Chitosan-Gelatin Composite Scaffolds in Bone Tissue Engineering

  • M. Nivedhitha Sundaram
  • S. Deepthi
  • R. JayakumarEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Regenerative medicine focuses on repair/replacement of the damaged tissue or organ in our body. This is done by growing cells on scaffold materials which help in its attachment, migration and proliferation. Chitosan being natural polymer has many unique properties such as being biocompatible, biodegradable and also has antibacterial and wound-healing abilities. Gelatin a derivative of collagen, which is widely present in our body, has been used as a composite with chitosan for promoting cell attachment, proliferation, and differentiation. Composite scaffolds have also shown better mechanical and functional properties because these composites are made of polymer and inorganic/organic blenders. Overall this review focuses on the role of chitosan-gelatin-based composite scaffolds in bone tissue engineering.


Chitosan Gelatin Nanocomposites Bone regeneration Scaffolds 



One of the authors S. Deepthi is thankful to the Council of Scientific and Industrial Research for supporting financially under the CSIR-SRF award no: 9/963(0034)2K13-EMR-I


  1. 1.
    Landis WJ (1996) Mineral characterization in calcifying tissues: atomic, molecular and macromolecular perspectives. Connect Tissue Res 34:239–246CrossRefGoogle Scholar
  2. 2.
    Rho JY (1998) Mechanical properties and the hierarchical structure of bone. Med Eng Phys 20:92–102CrossRefGoogle Scholar
  3. 3.
    Van der Meulen MCH, Prendergast PJ (2000) Mechanics in skeletal development, adaptation and disease. Philos Trans R Soc Lond A 358:565–578CrossRefGoogle Scholar
  4. 4.
    Giannoudis PV, Dinopoulos H, Tsiridis E (2005) Bone substitutes: an update. Injury 36:20–27CrossRefGoogle Scholar
  5. 5.
    Stock UA, Vacanti JP (2001) Tissue engineering: current state and prospects. Annu Rev Med 52:443–451CrossRefGoogle Scholar
  6. 6.
    Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRefGoogle Scholar
  7. 7.
    Shalumon KT, Sowmya S, Sathish D, Chennazhi KP, Nair SV, Jayakumar R (2013) Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/Chitosan nanofibers for bone and periodontal tissue engineering. J Biomed Nanotechnol 9:430–440CrossRefGoogle Scholar
  8. 8.
    Di Bella C, Farlie P, Penington AJ (2008) Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Eng Part A 14:483–490CrossRefGoogle Scholar
  9. 9.
    Gentile P, Chiono V, Carmagnola l, Hatton PV (2014) An overview of poly(lactic-co-glycolic) acid (PLGA)-based biomaterials for bone tissue engineering. Int J Mol Sci 1:360-59Google Scholar
  10. 10.
    Ferreira AM, Gentile P, Chiono V, Ciardelli G (2012) Collagen for bone tissue regeneration. Acta Biomater 8:3191–3200CrossRefGoogle Scholar
  11. 11.
    Binulal NS, Natarajan A, Menon D, Bhaskaran VK, Mony U, Nair SV (2014) PCL–gelatin composite nanofibers electrospun using diluted acetic acid–ethyl acetate solvent system for stem cell-based bone tissue engineering. J Biomater Sci Polym Ed 25:325–340CrossRefGoogle Scholar
  12. 12.
    Anitha A, Sowmya S, Sudheesh Kumar PT, Deepthi S, Chennazhi KP, Ehrlich M, Tsurkan Jayakumar R (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39:1644–1667CrossRefGoogle Scholar
  13. 13.
    Khan WS, Rayan F, Dhinsa BS, Marsh D (2012) An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we? Stem Cells Int 2012:236231Google Scholar
  14. 14.
    El-Ghannam A (2005) Bone reconstruction: from bioceramics to tissue engineering. Expert Rev Med Devices 2:87–101CrossRefGoogle Scholar
  15. 15.
    Zhou H, Lee J (2011) Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater 7:2769–2781CrossRefGoogle Scholar
  16. 16.
    Cao K, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395CrossRefGoogle Scholar
  17. 17.
    Liu X, Rahaman MN, Fu Q (2013) Bone regeneration in strong porous bioactive glass scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta Biomater 9:4889–4898CrossRefGoogle Scholar
  18. 18.
    Wang M (2001) Bioactive ceramic–polymer composites for bone replacement. In: Proceedings of the 13th international conference on composite materials (ICCM-13), Beijing, China. Paper 1541Google Scholar
  19. 19.
    Lan levengood SK, Zhang M (2014) Chitosan scaffolds for bone tissue engineering. J Mater Chem B 2:3161–3184CrossRefGoogle Scholar
  20. 20.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical application of chitin and chitosan nanomaterials. Carbohydr Polym 82:227–232CrossRefGoogle Scholar
  21. 21.
    Li Z, Ramay HR, Hauch KD, Xiao D, Zhang M (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928CrossRefGoogle Scholar
  22. 22.
    Qiao P, Wang J, Xie Q, Li F, Dong L, Xu T (2013) Injectable calcium phosphate-alginate-chitosan microencapsulated MC3T3-E1 cell paste for bone tissue engineering in vivo. Mater Sci Eng C Mater Biol Appl 33:4633–4639CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhang M (2002) Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res 61:1–8CrossRefGoogle Scholar
  24. 24.
    Zhang Y, Ni M, Zhang M, Ratner B (2003) Calcium phosphate-chitosan composite scaffolds for bone tissue engineering. Tissue Eng 9:337–345CrossRefGoogle Scholar
  25. 25.
    Tanase CE, Sartoris A, Popa MI, Verestiuc L, Unger RE, Kirkpatrick CJ (2013) In vitro evaluation of biomimetic chitosan-calcium phosphate scaffolds with potential application in bone tissue engineering. Biomed Mater 8:025002CrossRefGoogle Scholar
  26. 26.
    Lee JY, Kim KH, Shin SY, Rhyu IC, Lee YM, Park YJ, Chung CP, Lee SJ (2006) Enhanced bone formation by transforming growth factor-beta1-releasing collagen/chitosan microgranules. J Biomed Mater Res A 76:530–539CrossRefGoogle Scholar
  27. 27.
    Park YJ, Lee YM, Park SN, Sheen SY, Chung CP, Lee SJ (2000) Platelet derived growth factor releasing chitosan sponge for periodontal bone regeneration. Biomaterials 21:153–159CrossRefGoogle Scholar
  28. 28.
    Park YJ, Lee YM, Lee JY, Seol YJ, Chung CP, Lee SJ (2000) Controlled release of platelet-derived growth factor-BB from chondroitin sulfate-chitosan sponge for guided bone regeneration. J Control Release 67:385–394CrossRefGoogle Scholar
  29. 29.
    Lee YM, Park YJ, Lee SJ, Ku Y, Han SB, Klokkevold PR, Chung CP (2000) The bone regenerative effect of platelet-derived growth factor-BB delivered with a chitosan/tricalcium phosphate sponge carrier. J Periodontol 71:418–424CrossRefGoogle Scholar
  30. 30.
    Im SY, Cho SH, Hwang JH, Lee SJ (2003) Growth factor releasing porous poly (epsilon-caprolactone)-chitosan matrices for enhanced bone regenerative therapy. Arch Pharm Res 26:76–82CrossRefGoogle Scholar
  31. 31.
    Li B, Liao X, Zheng L, Zhu X, Wang Z, Fan H, Zhang X (2012) Effect of nanostructure on osteoinduction of porous biphasic calcium phosphate ceramics. Acta Biomater 8:3794–3804CrossRefGoogle Scholar
  32. 32.
    Thein-Han WW, Misra RD (2009) Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRefGoogle Scholar
  33. 33.
    Sowjanya JA, Singh J, Mohita T, Sarvanan S, Moorthi A, Srinivasan N, Selvamurugan N (2013) Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering. Colloids Surf B Biointerfaces 109:294–300CrossRefGoogle Scholar
  34. 34.
    Kavitha K, Sutha S, Prabhu M, Rajendran V, Jayakumar T (2013) In situ synthesized novel biocompatible titania-chitosan nanocomposites with high surface area and antibacterial activity. Carbohydr Polym 93:731–739CrossRefGoogle Scholar
  35. 35.
    Chesnutt BM, Viano AM, Yuan Y, Yang Y, Guda T, Appleford MR, Ong JL, Haggard WO, Bumgardner JD (2009) Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration. J Biomed Mater Res A 88:491–502CrossRefGoogle Scholar
  36. 36.
    Chesnutt BM, Yuan Y, Buddington K, Haggard WO, Bumgardner JD (2009) Composite chitosan/nano-hydroxyapatite scaffolds induce osteocalcin production by osteoblasts in vitro and support bone formation in vivo. Tissue Eng Part A 15:2571–2579CrossRefGoogle Scholar
  37. 37.
    Jiang H, Zuo Y, Zou Q, Wang H, Du J, Li Y, Yang X (2013) Biomimetic spiral-cylindrical scaffold based on hybrid chitosan/cellulose/nano-hydroxyapatite membrane for bone regeneration. ACS Appl Mater Interfaces 5:12036–12044CrossRefGoogle Scholar
  38. 38.
    Lee JS, Baek SD, Venkatesan J, Bhatnagar I, Chang HK, Kim HT, Kim SK (2014) In vivo study of chitosan-natural nano hydroxyapatite scaffolds for bone tissue regeneration. Int J Biol Macromol 67:360–366CrossRefGoogle Scholar
  39. 39.
    Xiao X, Liu R, Huang Q (2008) Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds. J Mater Sci Mater Med 19:3429–3435CrossRefGoogle Scholar
  40. 40.
    Wang F, Zhang YC, Zhou H, Guo YC, Su XX (2014) Evaluation of in vitro and in vivo osteogenic differentiation of nano-hydroxyapatite/chitosan/poly(lactide-co-glycolide) scaffolds with human umbilical cord mesenchymal stem cells. J Biomed Mater Res A 102:760–768CrossRefGoogle Scholar
  41. 41.
    Venkatesan J, Qian ZJ, Ryu B, Ashok Kumar N, Kim SK (2011) Preparation and characterization of carbon nanotube-grafted-chitosan: natural hydroxyapatite composite for bone tissue engineering. Carbohydr Polym 83:569–577CrossRefGoogle Scholar
  42. 42.
    Mohammadi Y, Soleimani M, Fallahi-Sichani M, Gazme A, Haddadi-Asl V, Arefian E, Kiani J, Moradi R, Atashi A, Ahmadbeigi N (2007) Nanofibrous poly(epsilon-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells. Int J Artif Organs 30:204–211Google Scholar
  43. 43.
    Sutha S, Kavitha K, Karunakaran G, Rajendran V (2013) In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants. Mater Sci Eng C Mater Biol Appl 33:4046–4054CrossRefGoogle Scholar
  44. 44.
    Lin HY, Chen JH (2013) Osteoblast differentiation and phenotype expressions on chitosan-coated Ti-6Al-4 V. Carbohydr Polym 97:618–626CrossRefGoogle Scholar
  45. 45.
    Elzoghby AO (2013) Gelatin-based nanoparticles as drug and gene delivery systems: reviewing three decades of research. J Control Release 172:1075–1091CrossRefGoogle Scholar
  46. 46.
    Gao C, Huo S, Li X, You X, Zhang Y, Gao J (2007) Characteristics of calcium sulfate/gelatin composite biomaterials for bone repair. J Biomater Sci Polym Ed 18:799–824CrossRefGoogle Scholar
  47. 47.
    Nguyen TB, Min YK, Lee BT (2015) Nanoparticle biphasic calcium phosphate loading on gelatin-pectin scaffold for improved bone regeneration. Tissue Eng Part A 21:1376–1387CrossRefGoogle Scholar
  48. 48.
    Nguyen TB, Lee BT (2014) A combination of biphasic calcium phosphate scaffold with hyaluronic acid-gelatin hydrogel as a new tool for bone regeneration. Tissue Eng Part A 20:1993–2004CrossRefGoogle Scholar
  49. 49.
    Gil-Albarova J, Vila M, Badiola-Vargas J, Sánchez-Salcedo S, Herrera A, Vallet-Regi M (2012) In vivo osteointegration of three-dimensional crosslinked gelatin-coated hydroxyapatite foams. Acta Biomater 8:3777–3783CrossRefGoogle Scholar
  50. 50.
    Rodriguez IA, Sell SA, McCool JM, Saxena G, Spence AJ, Bowlin GL (2013) A preliminary evaluation of lyophilized gelatin sponges, enhanced with platelet-rich plasma, hydroxyapatite and chitin whiskers for bone regeneration. Cells 2:244–265CrossRefGoogle Scholar
  51. 51.
    Tavakol S, Azami M, Khoshzaban A, Ragerdi Kashani I, Tavakol B, Hoveizi E, Rezayat Sorkhabadi SM (2013) Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat. Cell Biol Int 37:1181–1189Google Scholar
  52. 52.
    Nair M, Nancy D, Krishnan AG, Anjusree GS, Vadukumpully S, Nair SV (2015) Graphene oxide nanoflakes incorporated gelatin-hydroxyapatite scaffolds enhance osteogenic differentiation of human mesenchymal stem cells. Nanotechnology 26:161001CrossRefGoogle Scholar
  53. 53.
    Ferreira JR, Padilla R, Urkasemsin G, Yoon K, Goeckner K, Hu WS, Ko CC (2013) Titanium-enriched hydroxyapatite-gelatin scaffolds with osteogenically differentiated progenitor cell aggregates for calvaria bone regeneration. Tissue Eng Part A 19:1803–1816CrossRefGoogle Scholar
  54. 54.
    Kovtun A, Goeckelmann MJ, Niclas AA, Montufar EB, Ginebra MP, Planell JA, Santin M, Ignatius A (2014) In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams. Acta Biomater 12:242–249CrossRefGoogle Scholar
  55. 55.
    Liu Y, Lu Y, Tian X, Cui G, Zhao Y, Yang Q, Yu S, Xing G, Zhang B (2009) Segmental bone regeneration using an rhBMP-2-loaded gelatin/nanohydroxyapatite/fibrin scaffold in a rabbit model. Biomaterials 30:6276–6285CrossRefGoogle Scholar
  56. 56.
    Nadeem D, Kiamehr M, Yang X, Su B (2013) Fabrication and in vitro evaluation of a sponge-like bioactive-glass/gelatin composite scaffold for bone tissue engineering. Mater Sci Eng C Mater Biol Appl 33:2669–2678CrossRefGoogle Scholar
  57. 57.
    Takaoka R, Hikasa Y, Hayashi K, Tabata Y (2011) Bone regeneration by lactoferrin released from a gelatin hydrogel. J Biomater Sci Polym Ed 22:1581–1589CrossRefGoogle Scholar
  58. 58.
    Fukui T, Ii M, Shoji T, Matsumoto T, Mifune Y, Kawakami Y, Akimaru H, Kawamoto A, Kuroda T, Saito T, Tabata Y, Kuroda R, Kurosaka M, Asahara T (2012) Therapeutic effect of local administration of low-dose simvastatin-conjugated gelatin hydrogel for fracture healing. J Bone Miner Res 27:1118–1131CrossRefGoogle Scholar
  59. 59.
    Tanabe K, Nomoto H, Okumori N, Miura T, Yoshinari M (2012) Osteogenic effect of fluvastatin combined with biodegradable gelatin-hydrogel. Dent Mater J 31:489–493CrossRefGoogle Scholar
  60. 60.
    Dou XC, Zhu XP, Zhou J, Cai HQ, Tang J, Li QL (2011) Minocycline-released hydroxyapatite-gelatin nanocomposite and its cytocompatibility in vitro. Biomed Mater 6:025002CrossRefGoogle Scholar
  61. 61.
    Omata K, Matsuno T, Asano K, Hashimoto Y, Tabata Y, Satoh T (2014) Enhanced bone regeneration by gelatin-β-tricalcium phosphate composites enabling controlled release of bFGF. J Tissue Eng Regen Med 8:604–611CrossRefGoogle Scholar
  62. 62.
    Wang H, Zou Q, Boerman OC, Nijhuis AW, Jansen JA, Li Y, Leeuwenburgh SC (2013) Combined delivery of BMP-2 and bFGF from nanostructured colloidal gelatin gels and its effect on bone regeneration in vivo. J Control Release 166:172–181CrossRefGoogle Scholar
  63. 63.
    Van der Stok J, Wang H, Amin Yavari S, Siebelt M, Sandker M, Waarsing JH, Verhaar JA, Jahr H, Zadpoor AA, Leeuwenburgh SC, Weinans H (2013) Enhanced bone regeneration of cortical segmental bone defects using porous titanium scaffolds incorporated with colloidal gelatin gels for time- and dose-controlled delivery of dual growth factors. Tissue Eng Part A 19:2605–2614CrossRefGoogle Scholar
  64. 64.
    Nagae M, Ikeda T, Mikami Y, Hase H, Ozawa H, Matsuda K, Sakamoto H, Tabata Y, Kawata M, Kubo T (2007) Intervertebral disc regeneration using platelet-rich plasma and biodegradable gelatin hydrogel microspheres. Tissue Eng 13:147–158CrossRefGoogle Scholar
  65. 65.
    Son SR, Sarkar SK, Nguyen-Thuy BL, Padalhin AR, Kim BR, Jung HI, Lee BT (2015) Platelet-rich plasma encapsulation in hyaluronic acid/gelatin-BCP hydrogel for growth factor delivery in BCP sponge scaffold for bone regeneration. J Biomater Appl 29:988–1002CrossRefGoogle Scholar
  66. 66.
    Kim YH, Furuya H, Tabata Y (2014) Enhancement of bone regeneration by dual release of a macrophage recruitment agent and platelet-rich plasma from gelatin hydrogels. Biomaterials 35:214–224CrossRefGoogle Scholar
  67. 67.
    Mattii L, Battolla B, D’Alessandro D, Trombi L, Pacini S, Cascone MG, Lazzeri L, Bernardini N, Dolfi A, Galimberti S, Petrini M (2008) Gelatin/PLLA sponge-like scaffolds allow proliferation and osteogenic differentiation of human mesenchymal stromal cells. Macromol Biosci 8:819–826CrossRefGoogle Scholar
  68. 68.
    Jegal SH, Park JH, Kim JH, Kim TH, Shin US, Kim TI, Kim HW (2011) Functional composite nanofibers of poly(lactide-co-caprolactone) containing gelatin-apatite bone mimetic precipitate for bone regeneration. Acta Biomater 7:1609–1617CrossRefGoogle Scholar
  69. 69.
    Ji W, Yang F, Ma J, Bouma MJ, Boerman OC, Chen Z, van den Beucken JJ, Jansen JA (2012) Incorporation of stromal cell-derived factor-1α in PCL/gelatin electrospun membranes for guided bone regeneration. Biomaterials 34:735–745CrossRefGoogle Scholar
  70. 70.
    Alvarez Perez MA, Guarino V, Cirillo V, Ambrosio L (2012) In vitro mineralization and bone osteogenesis in poly(ε-caprolactone)/gelatin nanofibers. J Biomed Mater Res A 100:3008–3019CrossRefGoogle Scholar
  71. 71.
    Xue J, He M1, Liu H, Niu Y, Crawford A, Coates PD, Chen D, Shi R, Zhang L (2014) Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes. Biomaterials 35:9395–9405Google Scholar
  72. 72.
    Sun Y, Jiang Y, Liu Q, Gao T, Feng JQ, Dechow P, D’Souza RN, Qin C, Liu X (2013) Biomimetic engineering of nanofibrous gelatin scaffolds with noncollagenous proteins for enhanced bone regeneration. Tissue Eng Part A 19:1754–1763CrossRefGoogle Scholar
  73. 73.
    Linh NT, Lee KH, Lee BT (2013) Functional nanofiber mat of polyvinyl alcohol/gelatin containing nanoparticles of biphasic calcium phosphate for bone regeneration in rat calvaria defects. J Biomed Mater Res A. 101:2412–2423CrossRefGoogle Scholar
  74. 74.
    Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30:2252–2258CrossRefGoogle Scholar
  75. 75.
    Ichinohe N, Kuboki Y, Tabata Y (2008) Bone regeneration using titanium nonwoven fabrics combined with fgf-2 release from gelatin hydrogel microspheres in rabbit skull defects. Tissue Eng Part A 14:1663–1671CrossRefGoogle Scholar
  76. 76.
    Huang Y, Onyeri S, Siewe M, Moshfeghian A, Madihally SV (2005) In vitro characterization of chitosan-gelatin scaffolds for tissue engineering. Biomaterials 26:7616–7627CrossRefGoogle Scholar
  77. 77.
    Liu H, Yao F, Zhou Y, Yao K, Mei D, Cui L, Cao (2005) Porous poly (DL-lactic acid) modified chitosan-gelatin scaffolds for tissue engineering. J Biomater Appl 19:303–322CrossRefGoogle Scholar
  78. 78.
    Kim S, Kang Y, Krueger CA, Sen M, Holcomb JB, Chen D, Wenke JC, Yang Y (2012) Sequential delivery of BMP-2 and IGF-1 using a chitosan gel with gelatin microspheres enhances early osteoblastic differentiation. Acta Biomater 8:1768–1777CrossRefGoogle Scholar
  79. 79.
    Yin Y, Ye F, Cui J, Zhang F, Li X, Yao K (2003) Preparation and characterization of macroporous chitosan-gelatin/beta-tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res A 67:844–855CrossRefGoogle Scholar
  80. 80.
    Zhao F, Yin Y, Lu WW, Leong JC, Zhang W, Zhang J, Zhang M, Yao K (2002) Preparation and histological evaluation of biomimetic three-dimensional hydroxyapatite/chitosan-gelatin network composite scaffolds. Biomaterials 23:3227–3234CrossRefGoogle Scholar
  81. 81.
    Zhao F, Grayson WL, Ma T, Bunnell B, Lu WW (2006) Effects of hydroxyapatite in 3-D chitosan-gelatin polymer network on human mesenchymal stem cell construct development. Biomaterials 27:1859–1867CrossRefGoogle Scholar
  82. 82.
    Sellgren KL, Ma T (2012) Perfusion conditioning of hydroxyapatite-chitosan-gelatin scaffolds for bone tissue regeneration from human mesenchymal stem cells. J Tissue Eng Regen Med 6:49–59CrossRefGoogle Scholar
  83. 83.
    Hunter KT, Ma T (2013) In vitro evaluation of hydroxyapatite-chitosan-gelatin composite membrane in guided tissue regeneration. J Biomed Mater Res A 101:1016–1025CrossRefGoogle Scholar
  84. 84.
    Miranda SC, Silva GA, Mendes RM, Abreu FA, Caliari MV, Alves JB, Goes AM (2012) Mesenchymal stem cells associated with porous chitosan-gelatin scaffold: a potential strategy for alveolar bone regeneration. J Biomed Mater Res A 100:2775–2786CrossRefGoogle Scholar
  85. 85.
    Bagheri-Khoulenjani S, Mirzadeh H, Etrati-Khosroshahi M, Shokrgozar MA (2013) Particle size modeling and morphology study of chitosan/gelatin/nanohydroxyapatite nanocomposite microspheres for bone tissue engineering. J Biomed Mater Res A 101:1758–1767CrossRefGoogle Scholar
  86. 86.
    Mohamed KR, Beherei HH, El-Rashidy ZM (2014) In vitro study of nano-hydroxyapatite/chitosan-gelatin composites for bio-applications. J Adv Res 5:201–208CrossRefGoogle Scholar
  87. 87.
    Peter M, Ganesh N, Selvamurugan N, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydr Polym 80:687–694CrossRefGoogle Scholar
  88. 88.
    Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamura H, Jayakumar R (2010) Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361CrossRefGoogle Scholar
  89. 89.
    Kavya KC, Jayakumar R, Nair S, Chennazhi KP (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • M. Nivedhitha Sundaram
    • 1
  • S. Deepthi
    • 1
  • R. Jayakumar
    • 1
    Email author
  1. 1.Amrita Center for Nanosciences and Molecular MedicineAmrita Institute of Medical Sciences and Research CentreKochiIndia

Personalised recommendations