Advertisement

Chitin, Chitosan, and Silk Fibroin Electrospun Nanofibrous Scaffolds: A Prospective Approach for Regenerative Medicine

  • Brijesh K. Singh
  • Pradip Kumar DuttaEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Intensive studies have been done to a wide range of natural and synthetic polymeric scaffolds which have been done for the use of implantable and temporal devices in tissue engineering. Biodegradable and biocompatible scaffolds having a highly open porous structure with compatible mechanical strength are needed to provide an optimal microenvironment for cell proliferation, migration, differentiation, and guidance for cellular in growth at host tissue. One of the most abundantly available biopolymer chitins and its deacetylated derivatives is chitosan which is non-toxic and biodegradable. It has potential biomedical applications such as tissue engineering scaffolds, wound dressings, separation membranes, antibacterial coatings, stent coatings, and biosensors. Recent literature shows the use of chitin and chitosan in electrospinning to produce scaffolds with improved cytocompatibility, which could mimic the native extra-cellular matrix (ECM). Similarly, silk from the Bombyx mori silkworm, a protein-based natural fiber, having superior machinability, biocompatibility, biodegradation, and bioresorbability, has evolved as an important candidate for biomedical porous material. This chapter focuses on recent advancements made in chitin, chitosan, and silk fibroin-based electrospun nanofibrous scaffolds, emphasizing on tissue engineering for regenerative medicine.

Keywords

Chitin Chitosan Silk fibroin Electrospinning Nanofibers Regenerative medicine 

Notes

Acknowledgments

One of the authors (PKD) thankfully acknowledged the financial support from CSIR New Delhi in the form of a research project and other author (BKS) gratefully acknowledged the financial support in the form of research associateship from CSIR New Delhi.

References

  1. 1.
    Chien KR (2008) Regenerative medicine and human models of human disease. Nature 453:302–305CrossRefGoogle Scholar
  2. 2.
    Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310:1135–1138CrossRefGoogle Scholar
  3. 3.
    Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71CrossRefGoogle Scholar
  4. 4.
    Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470CrossRefGoogle Scholar
  5. 5.
    Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer AM, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering Mar. Drugs 9:1664–1681Google Scholar
  6. 6.
    Wu J, Tan H, Li L, Gao C (2009) Covalently immobilized gelatin gradients within three-dimensional porous scaffolds. Chin Sci Bull 54:3174–3180CrossRefGoogle Scholar
  7. 7.
    Lee KY, Mooney DJ (2012) Alginate: Properties and biomedical applications. Prog Polym Sci 37:106–126CrossRefGoogle Scholar
  8. 8.
    Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Progr Polym Sci 32:669–697CrossRefGoogle Scholar
  9. 9.
    Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305CrossRefGoogle Scholar
  10. 10.
    Tan H, Gong Y, Lao L, Mao Z, Gao C (2007) Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. J Mater Sci Mater Med 18:1961–1968CrossRefGoogle Scholar
  11. 11.
    Ohgo K, Zhao C, Kobayashi M, Asakura T (2003) Preparation of non- woven nanofibers for Bombyx mori silk, Samia cythia ricini silk and recombinant hybrid silk with electrospinnning method. Polymer 44:841–846CrossRefGoogle Scholar
  12. 12.
    Wnek GE, Carr ME, Simpson DG, Bowlin GL (2003) Electrospinning of nanofibers fibrinogen structures. Nano Lett 3:213–216CrossRefGoogle Scholar
  13. 13.
    Fang X, Reneker DH (1997) DNA fibers by electrospinning. J Macromol Sci Phys B 36:169–173CrossRefGoogle Scholar
  14. 14.
    Jiang HL, Fang DF, Hsiao BS, Chu B, Chen WL (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5:326–333CrossRefGoogle Scholar
  15. 15.
    Kulkarni RK, Pani KC, Neuman C, Leonard F (1966) Polylactic acid for surgical implants. Arch Surg 93:839–843CrossRefGoogle Scholar
  16. 16.
    Fisher JP, Vehof JW, Dean D, van der Waerden JP, Holland TA, Mikos AG, Jansen JA (2002) Soft and hard tissue response to photocrosslinked poly(propylene fumarate) scaffolds in a rabbit model. J Biomed Mater Res 59:547–556CrossRefGoogle Scholar
  17. 17.
    Heller J, Barr J, Ng SY, Abdellauoi KS, Gurny R (2002) Poly(ortho esters): synthesis, characterization, properties and uses. Adv Drug Deliv Rev 54:1015–1039CrossRefGoogle Scholar
  18. 18.
    Lee SJ, Choi JS, Park KS, Khang G, Lee YM, Lee HB (2004) Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes. Biomaterials 25:4699–4707CrossRefGoogle Scholar
  19. 19.
    Santerre JP, Woodhouse K, Laroche G, Labow RS (2005) Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials 26:7457–7470CrossRefGoogle Scholar
  20. 20.
    GuanJJ Fujimoto KL, Sacks MS, Wagner WR (2005) Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials 26:3961–3971CrossRefGoogle Scholar
  21. 21.
    Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26:6565–6578CrossRefGoogle Scholar
  22. 22.
    Conconi MT, Lora S, Menti AM, Carampin P, Parnigotto PP (2006) In vitro evaluation of poly bis(ethyl alanato)phosphazene as a scaffold for bone tissue engineering. Tissue Eng 12:811–819CrossRefGoogle Scholar
  23. 23.
    Rashidi H, Yang J, Kevin M, Shakesheff (2014) Surface engineering of synthetic polymer materials for tissue engineering and regenerative medicine applications. Biomater Sci 2:1318–1331CrossRefGoogle Scholar
  24. 24.
    Behravesh E, Yasko AW, Engle PS, Mikos AG (1999) Synthetic biodegradable polymers for orthopaedic applications. Clin Orthop 367S:118–185CrossRefGoogle Scholar
  25. 25.
    Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopaedic devices. Biomaterials 21:2335–2346CrossRefGoogle Scholar
  26. 26.
    Vroman L, Adams AL, Fischer GC, Munoz PC (1980) Interaction of high molecular-weight kininogen, factor-XII, and fibrinogen in plasma at interfaces. Blood 55:156–159Google Scholar
  27. 27.
    Kim Moon Suk, Kim Jae Ho, Min Byoung Hyun, Chun Heung Jae, Han Dong Keun, Lee Hai Bang (2011) Polymeric scaffolds for regenerative medicine. Polym Rev 51:23–52CrossRefGoogle Scholar
  28. 28.
    Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347CrossRefGoogle Scholar
  29. 29.
    Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33CrossRefGoogle Scholar
  30. 30.
    Li M, Mondrinos MJ, Gandhi MR, Ko FK, Weiss AS, Lelkes PI (2005) Electrospun protein fibers as matrices for tissue engineering. Biomaterials 26:5999–6008CrossRefGoogle Scholar
  31. 31.
    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) An introduction to electrospinning and nanofibers. World Scientific, SingaporeCrossRefGoogle Scholar
  32. 32.
    Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16:1151–1170CrossRefGoogle Scholar
  33. 33.
    Zhang CX, Yuan XY, Wu LL, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J 41:423–432CrossRefGoogle Scholar
  34. 34.
    Schreuder-Gibson HL, Gibson P, Tsai P, Gupta P, Wilkes G (2004) Cooperative charging effects of fibers from electrospinning of electrically dissimilar polymers. Int Nonwovens J 13:39–45Google Scholar
  35. 35.
    Wannatong L, Sirivat A (2004) Electrospun fibers of polypyrrole/polystyrene blend for gas sensing applications. PMSE Prepr 91:692–693Google Scholar
  36. 36.
    Kim C, Park SH, Lee WJ, Yang KS (2004) Characteristics of supercapacitor electrodes of PBI-based carbon nanofiber web prepared by electrospinning. Electrochim Acta 50:877–881CrossRefGoogle Scholar
  37. 37.
    Khil MS, Bhattarai SR, Kim HY, Kim SZ, Lee KH (2005) Novel fabricated matrix via electrospinning for tissue engineering. J Biomed Mater Res B Appl Biomater 72B:117–124CrossRefGoogle Scholar
  38. 38.
    Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnol 7:216–223CrossRefGoogle Scholar
  39. 39.
    Taylor GI (1969) Electrically driven jets. Proc Roy Soc London 313:453–475CrossRefGoogle Scholar
  40. 40.
    Jun Z, Hou HQ, Schaper A, Wendorff JH, Greiner A (2003) Poly-L-lactide nanofibers by electrospinning-influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. e-Polymers 3:102–110Google Scholar
  41. 41.
    Boland ED, Wnek GE, Simpson DG, Pawlowski KJ, Bowlin GL (2001) Tailoring tissue engineering scaffolds using electrostatic processing techniques: a study of poly(glycolic acid) electrospinning. J Macromol Sci Pure Appl Chem 38:1231–1243CrossRefGoogle Scholar
  42. 42.
    Hsu CM, Shivkumar S (2004) N, N-dimethylformamide additions to the solution for the electrospinning of poly(e-caprolactone) nanofibers. Macromol Mater Eng 289:334–340CrossRefGoogle Scholar
  43. 43.
    Rockwood D, Fromstein J, Woodhouse K, Chase B, Rabolt JF (2004) Electrospinning of a biodegradable polyurethane for use in tissue engineering. Polym Prepr (Am Chem Soc, Div Polym Chem) 45:406Google Scholar
  44. 44.
    Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci, Part B: Polym Phys 40:1261–1268CrossRefGoogle Scholar
  45. 45.
    Son WK, Youk JH, Lee TS, Park WH (2004) The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly (ethylene oxide) fibers. Polymer 45:2959–2966CrossRefGoogle Scholar
  46. 46.
    Boland Eugene D, Coleman Branch D, Barnes Catherine P, Simpson David G, Wnek Gary E, Bowlin Gary L (2005) Electrospinning polydioxanone for biomedical applications. Acta Biomater 1:115–123CrossRefGoogle Scholar
  47. 47.
    Nair LS, Bhattacharyya S, Bender JD, Greish YE, Brown PW, Allcock HR, Laurencin CT (2004) Fabrication and optimization of methylphenoxy substituted polyphosphazene nanofibers for biomedical applications. Biomacromolecules 5:2212–2220CrossRefGoogle Scholar
  48. 48.
    Kurita K (2001) Controlled functionalization of the polysaccharide chitin. Prog Polym Sci 269:1921–1971CrossRefGoogle Scholar
  49. 49.
    Morganti P (2013) Saving the environment by nanotechnology and waste raw material: use of chitin nanofibril by eu research projects. J Appl Cosmetol 31:89–96Google Scholar
  50. 50.
    Dtie U (2009) Converting waste agricultural biomass into a resource. Compendium of technologies. Osaka, United Nations Environment ProgrammeGoogle Scholar
  51. 51.
    Ajmeri JR, Ajemri CJ (2006) Surgical sutures: the largest textile implant material. In: Anand SC, Kennedy JF, Rajendran S (eds) Medical textiles and biomaterials for health care. CRC Press/Woodhead Publishing Ltd., Boca Raton, Cambridge, pp 432–440CrossRefGoogle Scholar
  52. 52.
    Rajendran S, Anand SC (2002) Developments inmedical textiles. Text Progr 32:10–13CrossRefGoogle Scholar
  53. 53.
    Muzzarelli RAA, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. Adv Polym Sci 186:151–209CrossRefGoogle Scholar
  54. 54.
    Austin PR, Brine CJ, Castle JE, Zikakis JP (1981) Chitin: new facets of research. Science 212:749–753CrossRefGoogle Scholar
  55. 55.
    Rathke TD, Hudson SM (1994) Review of chitin and chitosan as fiber and film formers. Polym Rev 34:375–437Google Scholar
  56. 56.
    Samuels RJ (1981) Solid state characterization of the structure of chitosan films. J Polym Sci A-2 Polym Phys 19:1081–1105CrossRefGoogle Scholar
  57. 57.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRefGoogle Scholar
  58. 58.
    Kurita K (2001) Controlled functionalization pf the polysaccharide chitin. Prog Polym Sci 269:1921–1971CrossRefGoogle Scholar
  59. 59.
    Jayakumar R, Tamura H (2008) Synthesis, characterization and thermal properties of chitin-g-poly(caprolactone) copolymers using chitin hydrogel. Int J Biol Macromol 43:32–36CrossRefGoogle Scholar
  60. 60.
    Min BM, Lee SW, Lim JN, You Y, Lee TS, Kang PH, Park WH (2004) Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45:7137–7142CrossRefGoogle Scholar
  61. 61.
    Junkasem J, Rujiravanit R, Supaphol P (2006) Fabrication of α-chitin whiskerreinforced poly(vinyl alcohol) nanocomposite nanofibres by electrospinning. Nanotechnology 17:4519–4528CrossRefGoogle Scholar
  62. 62.
    Ding B, Kim HY, Lee SC, Shao CL, Lee DR, Park SJ, Kwag GB, Choi KJ (2002) Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method. J Polym Sci, Part B: Polym Phys 40:1261–1268CrossRefGoogle Scholar
  63. 63.
    Sriupayo J, Supaphol P, Blackwell J, Rujiravanit R (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62:130–136CrossRefGoogle Scholar
  64. 64.
    Park KE, Jung SY, Lee SJ, Min BM, Park WH (2006) Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol 38:165–173CrossRefGoogle Scholar
  65. 65.
    Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77:863–869CrossRefGoogle Scholar
  66. 66.
    Zhong C, Kapetanovic A, Deng Y, Rolandi M (2011) Adv Mater 23:4776–4781CrossRefGoogle Scholar
  67. 67.
    Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Biomacromolecules 7:415–418CrossRefGoogle Scholar
  68. 68.
    Barber PS, Griggs CS, Bonner JR, Rogers RD (2013) Electrospinning of chitin nanofibers directly from an ionic liquid extract of shrimp shells. Green Chem 15:601–607CrossRefGoogle Scholar
  69. 69.
    Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4:3308–3318CrossRefGoogle Scholar
  70. 70.
    Ifuku S, Nogi M, Yoshioka M, Morimoto M, Yano H, Saimoto H (2010) Fibrillation of dried chitin into 10–20 nm nanofibers by a simple grinding method under acidic conditions. Carbohydr Polym 81:134–139CrossRefGoogle Scholar
  71. 71.
    Ifuku S, Nogi M, Abe K, Yoshioka M, Morimoto M, Saimoto H, Yano H (2011) Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydr Polym 84:762–764CrossRefGoogle Scholar
  72. 72.
    Wu J, Meredith JC (2014) Assembly of chitin nanofibers into porous biomimetic structures via freeze drying. ACS Macro Lett 3:185–190CrossRefGoogle Scholar
  73. 73.
    Pant HR, Kim HJ, Bhatt LR, Joshi MK, Kim EK, Kim JI, Abdal-hay A, Hui KS, Kim CS (2013) Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications. Appl Surf Sci 285:538–544CrossRefGoogle Scholar
  74. 74.
    Salaberria AM, Labidi J, Fernandes SCM (2014) Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Biochem Eng J 256:356–364Google Scholar
  75. 75.
    Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRefGoogle Scholar
  76. 76.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials-a short review. Carbohydr Polym 82:227–232CrossRefGoogle Scholar
  77. 77.
    Park KE, Jung SY, Lee SJ, Min BM, Park WH (2006) Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol 38:165–173CrossRefGoogle Scholar
  78. 78.
    Xin S, Li Y, Li W, Du J, Huang R, Du Y, Deng H (2012) Carboxymethyl chitin/organic rectorite composites based nanofibrous mats and their cell compatibility. Carbohydr Polym 90:1069–1074CrossRefGoogle Scholar
  79. 79.
    Nata IF, Wang SSS, Wu TM, Lee CK (2012) β-Chitin nanofibrils for self-sustaining hydrogels preparation via hydrothermal treatment. Carbohydr Polym 90:1509–1514CrossRefGoogle Scholar
  80. 80.
    Mukesh C, Mondal D, Sharma M, Prasad K (2014) Choline chloride–thiourea, a deep eutectic solvent for the production of chitin nanofibers. Carbohydr Polym 103:466–471CrossRefGoogle Scholar
  81. 81.
    Yoo CR, Yeo IS, Park KE, Park JH, Lee SJ, Park WH, Min YM (2008) Effect of chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal keratinocytes. Int J Biol Macromol 42:324–334CrossRefGoogle Scholar
  82. 82.
    Nama YS, Park WH, Ihm D, Hudson SM (2010) Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydr Polym 80:291–295CrossRefGoogle Scholar
  83. 83.
    Jia Y, Liang K, Shen X, Bowlin GL (2014) Electrospinning and characterization of chitinnanofibril/polycaprolactone nanocomposite fiber mats. Carbohydr Polym 101:68–74CrossRefGoogle Scholar
  84. 84.
    Ifuku S, Tsukiyama Y, Yukawa T, Egusa M, Kaminaka H, Izawa H, Morimoto M, Saimoto H (2015) Facile preparation of silver nanoparticles immobilized on chitin nanofiber surfaces to endow antifungal activities. Carbohydr Polym 117:813–817CrossRefGoogle Scholar
  85. 85.
    Morganti P (2009) Chitin nanofibrils for cosmetic delivery. Cosmet Toiletries 125:36–393Google Scholar
  86. 86.
    Mincea M, Negrulescu A, Ostafe V (2012) Preparation, modification, and application of chitin nanowiskers: a review. Rev Adv Mater Sci 30:225–242Google Scholar
  87. 87.
    Muzzarelli RAA, Morganti P, Morganti G, Palombo P, Palombo M, Biagini G, Mattioli-Belmonte M, Giantomassi F, Orlandi F, Muzzarelli C (2007) Chitin nanofibril/chitosan composites as wound medicaments. Carbohydr Polym 70:274–284CrossRefGoogle Scholar
  88. 88.
    Rosen Y, Elman N (2012) Biomaterial science. an integrated clinical and engineering approach. CRC-Press, New YorkGoogle Scholar
  89. 89.
    Palsson BO, Bathia SN (2004) Tailoring biomaterials. Tissue Engineering. Pearson Prendice Hall, Upper Saddle River, pp 270–287Google Scholar
  90. 90.
    Nagahama H, Kashiki T, Nwe N, Jayakumar R, Furuike T, Tamura H (2008) Preparation of biodegradable chitin/gelatin membranes with GlcNAc for tissue engineering applications. Carbohydr Polym 73:456–463CrossRefGoogle Scholar
  91. 91.
    Nagahama H, Nwe N, Jayakumar R, Koiwa S, Furuike T, Tamura H (2008) Novel biodegradable chitin membranes for tissue engineering applications. Carbohydr Polym 73:295–302CrossRefGoogle Scholar
  92. 92.
    Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Graft copolymerized chitosan-Present status and applications. Carbohydr Polym 62:142–158CrossRefGoogle Scholar
  93. 93.
    Jayakumar R, Nwe N, Tokura S, Tamura H Sulfated chitin and chitosan as novel biomaterials. Int J Biol Macromol 40:175–181Google Scholar
  94. 94.
    Schiffman JD, Schauer CL (2007) Crosslinking chitosan nanofibers. Biomacromolecules 8:594–601CrossRefGoogle Scholar
  95. 95.
    Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Tamura H, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly (vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77:863–869CrossRefGoogle Scholar
  96. 96.
    Jayakumar R, Reis RL, Mano JF (2006) Phosphorous containing chitosan beads for controlled oral drug delivery. J Bioact Compat Polym 21:327–340CrossRefGoogle Scholar
  97. 97.
    Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57CrossRefGoogle Scholar
  98. 98.
    Anitha A, Divya Rani VV, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayakumar R (2009) Synthesis, characterization, cytotoxicity and antibacterial studies of chitosan, O-carboxymethyl, N, O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78:672–677CrossRefGoogle Scholar
  99. 99.
    Madhumathi K, Sudhessh Kumar PT, Kavya KC, Furuike T, Tamura H, Nair SV, Jayakumar R (2009) Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Int J Biol Macromol 45:289–292CrossRefGoogle Scholar
  100. 100.
    Muramatsu K, Masuda S, Yoshihara Y, Fujisawa A (2003) In vitro degradation behavior of freeze-dried carboxymethyl-chitin sponges processed by vacuum-heating and gamma irradiation. Polym Degrad Stab 81:327–332CrossRefGoogle Scholar
  101. 101.
    Wang JW, Hon MH (2003) Preparation and characterization of pH sensitive sugar mediated (polyethylene glycol/chitosan) membrane. J Mater Sci: Mater Med 14:1079–1088Google Scholar
  102. 102.
    Rinaudo M (2006) Chitin and chitosan: Properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  103. 103.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRefGoogle Scholar
  104. 104.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  105. 105.
    Li L, Hsieh YL (2006) Chitosan bicomponent nanofibers and nanoporous fibers. Carbohydr Res 341:374–381CrossRefGoogle Scholar
  106. 106.
    Ohkawa K, Minato KI, Kumagai G, Hayashi S, Yamamoto H (2006) Chitosan nanofiber. Biomacromolecules 7:3291–3294CrossRefGoogle Scholar
  107. 107.
    Schiffman JD, Schauer CL (2007) Cross—linking chitosan nanofibers. Biomacromolecules 8:594–601CrossRefGoogle Scholar
  108. 108.
    Homayoni H, Ravandi SAH, Valizadeh M (2009) Electrospinning of chitosan nanofibers: processing optimization. Carbohydr Polym 77:656–661CrossRefGoogle Scholar
  109. 109.
    Geng XY, Kwon OH, Jang JH (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRefGoogle Scholar
  110. 110.
    Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710–2714CrossRefGoogle Scholar
  111. 111.
    McKee MG, Wilkes GL, Colby RH, Long TE (2004) Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters. Biomacromolecules 37:1760–1767CrossRefGoogle Scholar
  112. 112.
    Schiffman JD, Schauer CL (2008) A review: Electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352CrossRefGoogle Scholar
  113. 113.
    Desai K, Kit K, Li J, Zivanovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000–1006CrossRefGoogle Scholar
  114. 114.
    Zhou YS, Yang DZ, Chen XM, Xu Q, Lu FM, Nie J (2008) Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration. Biomacromolecules 9:349–354CrossRefGoogle Scholar
  115. 115.
    Ignatova M, Manolova N, Markova N, Rashkov I (2009) electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol Biosci 9:102–111CrossRefGoogle Scholar
  116. 116.
    Zhang HT, Wu CY, Zhang YL, White CJB, Xue Y, Nie HL, Zhu LM (2010) Elaboration, characterization and study of a novel affinity membrane made from electrospun hybrid chitosan/nylon-6 nanofibers for papain purification. J Mater Sci 45:2296–2304CrossRefGoogle Scholar
  117. 117.
    Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R (2010) Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym 80:413–419CrossRefGoogle Scholar
  118. 118.
    Park WH, Jeong L, Yoo DI, Hudson S (2004) Effect of chitosan on morphology and conformation of electrospun silk fibroin nanofibers. Polymer 45:7151–7157CrossRefGoogle Scholar
  119. 119.
    Torres-Giner S, Ocio MJ, Lagaron JM (2009) Novel antimicrobial ultrathin structures of zeinlchitosan blends obtained by electrospinning. Carbohydr Polym 77:261–266CrossRefGoogle Scholar
  120. 120.
    Chen ZG, Mo XM, Qing FL (2007) Electrospinning of collagen–chitosan complex. Mater Lett 61:3490–3494CrossRefGoogle Scholar
  121. 121.
    Pakravan M, Heuzey MC, Ajji A (2012) Core–shell structured peo-chitosan nanofibers by coaxial electrospinning. Biomacromolecules 13:412–421CrossRefGoogle Scholar
  122. 122.
    Pakravan M, Heuzey MC, Ajji A (2011) A fundamental study of chitosan/PEO electrospinning. Polymer 52:4813–4824CrossRefGoogle Scholar
  123. 123.
    Kriegel C, Kit KM, McClements DJ, Weiss J (2009) Electrospinning of chitosan–poly(ethylene oxide) blend nanofibers in the presence of micellar surfactant solutions. Polymer 50:189–200CrossRefGoogle Scholar
  124. 124.
    Zhang JF, Yang DZ, Xu F, Zhang ZP, Yin RX, Jun Nie J (2009) Electrospun core-shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 42:5278–5284CrossRefGoogle Scholar
  125. 125.
    Desai K, Kit K, Li J, Zivanovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000–1006CrossRefGoogle Scholar
  126. 126.
    Jia YT, Gong J, Gu XH, Kim HY, Dong J, Shen XY (2007) Fabrication and characterization of poly (vinyl alcohol)/chitosan blend nanoWbers produced by electrospinning method. Carbohydr Polym 67:403–409CrossRefGoogle Scholar
  127. 127.
    Paipitak K, Pornpra T, Mongkontalang P, Techitdheera W, Pecharapa W (2011) Characterization of PVA-chitosan nanofibers prepared by electrospinning. Procedia Eng 101–105Google Scholar
  128. 128.
    Gimenez V, Mantecon A, Cadiz VJ (1996) Modification of poly(vinyl alcohol) with acid chlorides and crosslinking with difunctional hardeners. J Polym Sci Part A: Polym Chem 34:925–934CrossRefGoogle Scholar
  129. 129.
    Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W (2013) Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 53:88–92CrossRefGoogle Scholar
  130. 130.
    Alipour SM, Nouri M, Mokhtari J, Bahrami SH (2009) Electrospinning of poly(vinyl alcohol)–water-soluble quaternized chitosan derivative blend. Carbohydr Res 344:2496–2501CrossRefGoogle Scholar
  131. 131.
    Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRefGoogle Scholar
  132. 132.
    Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility Biomaterials. 26:6176–6184Google Scholar
  133. 133.
    Desai K, Kit K, Li J, Zivanovic S (2008) Morphological and surface properties of electrospun chitosan nanofibers. Biomacromolecules 9:1000–1006CrossRefGoogle Scholar
  134. 134.
    Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRefGoogle Scholar
  135. 135.
    Sangsanoh P, Supaphol P (2006) Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules 7:2710–2714CrossRefGoogle Scholar
  136. 136.
    Schiffman J, Schauer C (2007) One-step electrospinning of cross-linked chitosan fibers. Biomacromolecules 8:2665–2667CrossRefGoogle Scholar
  137. 137.
    Cooper A, Bhattarai N, Kievit FM, Rossol M, Zhang M (2011) Electrospinning of chitosan derivative nanofibers with structural stability in an aqueous environment. Phys Chem Chem Phys 13:9969–9972CrossRefGoogle Scholar
  138. 138.
    Geng X, Kwon OH, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26:5427–5432CrossRefGoogle Scholar
  139. 139.
    Neamnark A, Rujiravanit R, Supaphol P (2006) Electrospinning of hexanoyl chitosan. Carbohydr Polym 66:298–305CrossRefGoogle Scholar
  140. 140.
    Torres-Giner S, Ocio MJ, Lagaron JM (2009) Novel antimicrobial ultrathin structures of zein/chitosan blends obtained by electrospinning. Carbohydr Polym 77:261–266CrossRefGoogle Scholar
  141. 141.
    Nirmala R, Navamathavan R, El-Newehy MH, Kim HY (2011) Preparation and electrical characterization of polyamide-6/chitosan composite nanofibers via electrospinning. Mater Lett 65:493–496CrossRefGoogle Scholar
  142. 142.
    Ignatova M, Manolova N, Toshkova R, Rashkov I, Gardeva E, Yossifova L, Alexandrov M (2012) Quaternized chitosan-coated nanofibrous materials containing gossypol: Preparation by electrospinning, characterization and antiproliferative activity towards HeLa cells. Int J Pharm 436:10–24CrossRefGoogle Scholar
  143. 143.
    Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R (2010) Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohydr Polym 80:413–419CrossRefGoogle Scholar
  144. 144.
    Alipour SM, Nouri M, Mokhtari J, Bahrami SH (2009) Electrospinning of poly(vinyl alcohol)-water-soluble quaternized chitosan derivative blend. Carbohydr Res 344:2496–2501CrossRefGoogle Scholar
  145. 145.
    Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL (2014) Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci 39:862–890CrossRefGoogle Scholar
  146. 146.
    Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/ß TCP for bone tissue engineering. Bone 46:386–395CrossRefGoogle Scholar
  147. 147.
    Lai HL, Abulkhalil A, Craig DQ (2003) The preparation and characterization of drug loaded alginate and chitosan sponges. Int J Pharm 251:175–181CrossRefGoogle Scholar
  148. 148.
    Kumar S, Koh J, Tiwari DK, Dutta PK (2011) Optical study of chitosan-ofloxacin complex for biomedical applications. J Macromol Sci Part A 48:789–795CrossRefGoogle Scholar
  149. 149.
    Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, Hatton PV, Reis RL, Neves NM (2010) Chitosan/polyester-based scaffolds for cartilage tissue engineering: assessment of extracellular matrix formation. Acta Biomaterialia 6:1149–1157CrossRefGoogle Scholar
  150. 150.
    Lu GY, Kong LJ, Sheng BY, Wang G, Gong Y, Zhang X (2007) Degradation of covalently cross-linked carboxymethyl chitosan and its potential application for peripheral nerve regeneration. Eur Polym J 43:3807–3818CrossRefGoogle Scholar
  151. 151.
    Meinel L, Hofmann S, Karageorgiou V, Kirker-Head C, McCool J, Gronowicz G, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2005) The inflammatory responses to silk films in vitro and in vivo. Biomaterials 26:147–155CrossRefGoogle Scholar
  152. 152.
    Mandal BB, Kundu SC (2008) Non-bioengineered silk fibroin protein 3D scaffolds for potential biotechnological and tissue engineering applications. Macromol Biosci 8:807–818CrossRefGoogle Scholar
  153. 153.
    Mehta AS, Singh BK, Singh N, Archana D, Snigdha K, Harniman R, Rahatekar SS, Tewari RP, Dutta PK (2015) Chitosan silk-based three-dimensional scaffolds containing gentamicin encapsulated calcium alginate beads for drug administration and blood compatibility. J Biomater Appl 29:1314–1325CrossRefGoogle Scholar
  154. 154.
    Mandal BB, Kundu SC (2009) Calcium alginate beads embedded in silk fibroin as 3D dual drug releasing scaffolds. Biomaterials 30:5170–5177CrossRefGoogle Scholar
  155. 155.
    Yukseloglu SM, Sokmen N, Canoglu S (2015) Biomaterial applications of silk fibroin electrospun nanofibres. Microelectron Eng, Article in Press. doi: http://dx.doi.org/10.1016/j.mee.2015.04.008
  156. 156.
  157. 157.
    Gulrajani M (1992) Degumming of silk. Rev Prog Color Relat Top 22:79–89CrossRefGoogle Scholar
  158. 158.
    Li Y, Dai XQ (2006) Biomechanical Engineering of Textiles and Clothing. Wood head publishing in textiles, Cambridge 164CrossRefGoogle Scholar
  159. 159.
    Chutipakdeevong J, Ruktanonchai UR, Supaphol P (2013) Process optimization of electrospun silk fibroin fiber mat for accelerated wound healing. J Appl Polym Sci 130:3634–3644CrossRefGoogle Scholar
  160. 160.
    Vepari C, Kaplan DL (2007) Silk as a Biomaterial. Prog Polym Sci 32:991–1007CrossRefGoogle Scholar
  161. 161.
    Ki CS, Lee KH, Baek DH, Hattori M, Um IC, Ihm DW, Park YH (2007) Dissolution and wet spinning of silk fibroin using phosphoric acid/formic acid mixture solvent system. J Appl Polym Sci 105:1605–1610CrossRefGoogle Scholar
  162. 162.
    Park KE, Jung SY, Lee SJ, Min BM, Park WH (2006) Biomimetic nanofibrous scaffolds: Preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromol 38:165–173CrossRefGoogle Scholar
  163. 163.
    Zhu J, Zhang Y, Saho H, Hu X (2008) Electrospinning and rheology of regenerated Bombyx mori silk fibroin aqueous solutions: The effects of pH and concentration. Polymer 49:2880–2885CrossRefGoogle Scholar
  164. 164.
    Jin HJ, Fridrikh SV, Rutledge GC, Kaplan DL (2002) Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules 3:1233–1239CrossRefGoogle Scholar
  165. 165.
    Lai GJ, Shalumon KT, Chen SH, Chen JP (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297CrossRefGoogle Scholar
  166. 166.
    Panda N, Bissoyi A, Pramanik K, Biswas A (2015) Development of novel electrospun nanofibrous scaffold from P. ricini and A. mylitta silk fibroin blend with improved surface and biological properties. Mater Sci Eng C Mater Biol Appl 48:521–532CrossRefGoogle Scholar
  167. 167.
    Sasithorn N, Martinová L (2012) Effect of calcium chloride on electrospinning of silk fibroin nanofibres. In: International conference on textiles and fashion, 3–4 July 2012Google Scholar
  168. 168.
    Kim BS, Park KE, Kim MH, You HK, Lee J, Park WH (2015) Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds. Int J Nanomedicine 10:485–502Google Scholar
  169. 169.
    Kang M, Jin HJ (2007) Electrically conducting electrospun silk membranes fabricated by adsorption of carbon nanotubes. Colloid Polym Sci 285:1163–1167CrossRefGoogle Scholar
  170. 170.
    Zhou Y, Yang H, Liu X, Mao J, Gu S, Xu W (2013) Electrospinning of carboxyethyl chitosan/poly(vinyl alcohol)/silk fibroin nanoparticles for wound dressings. Int J Biol Macromol 53:88–92CrossRefGoogle Scholar
  171. 171.
    Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297CrossRefGoogle Scholar
  172. 172.
    Paşcu EI, Stokes J, McGuinness GB (2013) Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33:4905–4916CrossRefGoogle Scholar
  173. 173.
    Andiappan M, Sundaramoorthy S, Panda N, Meiyazhaban G, Winfred SB, Venkataraman G, Krishna P (2013) Electrospun eri silk fibroin scaffold coated with hydroxyapatite for bone tissue engineering applications. Prog biomater 2:6CrossRefGoogle Scholar
  174. 174.
    Zhou Weitao, He Jianxin, Shan Du, Cui Shizhong, Gao Weidong (2011) Electrospun silk fibroin/cellulose acetate blend nanofibres: structure and properties. Iran polym j 20:389–397Google Scholar
  175. 175.
    Zhang K, Qian Y, Wang H, Fan L, Huang C, Mo X (2011) Electrospun silk fibroin-hydroxybutyl chitosan nanofibrous scaffolds to biomimic extracellular matrix. J Biomater Sci 22:1069–1082CrossRefGoogle Scholar
  176. 176.
    Yin A, Li J, Bowlin GL, Li D, Rodriguez IA, Wang J, Wu T, EI-Hamshary HA, Al-Deyab SS, Mo X (2014) Fabrication of cell penetration enhanced poly (l-lactic acid-co-Ɛ-caprolactone)/silk vascular scaffolds utilizing air-impedance electrospinning. Colloids Surf B: Biointerfaces 120:47–54CrossRefGoogle Scholar
  177. 177.
    Maghdouri-White Y, Bowlin GL, Lemmon CA, Dréau D (2014) Mammary epithelial cell adhesion, viability, and infiltration on blended or coated silk fibroin-collagen type I electrospun scaffolds. Mat Sci Eng C 43:37–44CrossRefGoogle Scholar
  178. 178.
    Barnes CP, Sell SA, Boland ED, Simpson DG, Bowling GL (2007) Nanofibers technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliv Rev 59:1413–1433CrossRefGoogle Scholar
  179. 179.
    Braghirolli DI, Steffens D, Pranke P (2014) Electrospinning for regenerative medicine: a review of the main topics. Drug Discov Today 19:743–753CrossRefGoogle Scholar
  180. 180.
    Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 49:5603–5621CrossRefGoogle Scholar
  181. 181.
    Agarwal S, Wendorff JH, Greiner A (2009) Progress in the field of electrospinning for tissue engineering applications. Adv Mater 21:3343–3351CrossRefGoogle Scholar
  182. 182.
    Jian F, HaiTao H, Tong L, XunGai W (2008) Applications of electrospun nanofibers. Chin. Sci. Bull 53:2265–2286Google Scholar
  183. 183.
    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (eds) (2005) An introduction to electrospinning and nanofibers. World Scientific, SingaporeGoogle Scholar
  184. 184.
    Jiang T, Carbone EJ, Lo KWH, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci, Article in Press, http://dx.doi.org/10.1016/j.progpolymsci.2014.12.001
  185. 185.
    Noh HK, Lee SW, Kim JM, Oh JE, Kim KW, Chung CP, Choi SC, Park WH, Min B (2006) Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27:3934–3944CrossRefGoogle Scholar
  186. 186.
    Min B, You Y, Kim JM, Lee SJ, Park WH (2004) Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts. Carbohydr Polym 57:285–292CrossRefGoogle Scholar
  187. 187.
    Park KE, Jung SY, Lee SJ, Min B, Park WH (2006) Biomimetic nanofibrous scaffolds: preparation and characterization of chitin/silk fibroin blend nanofibers. Int J Biol Macromo 38:165–173CrossRefGoogle Scholar
  188. 188.
    Frenot A, Henriksson MW, Walkenstrom P (2007) Electrospinning of cellulose-based nanofibers. J Appl Polym Sci 103:1473–1482CrossRefGoogle Scholar
  189. 189.
    Duan B, Yuan X, Zhu Y, Zhang Y, Li X, Zhang Y, Yao K (2006) A nanofibrous composite membrane of PLGA-chitosan/PVA prepared by electrospinning. Eur Polym J 42:2013–2022CrossRefGoogle Scholar
  190. 190.
    Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184CrossRefGoogle Scholar
  191. 191.
    Altman GH, Horan RL, Lu HH, Moreau J, Martin I, Richmond JC, Kaplan DL (2002) Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23:4131–4141CrossRefGoogle Scholar
  192. 192.
    Yang D, Jin Y, Zhou Y, Ma G, Chen X, Lu F, Nie J (2008) In situ mineralization of hydroxyapatite on electrospun chitosan-based nanofibrous scaffolds. Macromol Biosci 8:239–246CrossRefGoogle Scholar
  193. 193.
    Jiang H, Fang D, Hsiao B, Chu B, Chen W (2004) Preparation and characterization of ibuprofen-loaded poly(lactide-co-glycolide)/poly(ethylene glycol)-g-chitosan electrospun membranes. J Biomat Sci Polym Ed 15:279–296CrossRefGoogle Scholar
  194. 194.
    Huang X, Ge D, Xu Z (2007) Preparation and characterization of stable chitosan nanofibrous membrane for lipase immobilization. Eur Polym J 43:3710–3718CrossRefGoogle Scholar
  195. 195.
    Wang YY, Lu LX, Feng ZQ, Xiao ZD, Huang NP (2010) Cellular compatibility of RGD-modified chitosan nanofibers with aligned or random orientation. Biomed Mater 5:054112CrossRefGoogle Scholar
  196. 196.
    Prabhakaran MP, Venugopal JR, Chyan TT, Hai LB, Chan CK, Lim AY, Ramakrishna S (2008) Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Tissue Eng. Part A 14:1787–1797CrossRefGoogle Scholar
  197. 197.
    Jung K, Huh M, Meng W, Yuan J, Hyun SH, Bae J, Hudson SM, Kang I (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105:2816–2823CrossRefGoogle Scholar
  198. 198.
    Spasova M, Manolova N, Paneva D, Rashkov I (2004) Preparation of chitosan containing nanofibers by electrospinning of chitosan/poly(ethylene oxide) blend solution. e-Polymers 56:1–12Google Scholar
  199. 199.
    Horan RL, Antle K, Collette AL, Wang Y, Huang J, Moreau JE, Volloch V, Kaplan DL, Altman GH (2005) In vitro degradation of silk fibroin. Biomaterials 26:3385–3393CrossRefGoogle Scholar
  200. 200.
    Bondar B, Fuchs S, Motta A, Migliaresi C, Kirkpatrick CJ (2008) Functionality of endothelial cells on silk fibroin nets: comparative study of micro- and nanometric fibre size. Biomaterials 29:561–572CrossRefGoogle Scholar
  201. 201.
    Soffer L, Wang X, Zhang X, Kluge J, Dorfmann L, Kaplan DL, Leisk G (2008) Silk-based electrospun tubular scaffolds for tissue-engineered vascular grafts. J Biomater Sci Polymer Edn 19:653–664CrossRefGoogle Scholar
  202. 202.
    Orban JM, Wilson LB, Kofroth JA, El-Kurdi MS, Maul TM, Vorp DA (2004) Crosslinking of collagen gels by transglutaminase. J Biomed Mater Res. A 68(68):756–762CrossRefGoogle Scholar
  203. 203.
    Nishibe T, Kondo Y, Muto A, Dardik A (2007) Optimal prosthetic graft design for small diameter vascular grafts. Vascular 15:356–360CrossRefGoogle Scholar
  204. 204.
    Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH (2004) Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 25:1289–1297CrossRefGoogle Scholar
  205. 205.
    Yoo CR, Yeo IS, Park KE, Park JH, Lee SJ, Park WH, Min BM (2008) Effect of chitin/silk fibroin nanofibrous bicomponent structures on interaction with human epidermal keratinocytes. Int J Biol Macromol 42:324–334CrossRefGoogle Scholar
  206. 206.
    Jin HJ, Chen J, Karageorgiou V, Altman GH, Kaplan DL (2004) Human bone marrow stromal cell responses on electrospun silk fibroin mats. Biomaterials 25(25):1039–1047CrossRefGoogle Scholar
  207. 207.
    Kim KH, Jeong L, Park HN, Shin SY, Park WH, Lee SC, Kim TI, Park YJ, Seol YJ, Lee YM, Ku Y, Rhyu IC, Han SB, Chung CP (2005) Biological efficacy of silk fibroin nanofiber membranes for guided bone regeneration. J Biotechnol 120:120327–120339Google Scholar
  208. 208.
    Ki CS, Park SY, Kim HJ, Jung HM, Woo KM, Lee JW, Park YH (2008) Development of 3-D nanofibrous fibroin scaffold with high porosity by electrospinning: implications for bone regeneration. Biotechnol Lett 30:405–410CrossRefGoogle Scholar
  209. 209.
    Li C, Vepari C, Jin HJ, Kim HJ, Keplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials. 27:3115–3124CrossRefGoogle Scholar
  210. 210.
    Baek HS, Park YH, Ki CS, Park JC, Rahd DK (2008) Enhanced chondrogenic responses of articular chondrocytes onto porous silk fibroin scaffolds treated with microwave-induced argon plasma. Surf Coat Technol 202:5794–5797CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of ChemistryMN National Institute of TechnologyAllahabadIndia

Personalised recommendations