Chitin and Chitosan Nanocomposites for Tissue Engineering

  • Arun Kumar Mahanta
  • Pralay MaitiEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Chitin and chitosan are the most widely used biodegradable and biocompatible materials subsequent to cellulose. Nowadays a wide range of materials, including those classified as organic, inorganic, and biological are used in the synthesis, fabrication, and processing of nanostructures with unique physical properties. The properties of the polymer significantly improve by dispersing a few percentage of nanoparticle in the polymer matrix. In this context, we are focusing on the preparation, characterization, and bioactivity of chitin and chitosan nanocomposite in detail. The morphological changes occur in presence of nanoparticle. The improvement of thermal and mechanical properties including dynamic mechanical behavior of chitin and chitosan in presence of different nanofillers has been discussed in detail with suitable example as potential material for bone and wound tissue engineering applications. We summarize the physicochemical and drug delivery properties of chitin and chitosan composites. The cytocompatibility of the nanocomposites is assessed with improved cell attachment and proliferation using different human cells. This chapter enhances the understanding of biological uses of chitin and chitosan with their improved properties in presence of nanoparticles. A new approach at the intersection of biology and nanotechnology is focused to develop the next promising eco-friendly biopolymer nanocomposites.


Chitin/chitosan Nanoparticle Biomaterial Drug delivery 



The author (A K. Mahanta) gratefully acknowledges the financial support from Council for Scientific and Industrial Research (CSIR-UGC), New Delhi in the form of fellowship. The authors also acknowledge the receipt of research funding from Council for Scientific and Industrial Research (CSIR), New Delhi, Government of India (Project No. 02(0074)/12/EMR-II).


  1. 1.
    Vacanti JP, Vacanti CA, Lanz RP, Langer R, Vacanti J (2000) Principles of tissue—engineering, 2nd edn. Academic Press, California 3Google Scholar
  2. 2.
    Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295:1014–1017CrossRefGoogle Scholar
  3. 3.
    Ramires PA, Romito A, Cosentino F, Milella E (2001) The influence of titania/hydroxyapatite composite coatings on in vitro osteoblasts behavior. Biomaterials 22:1467–1474CrossRefGoogle Scholar
  4. 4.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  5. 5.
    Aranaz I, Mengíbar M, Harris R, Panos I, Miralles B, Acosta N, Galed G, Heras A (2009) Functional characterization of chitosan. Curr Chem 3:203–230Google Scholar
  6. 6.
    Honarkar H, Barikani M, Honarkar H, Barikani M (2009) Applications of biopolymers I: Chitosan. Monatsh Chem 140:1403–1420CrossRefGoogle Scholar
  7. 7.
    Hein S, Wang K, Stevens WF, Kjems J (2008) Chitosan composites for biomedical applications: status, challenges and perspectives. Mater Sci Technol 24:1053–1061CrossRefGoogle Scholar
  8. 8.
    Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192CrossRefGoogle Scholar
  9. 9.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014CrossRefGoogle Scholar
  10. 10.
    Rudall K, Kenchington MW (1973) The chitin system. Biol Rev 48:597–633CrossRefGoogle Scholar
  11. 11.
    Ifuku S, Morooka S, Morimoto M, Saimoto H (2010) Acetylation of chitin Nanofibers and their transparent nanocomposite films. Biomacromolecules 11:1326–1330CrossRefGoogle Scholar
  12. 12.
    Onishi H, Machida Y (1999) Biodegradation and distribution of water-soluble Chitosan in mice. Biomaterials 20:175–182CrossRefGoogle Scholar
  13. 13.
    Ravi Kumar MNV, Muzzarelli RAA, Muzzareli C, Sasfiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017–6084CrossRefGoogle Scholar
  14. 14.
    Honarkar H, Barikani M, Honarkar H, Barikani M (2009) Applications of biopolymers I: Chitosan. Monatsh Chem 140:1403–1420CrossRefGoogle Scholar
  15. 15.
    Chitin Tasch P (1979) In: Fairbridge RW, Jablonski D (eds) Paleontology, encyclopedia of earth science. Springer, Berlin, pp 186–189Google Scholar
  16. 16.
    Jang MK, Kong G, Jeong Y, Lee CH, Nah JW (2004) Physicochemical characterization of α chitin, β chitin, and γ chitin separated from natural resources. J Polym Sci part A: PolymChem 42:3423–3432CrossRefGoogle Scholar
  17. 17.
    Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlirch H, Tsurkan M, Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  18. 18.
    Gong X, Peng S, Wen W, Sheng P, Li W (2009) Design and fabrication of magnetically functionalized core/shell microspheres for smart drug delivery. Adv Funct Mater 19:292–297CrossRefGoogle Scholar
  19. 19.
    Hsieha WC, Changb CP, Gaoc YL (2006) Controlled release properties of Chitosan encapsulated volatile Citronella Oil microcapsules by thermal treatments. Colloids Surf B 53:209–214CrossRefGoogle Scholar
  20. 20.
    Yamamoto H, Amaike M (1997) Biodegradation of cross-linked chitosan gels by microorganisms. Macromolecules 30:3936–3937CrossRefGoogle Scholar
  21. 21.
    Risbud MV, Bhonde RR (2000) Polyacrylamide-chitosan hydrogels: in vitro biocompatibility and sustained antibiotic release studies. Drug Deliv 7:69–75CrossRefGoogle Scholar
  22. 22.
    Roughley P, Hoemann C, Desrosiers E, Mwale F, Antoniou J, Alini M (2006) The potential of chitosan-based gels containing invertebraldisc cells for nucleus pulposus supplementation. Biomaterials 27:388–396CrossRefGoogle Scholar
  23. 23.
    Ehrlich H, Krajewska B, Hanke T, Born R, Heinemann S, KniebC Worch H (2006) Chitosan membrane as a template for hydroxyap-atite crystal growth in a model dual membrane diffusion system. J Membr Sci 273:124–128CrossRefGoogle Scholar
  24. 24.
    Jayakumar R, Divya RVV, Shalumon KT, Sudheesh Kumar PT, Nair SV, Furuike T, Tamura H (2009) Bioactive and osteoblast cell attachmentstudies of novel α- and β- chitin membranes for tissue-engineering applications. Int J Biol Macromol 45:260–264CrossRefGoogle Scholar
  25. 25.
    Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRefGoogle Scholar
  26. 26.
    Morganti P, Morganti G (2008) Chitin nanofibrils for advanced cosmeceuticals. Clin Dermatol 26:334–340CrossRefGoogle Scholar
  27. 27.
    Jayakumar R, Reis RL, Mano JF (2007) Synthesis and characterization of pH-sensitive thiol-containing chitosan beads for controlled drugdelivery applications. Drug Deliv 14:9–17CrossRefGoogle Scholar
  28. 28.
    Prabaharan M, Mano JF (2005) Chitosan-based particles as controlled drug delivery systems. Drug Deliv 12:41–57CrossRefGoogle Scholar
  29. 29.
    Anitha A, Divya RVV, Krishna R, Sreeja V, Selvamurugan N, Nair SV, Tamura H, Jayakumar R (2009) Synthesis, characterization, cyto-toxicity and antibacterial studies of chitosan, O-carboxymethyl, N, O-carboxymethyl chitosan nanoparticles. Carbohydr Polym 78:672–677CrossRefGoogle Scholar
  30. 30.
    Anitha A, Deepagan VG, Divya RVV, Deepthy M, Nair SV, Jayakumar R (2011) Preparation, characterization, in vitro drug release and biologicalstudies of curcumin loaded dextran sulphate-chitosan nanoparti-cles. Carbohydr Polym 84:1158–1164CrossRefGoogle Scholar
  31. 31.
    Drury JL, Mooney DJ (2003) Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials 24:4337–4351CrossRefGoogle Scholar
  32. 32.
    Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29:322–337CrossRefGoogle Scholar
  33. 33.
    Prabaharan M, Jayakumar R, Nair SV (2012) Electrospun nanofibrous scaffolds -current status and prospects in drug delivery. Adv Polym Sci 246:241–262CrossRefGoogle Scholar
  34. 34.
    Muramatsu K, Masuda S, Yoshihara S, Fujisawa A (2003) In vitro degra-dation behavior of freeze-dried carboxymethyl-chitin sponges processed by vacuum-heating and gamma irradiation. Polym Degrad Stab 81:327–332CrossRefGoogle Scholar
  35. 35.
    Vacanti CA (2006) The history of tissue engineering. J Cell Mol Med 10:569–576CrossRefGoogle Scholar
  36. 36.
    Krajewska B (2005) Membrane-based processes performed with use of chitin/chitosan materials. Sep Purif Technol 41:305–312CrossRefGoogle Scholar
  37. 37.
    Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8:2252–2266CrossRefGoogle Scholar
  38. 38.
    Jayakumar R, Nwe N, Tokura S, Tamura H (2007) Sulfated chitin and chi-tosan as novel biomaterials. Int J Biol Macromol 40:175–181CrossRefGoogle Scholar
  39. 39.
    Tigli RS, Gumusderelioglu M (2009) Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds. J Mater Sci Mater Med 20:699–709CrossRefGoogle Scholar
  40. 40.
    Ragetly GR, Slavik GJ, Cunningham BT, Schaeffer DJ, Griffon DJ (2010) Cartilage tissue engineering on fibrous chitosan scaffolds produced by a replica molding technique. J Biomed Mater Res, Part A 93:46–55Google Scholar
  41. 41.
    Ragetly GR, Griffon DJ, Lee HB, Fredericks LP, Gordon-Evans W, Chung YS (2010) Effect of chitosan scaffold microstructure on mesenchymal stem cells chondrogenesis. Acta Biomater 6:1430–1436CrossRefGoogle Scholar
  42. 42.
    Mourya VK, Inamdar NN (2008) Chitosan-modifications and applications: opportunities galore. React Funct Polym 68:1013–1051CrossRefGoogle Scholar
  43. 43.
    Suh JKF, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598CrossRefGoogle Scholar
  44. 44.
    Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182CrossRefGoogle Scholar
  45. 45.
    Dai M, Zheng XL, Xu X, Kong XY, Li XY, Guo G, Luo F, Zhao X, Wei YQ, Qian Z (2009) Chitosan–alginate sponge: preparation and application in curcumin delivery for dermal wound healing in rat. J Biomed Biotechnol 595126/1–8Google Scholar
  46. 46.
    Sudheesh Kumar PT, Abhilash S, Manzoor K, Nair SV, Tamura H, Jayakumar R (2010) Preparation and characterization of novel β-chitin/nano silver composite scaffolds for wound dressing applications. Carbohydr Polym 80:761–777CrossRefGoogle Scholar
  47. 47.
    Kofuji K, Huang Y, Tsubaki K, Kokido F, Nishikaw K, Isobe T, Murata M (2010) Preparation and evaluation of a novel wound dressing sheet comprised of β-glucan-chitosan complex. React Funct Polym 70:784–789CrossRefGoogle Scholar
  48. 48.
    Cai ZX, Mo XM, Zhang KH, Fan LP, Yin AL, He CL, Wang HS (2010) Fabrication of chitosan/silk fibroin composite nanofibers for wound-dressing applications. Int J Mol Sci 11:3529–3539CrossRefGoogle Scholar
  49. 49.
    Kang YO, Yoon IS, Lee SY, Kim DD, Lee SJ, Park WH, Hudson SM (2010) Chitosan coated poly (vinyl alcohol) nanofibers for wound dressings. J Biomed Mater Res B 92:568–576Google Scholar
  50. 50.
    Dong Y, Liu HZ, Xu L, Li G, Ma ZN, Han F, Yao HM, Sun YH, Li SM (2010) A novel CHS/ALG bi-layer composite membrane with sustained antimicrobial efficacy used as wound dressing. Chin Chem Lett 21:1011–1014CrossRefGoogle Scholar
  51. 51.
    Radhakumary C, Antonty M, Sreenivasan K (2011) Drug loaded thermo responsive and cytocompatible chitosan based hydrogel as a potential wound dressing. Carbohydr Polym 83:705–713CrossRefGoogle Scholar
  52. 52.
    Dev A, Binulal NS, Anitha A, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Preparation of novel poly (lactic acid)/chitosan nanoparticles for anti HIV drug delivery applications. Carbohydr Polym 80:833–838CrossRefGoogle Scholar
  53. 53.
    Dev A, Mohan JC, Sreeja V, Tamura H, Patzke GR, Hussain F, Weyeneth S, Nair SV, Jayakumar R (2010) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 79:1073–1079CrossRefGoogle Scholar
  54. 54.
    Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  55. 55.
    Sashiwa H, Aiba S (2004) Chemically modified chitin and chitosan as bio-materials. Prog Polym Sci 29:887–888CrossRefGoogle Scholar
  56. 56.
    Ravi Kumar MNV, Muzzarelli RAA, Muzzarelli C, Sashiwa H, Domb AJ (2004) Chitosan chemistry and pharmaceutical perspectives. Chem Rev 104:6017CrossRefGoogle Scholar
  57. 57.
    Yi H, Wu LQ, Bentley WE, Ghodssi R, Rubloff GW, Culver JN, Payne GF (2005) Biofabrication with chitosan. Biomacromolecules 6:2881–2894CrossRefGoogle Scholar
  58. 58.
    Goldstein AS, Juarez TM, Helmke CD, Gustin MC, Mikos AG (2001) Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds. Biomaterials 22:1279–1288CrossRefGoogle Scholar
  59. 59.
    Dutta PK, Srivastava R, Dutta J (2013) Functionalized nanoparticles and chitosan-based functional nanomaterials. Adv Polym Sci 254:1–50Google Scholar
  60. 60.
    Regiel-Futyra A, Lisḱiewicz MK, Sebastian V, Irusta Silvia, Arruebo M, Stochel G, Kyzioł A (2015) Development of noncytotoxic chitosan−gold nanocomposites as efficient antibacterial materials. Appl Mater Interf 7:1087–1099CrossRefGoogle Scholar
  61. 61.
    Hebeisha AA, Ramadana MA, Montasera AS, Farag AM (2014) Preparation, characterization and antibacterial activity ofchitosan-g-poly acrylonitrile/silver nanocomposite. Int J Biol Macromol 68:178–184CrossRefGoogle Scholar
  62. 62.
    Naseri N, Algan C, Jacobs V, John M, Kristiin Oksman K, Mathew AP (2014) Electrospun chitosan-based nanocomposite mats reinforced withchitin nanocrystals for wound dressing. Carbohydr Polym 109:7–15CrossRefGoogle Scholar
  63. 63.
    Liu M, Wu C, Jiao Y, Xiong S, Zhou C (2013) Chitosan–halloysite nanotubes nanocomposite scaffolds for tissue engineering. J Mater Chem B 1:2078–2089CrossRefGoogle Scholar
  64. 64.
    Duan B, Liu F, He M, Zhang L (2014) Ag–Fe3O4 nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chem 16:2835–2845CrossRefGoogle Scholar
  65. 65.
    Huang H, Yuan Q, Yang X (2005) Morphology study of gold–chitosan nanocomposites. J Colloid Interf Sci 282:26–31CrossRefGoogle Scholar
  66. 66.
    Wang SF, Shen L, Tong YJ, Chen L, Phang IY, Lim PQ, Liu TX (2005) Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polym Degrad Stab 90:123–131CrossRefGoogle Scholar
  67. 67.
    Darder M, Colilla M, Hitzky R (2003) Biopolymer—clay nanocomposites based on chitosan intercalated in montmorillonite. Chem Mater 15:3774–3780CrossRefGoogle Scholar
  68. 68.
    Liu M, Zhang Y, Li J, Zhou C (2013) Chitin-natural clay nanotubes hybrid hydrogel. Int J Bio Macromol 58:23–30CrossRefGoogle Scholar
  69. 69.
    Sudheesh Kumar PT, Srinivasan S, Lakshmanan VK, Tamura H, Nair SV, Jayakumar R (2011) b-Chitn hydrogel/nanohydroxyapatite composite scaffolds for tisuue engineering applications. Carbohydr Polym 85:584–591CrossRefGoogle Scholar
  70. 70.
    Han YS, Lee SH, Choi KH, Park I (2010) Preparation and characterization of chitosan-clay nanocomposites with antimicrobial activity. J Phys Chem Solids 71:464–467CrossRefGoogle Scholar
  71. 71.
    Anisha BS, Sankar D, Mohandas A, Chennazhi Nair, Jayakumar R (2013) chitosano-hyaluronan/nano chondroitin sulfate ternary composite sponges for medical use. Carbohydr Polym 92:1470–1476CrossRefGoogle Scholar
  72. 72.
    Marroquin JB, Rhee KY, Park SJ (2013) Chitosan nanocomposite films: Enhanced electrical Conductivity, thermal stability, and mechanical properties. Carbohydr Polym 92:1783–1791CrossRefGoogle Scholar
  73. 73.
    Silva RTD, Pasbakhsh P, Goh KL, Chai SP, Ismail H (2013) Physico-chemical characterization of chitosan/halloysite composite membranes. Polym Test 32:265–271CrossRefGoogle Scholar
  74. 74.
    Azizi S, Ahmad MB, Ibrahim NA, Hussein MZ, Namvar F (2014) Preparation and properties of poly (vinyl alcohol)/chitosan Blend Bio-nanocomposites reinforced by cellulose nanocrystals. Chin J Polym Sci 12:1620–1627CrossRefGoogle Scholar
  75. 75.
    Jayakumar R, Ramachandran R, Divyarani VV, Chennazhi KP, Tamura H, Nair SV (2011) Fabrication of chitin-chitosan/nano TiO2-composite scaffolds for tissue engineering application applios. Int J Biol Macromol 48:336–344CrossRefGoogle Scholar
  76. 76.
    Wang SF, Shen Lu, Zhang WD, Tong YJ (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromolecules 6:3067–3072CrossRefGoogle Scholar
  77. 77.
    Yang X, Tu Y, Li L, Shang S, Tao X (2010) Well-disperesed chitosan/graphene oxide nanocomposites. Appl Mater Interf 6:1707–1713CrossRefGoogle Scholar
  78. 78.
    Casariego A, Souza BWS, Cerqueira MA, Teixeira JA, Cruz L, Diaz R, Vicente AA (2009) Chitosan/clay films properties as affected by biopolymer and clay micro/nanoparticles’ concentrations. Food Hydrocoll 23:1895–1902CrossRefGoogle Scholar
  79. 79.
    Rubentheren V, Ward TA, Chee CY, Tang CK (2015) Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydr Polym 115:379–387Google Scholar
  80. 80.
    Huang D, Mu B, Wang A (2012) Preparation and properties of chitosan/poly (vinyl alcohol) nanocomposite film rein forced with rod-like sepiolite. Mater Lett 86:69–72CrossRefGoogle Scholar
  81. 81.
    Liu M, Zhang Y, Li J, Zhou C (2013) Chitin-natural clay nanotubes hybrid hydrogel. Int J Biol Macromol 58:23–30CrossRefGoogle Scholar
  82. 82.
    Tang C, Xiang L, Su J, Wang K, Yang C, Zhang Q, Fu Q (2008) Largely improved tensile properties of chitosan film via unique synergistic reinforcing effect of carbon nanotube and clay. J Phys Chem B 112:3876–3881CrossRefGoogle Scholar
  83. 83.
    Liu M, Zhang Y, Wu C, Xiong S, Zhou C (2012) Chitosan/halloysite nanotubes bionanocomposite: structure, mechanical properties and biocompatibility. Int J Biol Macromol 51:566–575CrossRefGoogle Scholar
  84. 84.
    Singh N, Koziol KKK, Chen J, Patil AJ, Gilman JW, Trulove PC, Kafienah W, Rahatekar SS (2013) Iionic liquids-based processing of electrically conducting chitin nanocomposite scaffolds for stem cell growth. Green Chem 15:1192–1202CrossRefGoogle Scholar
  85. 85.
    Peter M, Sudheesh Kumar PT, Binulal NS, Nair SV, Tamura H (2009) Development of novel a-chitin/nanobioactive glass ceramic composite scaffolds for tissue engineering applications. Carbohydr Polym 78:926–931CrossRefGoogle Scholar
  86. 86.
    Gaharwar AK, Schexnailder PJ, Jin Q, Wu CJ, Schmidt G (2010) Addition of chitosan to silicate cross-linked PEO for tuning osteoblast cell adhesion and mineralization. Appl Mater Interf 2:3119–3127CrossRefGoogle Scholar
  87. 87.
    Chen R, Chen Q, Huo D, Ding Y, Hu Y, Jiang X (2012) In situ formation of chitosan-gold hybrid hydrogel and its application for drug delivery. Colloids Surf B 97:132–137CrossRefGoogle Scholar
  88. 88.
    Sudheesh Kumar PT, Ramya C, Jayakumar R, Nair SV, Lakshmanan (2013) Drug delivery and tissue engineering applications of biocompatible pectin-chitin/nano CaCO3 composite scaffolds. Colloids Surf B 106:109–116CrossRefGoogle Scholar
  89. 89.
    Jayakumar R, Ramachandran R, Sudheesh Kumar PT, Divyarani VV, Srinivasan, Chennazhi KP, Tamura H, Nair SV (2011) Fabrication of chitin-chitosan/nano ZrO2 composite scaffolds for tissue engineering applications. Int J Biol Macromol 49:274–280CrossRefGoogle Scholar
  90. 90.
    Zhang JL, Misra RDK (2007) Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core–shell nanoparticle carrier and drug release response. Acta Biomater 3:838–850CrossRefGoogle Scholar
  91. 91.
    Ardeshirzadesh B, Anaraki NA, Irani M, Rad LR, Shamshiri S (2015) Controlled release of doxorubicine from electrospun PEO/chitosan/grapheme oxide nanocomposite nanofiberous scaffolds. Mat Sci Eng C 48:384–390CrossRefGoogle Scholar
  92. 92.
    Liu KH, Liu TY, Chen SY, Liu DM (2008) Drug release behavior of chitosan—montmorillonite nanocomposite hydrogels following electrostimulation. Acta Biomater 4:1038–1045CrossRefGoogle Scholar
  93. 93.
    Nivethaa EAK, Dhanavel S, Narayanan V, Vasu CA, Stephen (2015) An in vitro cytotoxicity study of 5-fluorouracil encapsulated shitosan/gold nanocomposites towards MCF-7 cells. RSC Adv 5:1024–1032CrossRefGoogle Scholar
  94. 94.
    Shariatinia Z, Nikfar Z, Gholivand K, Tarei SA (2015) Antibacterial activities of novel nanocomposite biofilms of chitosan/phosphoramide/Ag NPs. Polym Compos 454–466Google Scholar
  95. 95.
    Sharma S, Sanpui P, Chattopadhyay A, Ghosh SS (2012) fabrications of antibacterial silver nanoparticle-sodium alginate-chitosan composite films. RSC Adv 2:5837–5843CrossRefGoogle Scholar
  96. 96.
    Rao KSV, Reddy PR, Lee YI, Kim C (2012) Synthesis and characterization of chitosan-PEG-Ag nancomposites for antimicrobial application. Carbohydr Polym 87:920–925CrossRefGoogle Scholar
  97. 97.
    Youssef AM, Yousef HA, Sayed SME, Kamel S (2015) Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. Int J Biol Macromol 76:25–32CrossRefGoogle Scholar
  98. 98.
    Shariatinia Z, Fazli M (2015) Mechanical properties and antibacterial activities of novel nanobiocomposite films of chitosan and starch. Food Hydrocoll 46:112–124CrossRefGoogle Scholar
  99. 99.
    Wysokowski M, Motylenko M, Stocker H, Bazhenov VV, Langer E, Dobrowolska A, Czaczyk K, Galli R, Stelling AL, Behm T, Klapiszewski L, Ambrozewicz D, Nowacka M, Molodtsov SL, Abendroth B, Meyer DC, Kurzydlowski KJ, Jesionowski T, Ehrlich H (2013) An extreme of biomemitic approach: hydrothermal synthesis of b-chitin/ZnO nanostrustured composites. J Mater Chem B 1:6469–6476CrossRefGoogle Scholar
  100. 100.
    Sudheesh Kumar PT, Lakshmanan VK, Anilkumar TV, Ramya C, Reshmi P, Unnikrishnan AG, Nair SV, Jayakumar R (2012) Flexible and microporus chitosan hydrogel/nano ZnO composite bandages for wound dressing. in vitro and in vivo evaluation. Appl Mater Interf 4:2618–2629CrossRefGoogle Scholar
  101. 101.
    Anisha BS, Deepthi S, Annapoorna M, Chennazhi KP, Nair SV, Jayakumar R (2013) Chitosan–hyaluronan/nano chondroitin sulfateternary composite sponges for medical use. Carbohydr Polym 92:1470–1476CrossRefGoogle Scholar
  102. 102.
    Lu S, Gao W, Gu HY (2008) Construction, application and biosafety of silve nanocrystalline chitosan wound dressing. Burns 34:623–628CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.School of Materials Science and TechnologyIndian Institute of Technology (Banaras Hindu University)VaranasiIndia

Personalised recommendations