Scholar
  77. 77.
    Haag R, Kratz F (2006) Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl 45(8):1198–1215CrossRefGoogle Scholar
  78. 78.
    Maeda H (2010) Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects. Bioconjug Chem 21(5):797–802CrossRefGoogle Scholar
  79. 79.
    Li D, Lu B, Zhang H, Huang Z, Xu P, Zheng H, Yin Y, Xu H, Liu X, Lou Y (2014) Synthesis and in vitro evaluation of methotrexate conjugated O, N-carboxymethyl chitosan via peptidyl spacers. J Nanopart Res 16(9):1–12Google Scholar
  80. 80.
    Kim H, Lee E, Lee I-H, Lee J, Kim J, Kim S, Lee Y, Kim D, Choi M, Kim Y-C (2014) Preparation and therapeutic evaluation of paclitaxel-conjugated low-molecular-weight chitosan nanoparticles. Macromol Res 22(8):805–808CrossRefGoogle Scholar
  81. 81.
    Mathiyalagan R, Subramaniyam S, Kim YJ, Kim YC, Yang DC (2014) Ginsenoside compound K-bearing glycol chitosan conjugates: synthesis, physicochemical characterization, and in vitro biological studies. Carbohydr Polym 112:359–366CrossRefGoogle Scholar
  82. 82.
    Li M, Xu X, Lu F, Guo S (2014) Primary in vitro and in vivo evaluation of norcantharidin-chitosan/poly (vinyl alcohol) for cancer treatment. Drug Deliv 21(4):293–301CrossRefGoogle Scholar
  83. 83.
    Liu F, Feng L, Zhang L, Zhang X, Zhang N (2013) Synthesis, characterization and antitumor evaluation of CMCS-DTX conjugates as novel delivery platform for docetaxel. Int J Pharm 451(1–2):41–49CrossRefGoogle Scholar
  84. 84.
    Gong XY, Yin YH, Huang ZJ, Lu B, Xu PH, Zheng H, Xiong FL, Xu HX, Xiong X, Gu XB (2012) Preparation, characterization and in vitro release study of a glutathione-dependent polymeric prodrug Cis-3-(9H-purin-6-ylthio)-acrylic acid-graft-carboxymethyl chitosan. Int J Pharm 436(1–2):240–247CrossRefGoogle Scholar
  85. 85.
    Son YJ, Jang JS, Cho YW, Chung H, Park RW, Kwon IC, Kim IS, Park JY, Seo SB, Park CR, Jeong SY (2003) Biodistribution and anti-tumor efficacy of doxorubicin loaded glycol-chitosan nanoaggregates by EPR effect. J Controlled Release 91(1–2):135–145CrossRefGoogle Scholar
  86. 86.
    Sosnik A, Menaker RM (2015) Polymeric micelles in mucosal drug delivery: challenges towards clinical translation. Biotechnol Adv, in pressGoogle Scholar
  87. 87.
    Talelli M, Barz M, Rijcken CJF, Kiessling F, Hennink WE, Lammers T (2015) Core-crosslinked polymeric micelles: principles, preparation, biomedical applications and clinical translation. Nano TodayGoogle Scholar
  88. 88.
    Deng C, Jiang Y, Cheng R, Meng F, Zhong Z (2012) Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: promises, progress and prospects. Nano Today 7(5):467–480CrossRefGoogle Scholar
  89. 89.
    Owen SC, Chan DPY, Shoichet MS (2012) Polymeric micelle stability. Nano Today 7(1):53–65CrossRefGoogle Scholar
  90. 90.
    Aliabadi HM, Lavasanifar A (2006) Polymeric micelles for drug delivery. Expert Opin Drug Deliv 3(1):139–162CrossRefGoogle Scholar
  91. 91.
    Torchilin VP (2004) Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci 61(19–20):2549–2559CrossRefGoogle Scholar
  92. 92.
    Zhang J, Chen XG, Li YY, Liu CS (2007) Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin. Nanomedicine 3(4):258–265CrossRefGoogle Scholar
  93. 93.
    Hu FQ, Wu XL, Du YZ, You J, Yuan H (2008) Cellular uptake and cytotoxicity of shell crosslinked stearic acid-grafted chitosan oligosaccharide micelles encapsulating doxorubicin. Eur J Pharm Biopharm 69(1):117–125CrossRefGoogle Scholar
  94. 94.
    Xie YT, Du YZ, Yuan H, Hu FQ (2012) Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system. Int J Nanomedicine 7:3235–3244Google Scholar
  95. 95.
    You J, Hu FQ, Du YZ, Yuan H (2007) Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel. Biomacromolecules 8(8):2450–2456CrossRefGoogle Scholar
  96. 96.
    Su Y, Hu Y, Du Y, Huang X, He J, You J, Yuan H, Hu F (2015) Redox-responsive polymer-drug conjugates based on doxorubicin and chitosan oligosaccharide-g-stearic acid for cancer therapy. Mol Pharm 12:1193–1202CrossRefGoogle Scholar
  97. 97.
    Yang Y, Yuan SX, Zhao LH, Wang C, Ni JS, Wang ZG, Lin C, Wu MC, Zhou WP (2015) Ligand-directed stearic acid grafted chitosan micelles to increase therapeutic efficacy in hepatic cancer. Mol Pharm 12(2):644–652CrossRefGoogle Scholar
  98. 98.
    Wang F, Chen Y, Zhang D, Zhang Q, Zheng D, Hao L, Liu Y, Duan C, Jia L, Liu G (2012) Folate-mediated targeted and intracellular delivery of paclitaxel using a novel deoxycholic acid-O-carboxymethylated chitosan-folic acid micelles. Int J Nanomedicine 7:325–337Google Scholar
  99. 99.
    Zhao Z, He M, Yin L, Bao J, Shi L, Wang B, Tang C, Yin C (2009) Biodegradable nanoparticles based on linoleic acid and poly(beta-malic acid) double grafted chitosan derivatives as carriers of anticancer drugs. Biomacromolecules 10(3):565–572CrossRefGoogle Scholar
  100. 100.
    Yu J, Xie X, Zheng M, Yu L, Zhang L, Zhao J, Jiang D, Che X (2012) Fabrication and characterization of nuclear localization signal-conjugated glycol chitosan micelles for improving the nuclear delivery of doxorubicin. Int J Nanomed 7:5079CrossRefGoogle Scholar
  101. 101.
    Chen Q, Sun Y, Wang J, Yan G, Cui Z, Yin H, Wei H (2013) Preparation and characterization of glycyrrhetinic acid-modified stearic acid-grafted chitosan micelles. Artif Cells Nanomed Biotechnol 1–7Google Scholar
  102. 102.
    Guerry A, Cottaz S, Fleury E, Bernard J, Halila S (2014) Redox-stimuli responsive micelles from DOX-encapsulating polycaprolactone-g-chitosan oligosaccharide. Carbohydr Polym 112:746–752CrossRefGoogle Scholar
  103. 103.
    Jin X, Mo R, Ding Y, Zheng W, Zhang C (2014) Paclitaxel-loaded N-octyl-O-sulfate chitosan micelles for superior cancer therapeutic efficacy and overcoming drug resistance. Mol Pharm 11(1):145–157CrossRefGoogle Scholar
  104. 104.
    Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99CrossRefGoogle Scholar
  105. 105.
    Ladet S, David L, Domard A (2008) Multi-membrane hydrogels. Nature 452(7183):76–79CrossRefGoogle Scholar
  106. 106.
    Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58CrossRefGoogle Scholar
  107. 107.
    Tian R, Chen J, Niu R (2014) The development of low-molecular weight hydrogels for applications in cancer therapy. Nanoscale 6(7):3474–3482CrossRefGoogle Scholar
  108. 108.
    Li C, Ren S, Dai Y, Tian F, Wang X, Zhou S, Deng S, Liu Q, Zhao J, Chen X (2014) Efficacy, pharmacokinetics, and biodistribution of thermosensitive chitosan/beta-glycerophosphate hydrogel loaded with docetaxel. AAPS Pharm Sci Technol 15(2):417–424CrossRefGoogle Scholar
  109. 109.
    Alexander A, Ajazuddin Khan J, Saraf S (2014) Formulation and evaluation of chitosan-based long-acting injectable hydrogel for PEGylated melphalan conjugate. J Pharm Pharmacol 66(9):1240–1250CrossRefGoogle Scholar
  110. 110.
    Taleb MFA, Alkahtani A, Mohamed SK (2015) Radiation synthesis and characterization of sodium alginate/chitosan/hydroxyapatite nanocomposite hydrogels: a drug delivery system for liver cancer. Polym Bull 72:1–18CrossRefGoogle Scholar
  111. 111.
    Ju C, Sun J, Zi P, Jin X, Zhang C (2013) Thermosensitive micelles-hydrogel hybrid system based on poloxamer 407 for localized delivery of paclitaxel. J Pharm Sci 102(8):2707–2717CrossRefGoogle Scholar
  112. 112.
    Zhang D, Sun P, Li P, Xue A, Zhang X, Zhang H, Jin X (2013) A magnetic chitosan hydrogel for sustained and prolonged delivery of Bacillus Calmette-Guerin in the treatment of bladder cancer. Biomaterials 34(38):10258–10266CrossRefGoogle Scholar
  113. 113.
    Verma IM, Somia N (1997) Gene therapy—promises, problems and prospects. Nature 389(6648):239–242CrossRefGoogle Scholar
  114. 114.
    Kim T-H, Jiang H-L, Jere D, Park I-K, Cho M-H, Nah J-W, Choi Y-J, Akaike T, Cho C-S (2007) Chemical modification of chitosan as a gene carrier in vitro and in vivo. Prog Polym Sci 32(7):726–753CrossRefGoogle Scholar
  115. 115.
    Lim MJ, Min SH, Lee JJ, Kim IC, Kim JT, Lee DC, Kim NS, Jeong S, Kim MN, Kim KD, Lim JS, Han SB, Kim HM, Heo DS, Yeom YI (2006) Targeted therapy of DNA tumor virus-associated cancers using virus-activated transcription factors. Mol Ther 13(5):899–909CrossRefGoogle Scholar
  116. 116.
    Lee MK, Chun SK, Choi WJ, Kim JK, Choi SH, Kim A, Oungbho K, Park JS, Ahn WS, Kim CK (2005) The use of chitosan as a condensing agent to enhance emulsion-mediated gene transfer. Biomaterials 26(14):2147–2156CrossRefGoogle Scholar
  117. 117.
    Kumar S, Garg P, Pandey S, Kumari M, Hoon S, Choung P-H, Kapavarapu R, Sobral A, Chung JH, Jang K-J (2015) Enhanced chitosan-DNA interaction by 2-Acrylamido-2-methylpropane coupling for efficient transfection in cancer cells. J Mater Chem B (in-press)Google Scholar
  118. 118.
    Ki MH, Kim JE, Lee YN, Noh SM, An SW, Cho HJ, Kim DD (2014) Chitosan-based hybrid nanocomplex for siRNA delivery and its application for cancer therapy. Pharm Res 31(12):3323–3334CrossRefGoogle Scholar
  119. 119.
    Vegran F, Boidot R, Bonnetain F, Cadouot M, Chevrier S, Lizard-Nacol S (2011) Apoptosis gene signature of Survivin and its splice variant expression in breast carcinoma. Endocr Relat Cancer 18(6):783–792CrossRefGoogle Scholar
  120. 120.
    Hu CM, Aryal S, Zhang L (2010) Nanoparticle-assisted combination therapies for effective cancer treatment. Ther Deliv 1(2):323–334CrossRefGoogle Scholar
  121. 121.
    Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17(17–18):1044–1052CrossRefGoogle Scholar
  122. 122.
    Shen J-M, Gao F-Y, Yin T, Zhang H-X, Ma M, Yang Y-J, Yue F (2013) cRGD-functionalized polymeric magnetic nanoparticles as a dual-drug delivery system for safe targeted cancer therapy. Pharmacol Res 70(1):102–115CrossRefGoogle Scholar
  123. 123.
    Anitha A, Deepa N, Chennazhi KP, Lakshmanan VK, Jayakumar R (2014) Combinatorial anticancer effects of curcumin and 5-fluorouracil loaded thiolated chitosan nanoparticles towards colon cancer treatment. Biochim Biophys Acta 1840(9):2730–2743CrossRefGoogle Scholar
  124. 124.
    Jia M, Li Y, Yang X, Huang Y, Wu H, Huang Y, Lin J, Li Y, Hou Z, Zhang Q (2014) Development of both methotrexate and mitomycin C loaded PEGylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl Mater Interfaces 6(14):11413–11423CrossRefGoogle Scholar
  125. 125.
    Taratula O, Garbuzenko OB, Chen AM, Minko T (2011) Innovative strategy for treatment of lung cancer: targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA. J Drug Target 19(10):900–914CrossRefGoogle Scholar
  126. 126.
    Wei W, Lv PP, Chen XM, Yue ZG, Fu Q, Liu SY, Yue H, Ma GH (2013) Codelivery of mTERT siRNA and paclitaxel by chitosan-based nanoparticles promoted synergistic tumor suppression. Biomaterials 34(15):3912–3923CrossRefGoogle Scholar
  127. 127.
    Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, Xiao X, Yang Y, Sheng W, Wu Y, Zeng Y (2014) Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 35(14):4333–4344CrossRefGoogle Scholar
  128. 128.
    Ragelle H, Riva R, Vandermeulen G, Naeye B, Pourcelle V, Le Duff CS, D’Haese C, Nysten B, Braeckmans K, De Smedt SC, Jerome C, Preat V (2014) Chitosan nanoparticles for siRNA delivery: optimizing formulation to increase stability and efficiency. J Controlled Release 176:54–63CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Ankit Saneja
    • 1
  • Chetan Nehate
    • 1
  • Noor Alam
    • 1
  • Prem N. Gupta
    • 1
    Email author
  1. 1.Formulation & Drug Delivery DivisionCSIR-Indian Institute of Integrative Medicine Canal RoadJammuIndia

Personalised recommendations