Advertisement

Chitosan-Based Scaffolds for Cartilage Regeneration

  • Xuezhou Li
  • Jianxun DingEmail author
  • Xiuli Zhuang
  • Fei Chang
  • Jincheng WangEmail author
  • Xuesi Chen
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Intra-joint trauma often accompanies cartilage damage, as one of the main reasons of osteoarthritis, which often induce severe pain and limited joint function in the final stage. Because of the poor regenerative capacity, cartilage repair has been on the top list of regenerative medicine from decades ago. Recently, the researches of cartilage regeneration are mainly focused on the development of novel scaffolds, which can provide spatial frame and logistic template for stem cells, other progenitor cells, or chondrocytes to proliferate or differentiate into cartilage-like tissues. Among the dazzling scaffolds, chitosan-based systems, including physical hydrogels, chemically cross-linked hydrogels, or porous scaffolds, show great potential in cartilage tissue regeneration. Chitosan possesses superior characteristics, such as biocompatibility, biodegradability, bioabsorbability, low immunogenicity, and intrinsic antibacterial nature, for potential applications in tissue engineering. Specially, the chemical structure of chitosan is similar with various glycosaminoglycans (GAGs), which play important roles in chondrocyte morphology modulation, differentiation, and function. In addition, appropriate mechanical properties and porosity, excellent cell adhesion, and even control release of functional growth factors are achieved in chitosan-based scaffolds. In this chapter, the advancements of different types of chitosan-based scaffolds for cartilage regeneration are systemically summarized, and the future directions are predicted.

Keywords

Cartilage regeneration Chitosan Chondrocytes Hydrogel Porous scaffolds Stem cells Three-dimensional 

Notes

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51303174, 51273196, 51203153, 51233004, 51390484, and 51321062), the Scientific Development Program of Jilin Province (Nos. 20140520050JH and 20140309005GX), and the Science and Technology Planning Project of Changchun City (No. 14KG045).

References

  1. 1.
    Huey DJ, Hu JC, Athanasiou KA (2012) Unlike bone, cartilage regeneration remains elusive. Science 338:917–921CrossRefGoogle Scholar
  2. 2.
    Oussedik S, Tsitskaris K, Parker D (2015) treatment of articular cartilage lesions of the knee by microfracture or autologous chondrocyte implantation: A systematic review. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc 31:732–744CrossRefGoogle Scholar
  3. 3.
    Goyal D, Keyhani S, Lee EH, Hui JHP (2013) Evidence-based status of microfracture technique: A systematic review of level I and II studies. Arthrosc J Arthrosc Relat Surg 29:1579–1588Google Scholar
  4. 4.
    Qi BW, Yu AX, Zhu SB, Zhou M, Wu G (2013) Chitosan/poly(vinyl alcohol) hydrogel combined with Ad-hTGF-beta 1 transfected mesenchymal stem cells to repair rabbit articular cartilage defects. Exp Biol Med 238:23–30CrossRefGoogle Scholar
  5. 5.
    Wang W, Li B, Li Y, Jiang Y, Ouyang H, Gao C (2010) In vivo restoration of full-thickness cartilage defects by poly(lactide-co-glycolide) sponges filled with fibrin gel, bone marrow mesenchymal stem cells and DNA complexes. Biomaterials 31:5953–5965CrossRefGoogle Scholar
  6. 6.
    Dutta PK, Rinki K, Dutta J (2011) Chitosan: A promising biomaterial for tissue engineering scaffolds. Chitosan Biomater II 244:45–79CrossRefGoogle Scholar
  7. 7.
    Sheehy EJ, Mesallati T, Vinardell T, Kelly DJ (2014) Engineering cartilage or endochondral bone: A comparison of different naturally derived hydrogels. Acta Biomater 13:245–253Google Scholar
  8. 8.
    Schagemann JC, Kurz H, Casper ME, Stone JS, Dadsetan M, Yu-Long S, Mrosek EH, Fitzsimmons JS, O’Driscoll SW, Reinholz GG (2010) The effect of scaffold composition on the early structural characteristics of chondrocytes and expression of adhesion molecules. Biomaterials 31:2798–2805CrossRefGoogle Scholar
  9. 9.
    El Kadib A, Bousmina M, Brunel D (2014) Recent progress in chitosan bio-based soft nanomaterials. J Nanosci Nanotechnol 14:308–331CrossRefGoogle Scholar
  10. 10.
    Sarvaiya J, Agrawal YK (2014) Chitosan as a suitable nanocarrier material for anti-Alzheimer drug delivery. Int J Biol Macromol 72C:454–465Google Scholar
  11. 11.
    Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21CrossRefGoogle Scholar
  12. 12.
    Wan AC, Tai BC (2013) CHITIN–a promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv 31:1776–1785CrossRefGoogle Scholar
  13. 13.
    Ragetly GR, Griffon DJ, Lee HB, Fredericks LP, Gordon-Evans W, Chung YS (2010) Effect of chitosan scaffold microstructure on mesenchymal stem cell chondrogenesis. Acta Biomater 6:1430–1436CrossRefGoogle Scholar
  14. 14.
    Gupta A, Bhat S, Jagdale PR, Chaudhari BP, Lidgren L, Gupta KC, Kumar A (2014) Evaluation of three-dimensional chitosan-agarose-gelatin cryogel scaffold for the repair of subchondral cartilage defects: an in vivo study in a rabbit model. Tissue Eng Part A 20:3101–3111CrossRefGoogle Scholar
  15. 15.
    Tigli RS, Guemuesderelioglu M (2009) Evaluation of alginate-chitosan semi IPNs as cartilage scaffolds. J Mater Sci-Mater Med 20:699–709CrossRefGoogle Scholar
  16. 16.
    Bi L, Cao Z, Hu Y, Song Y, Yu L, Yang B, Mu J, Huang Z, Han Y (2011) Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. Journal of materials science. Mater Med 22:51–62CrossRefGoogle Scholar
  17. 17.
    Guzman-Morales J, Lafantaisie-Favreau CH, Chen G, Hoemann CD (2014) Subchondral chitosan/blood implant-guided bone plate resorption and woven bone repair is coupled to hyaline cartilage regeneration from microdrill holes in aged rabbit knees. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 22:323–333CrossRefGoogle Scholar
  18. 18.
    Walker KJ, Madihally SV (2015) Anisotropic temperature sensitive chitosan-based injectable hydrogels mimicking cartilage matrix. J Biomed Mater Res Part B, Appl Biomater  103B:1149–1160Google Scholar
  19. 19.
    Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121CrossRefGoogle Scholar
  20. 20.
    Zhang J, Yang Z, Li C, Dou Y, Li Y, Thote T, Wang DA, Ge Z (2013) Cells behave distinctly within sponges and hydrogels due to differences of internal structure. Tissue Eng Part A 19:2166–2175CrossRefGoogle Scholar
  21. 21.
    Fang J, Zhang Y, Yan S, Liu Z, He S, Cui L, Yin J (2014) Poly(L-glutamic acid)/chitosan polyelectrolyte complex porous microspheres as cell microcarriers for cartilage regeneration. Acta Biomater 10:276–288CrossRefGoogle Scholar
  22. 22.
    Bhardwaj N, Kundu SC (2012) Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Biomaterials 33:2848–2857CrossRefGoogle Scholar
  23. 23.
    Bhardwaj N, Nguyen QT, Chen AC, Kaplan DL, Sah RL, Kundu SC (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32:5773–5781CrossRefGoogle Scholar
  24. 24.
    Ye K, Felimban R, Traianedes K, Moulton SE, Wallace GG, Chung J, Quigley A, Choong PFM, Myers DE (2014) Chondrogenesis of infrapatellar fat pad derived adipose stem cells in 3D Printed Chitosan Scaffold. PloS ONE 9:e99410Google Scholar
  25. 25.
    Manjubala I, Woesz A, Pilz C, Rumpler M, Fratzl-Zelman N, Roschger P, Stampfl J, Fratzl P (2005) Biomimetic mineral-organic composite scaffolds with controlled internal architecture. J Mater Sci-Mater Med 16:1111–1119CrossRefGoogle Scholar
  26. 26.
    Chen SJ, Lin CC, Tuan WC, Tseng CS, Huang RN (2010) Effect of recombinant galectin-1 on the growth of immortal rat chondrocyte on chitosan-coated PLGA scaffold. J Biomed Mater Res Part A 93A:1482–1492Google Scholar
  27. 27.
    Wu YC, Shaw SY, Lin HR, Lee TM, Yang CY (2006) Bone tissue engineering evaluation based on rat calvaria stromal cells cultured on modified PLGA scaffolds. Biomaterials 27:896–904CrossRefGoogle Scholar
  28. 28.
    Yu LMY, Kazazian K, Shoichet MS (2007) Peptide surface modification of methacrylamide chitosan for neural tissue engineering applications. J Biomed Mater Res Part A 82A:243–255CrossRefGoogle Scholar
  29. 29.
    Kuo YC, Chiu KH (2011) Inverted colloidal crystal scaffolds with laminin-derived peptides for neuronal differentiation of bone marrow stromal cells. Biomaterials 32:819–831CrossRefGoogle Scholar
  30. 30.
    Kuo YC, Yeh CF (2011) Effect of surface-modified collagen on the adhesion, biocompatibility and differentiation of bone marrow stromal cells in poly(lactide-co-glycolide)/chitosan scaffolds. Colloids Surf B-Biointerfaces 82:624–631CrossRefGoogle Scholar
  31. 31.
    Jiang L, Li Y, Wang X, Zhang L, Wen J, Gong M (2008) Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold. Carbohydr Polym 74:680–684CrossRefGoogle Scholar
  32. 32.
    Jiang L, Li Y, Xiong C (2009) Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering. J Biomed Sci 16:65CrossRefGoogle Scholar
  33. 33.
    Oliveira JM, Costa SA, Leonor IB, Malafaya PB, Mano JF, Reis RL (2009) Novel hydroxyapatite/carboxymethylchitosan composite scaffolds prepared through an innovative “autocatalytic” electroless coprecipitation route. J Biomed Mater Res Part A 88A:470–480CrossRefGoogle Scholar
  34. 34.
    Thein-Han WW, Misra RDK (2009) Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRefGoogle Scholar
  35. 35.
    Tigli RS, Akman AC, Guemuesderelioglu M, Nohutcu RM (2009) In vitro release of dexamethasone or bfgf from chitosan/hydroxyapatite scaffolds. J Biomater Sci-Polym Ed 20:1899–1914CrossRefGoogle Scholar
  36. 36.
    Miguel SP, Ribeiro MP, Brancal H, Coutinho P, Correia IJ (2014) Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr Polym 111:366–373CrossRefGoogle Scholar
  37. 37.
    Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering–an overview. Mar Drugs 8:2252–2266CrossRefGoogle Scholar
  38. 38.
    Shukla SK, Mishra AK, Arotiba OA, Mamba BB (2013) Chitosan-based nanomaterials: a state-of-the-art review. Int J Biol Macromol 59:46–58CrossRefGoogle Scholar
  39. 39.
    Zainol I, Ghani SM, Mastor A, Derman MA, Yahya MF (2009) Enzymatic degradation study of porous chitosan membrane. Mater Res Innovations 13:316–319CrossRefGoogle Scholar
  40. 40.
    Pechsrichuang P, Yoohat K, Yamabhai M (2013) Production of recombinant Bacillus subtilis chitosanase, suitable for biosynthesis of chitosan-oligosaccharides. Bioresour Technol 127:407–414CrossRefGoogle Scholar
  41. 41.
    Lee KY, Ha WS, Park WH (1995) Blood compatibility and biodegradability of partially N-acylated chitosan derivatives. Biomaterials 16:1211–1216CrossRefGoogle Scholar
  42. 42.
    Machul A, Mikolajczyk D, Regiel-Futyra A, Heczko PB, Strus M, Arruebo M, Stochel G, Kyziol A (2015) Study on inhibitory activity of chitosan-based materials against biofilm producing Pseudomonas aeruginosa strains. J Biomater Appl doi:  10.1177/0885328215578781
  43. 43.
    Wang R, Neoh KG, Kang ET (2015) Integration of antifouling and bactericidal moieties for optimizing the efficacy of antibacterial coatings. J Colloid Interface Sci 438:138–148CrossRefGoogle Scholar
  44. 44.
    Martinez LR, Mihu MR, Han G, Frases S, Cordero RJ, Casadevall A, Friedman AJ, Friedman JM, Nosanchuk JD (2010) The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials 31:669–679CrossRefGoogle Scholar
  45. 45.
    Goy RC, Britto Dd, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247CrossRefGoogle Scholar
  46. 46.
    Martins AF, Facchi SP, Follmann HD, Pereira AG, Rubira AF, Muniz EC (2014) Antimicrobial activity of chitosan derivatives containing N-quaternized moieties in its backbone: A review. Int J Mol Sci 15:20800–20832CrossRefGoogle Scholar
  47. 47.
    Liu SQ, Qiu B, Chen LY, Peng H, Du YM (2005) The effects of carboxymethylated chitosan on metalloproteinase-1, -3 and tissue inhibitor of metalloproteinase-1 gene expression in cartilage of experimental osteoarthritis. Rheumatol Int 26:52–57CrossRefGoogle Scholar
  48. 48.
    Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182CrossRefGoogle Scholar
  49. 49.
    Gutowska A, Jeong B, Jasionowski M (2001) Injectable gels for tissue engineering. Anat Rec 263:342–349CrossRefGoogle Scholar
  50. 50.
    Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G (1999) Effects of chitosan on rat knee cartilages. Biomaterials 20:1937–1944CrossRefGoogle Scholar
  51. 51.
    Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161CrossRefGoogle Scholar
  52. 52.
    Huang H, Zhang X, Hu X, Dai L, Zhu J, Man Z, Chen H, Zhou C, Ao Y (2014) Directing chondrogenic differentiation of mesenchymal stem cells with a solid-supported chitosan thermogel for cartilage tissue engineering. Biomed Mater 9:035008Google Scholar
  53. 53.
    Cheng YH, Yang SH, Su WY, Chen YC, Yang KC, Cheng WT, Wu SC, Lin FH (2010) Thermosensitive chitosan-gelatin-glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: An in vitro study. Tissue Eng Part A 16:695–703CrossRefGoogle Scholar
  54. 54.
    Zhu M, Zhu Y, Zhang L, Shi J (2013) Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Sci Technol Adv Mater 14:045005Google Scholar
  55. 55.
    Cui Z, Wright LD, Guzzo R, Freeman JW, Drissi H, Nair LS (2013) Poly(d-lactide)/poly(caprolactone) nanofiber-thermogelling chitosan gel composite scaffolds for osteochondral tissue regeneration in a rat model. J Bioact Compat Polym 28:115–125CrossRefGoogle Scholar
  56. 56.
    Zheng L, Lu HQ, Fan HS, Zhang XD (2013) Reinforcement and chemical cross-linking in collagen-based scaffolds in cartilage tissue engineering: A comparative study. Iran Polym J 22:833–842CrossRefGoogle Scholar
  57. 57.
    Wang PY, Tsai WB (2013) Modulation of the proliferation and matrix synthesis of chondrocytes by dynamic compression on genipin-crosslinked chitosan/collagen scaffolds. J Biomater Sci-Polym Ed 24:507–519CrossRefGoogle Scholar
  58. 58.
    Sarem M, Moztarzadeh F, Mozafari M (2013) How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues? Carbohydr Polym 93:635–643CrossRefGoogle Scholar
  59. 59.
    Fabela-Sanchez O, Zarate-Trivino DG, Elizalde-Pena EA, Garcia-Carvajal Z, Sanchez IC, Parra-Cid C, Gomez-Garcia R, Ibarra C, Garcia-Gaitan B, Zavala R, Guevara-Olvera L, Villasenor-Ortega F, Munoz-Sanchez CI, Perez-Perez C, Herrera-Perez S, Velasquillo C, Luna-Barcenas G, Solis L (2009) Mammalian Cell Culture on a Novel Chitosan-Based Biomaterial Crosslinked with Gluteraldehyde. Macromol Symp 283–284:181–190Google Scholar
  60. 60.
    Chen H, Liu Y, Jiang Z, Chen W, Yu Y, Hu Q (2014) Cell-scaffold interaction within engineered tissue. Exp Cell Res 323:346–351CrossRefGoogle Scholar
  61. 61.
    Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J (2007) Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater 3:23–31CrossRefGoogle Scholar
  62. 62.
    Zhu Y, Wan Y, Zhang J, Yin D, Cheng W (2014) Manufacture of layered collagen/chitosan-polycaprolactone scaffolds with biomimetic microarchitecture. Coll Surf B-Biointerfaces 113:352–360CrossRefGoogle Scholar
  63. 63.
    Ghosh P, Rameshbabu AP, Dhara S (2014) Citrate cross-linked gels with strain reversibility and viscoelastic behavior accelerate healing of osteochondral defects in a rabbit model. Langmuir 30:8442–8451CrossRefGoogle Scholar
  64. 64.
    Jin R, Moreira Teixeira LS, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551CrossRefGoogle Scholar
  65. 65.
    Whu SW, Hung KC, Hsieh KH, Chen CH, Tsai CL, Hsu SH (2013) In vitro and in vivo evaluation of chitosan-gelatin scaffolds for cartilage tissue engineering. Mater Sci Eng C-Mater Biol Appl 33:2855–2863CrossRefGoogle Scholar
  66. 66.
    Hu J, Hou Y, Park H, Choi B, Hou S, Chung A, Lee M (2012) Visible light crosslinkable chitosan hydrogels for tissue engineering. Acta Biomater 8:1730–1738CrossRefGoogle Scholar
  67. 67.
    Park H, Choi B, Hu J, Lee M (2013) Injectable chitosan hyaluronic acid hydrogels for cartilage tissue engineering. Acta Biomater 9:4779–4786CrossRefGoogle Scholar
  68. 68.
    Hayami JWS, Waldman SD, Amsden BG (2013) Injectable, high modulus, and fatigue resistant composite scaffold for load-bearing soft tissue regeneration. Biomacromolecules 14:4236–4247CrossRefGoogle Scholar
  69. 69.
    Yan J, Qi N, Zhang Q (2007) Rabbit articular chondrocytes seeded on collagen-chitosan-GAG scaffold for cartilage tissue engineering in vivo. Artif Cells Blood Substit Biotechnol 35:333–344CrossRefGoogle Scholar
  70. 70.
    Wu YN, Yang Z, Hui JH, Ouyang HW, Lee EH (2007) Cartilaginous ECM component-modification of the micro-bead culture system for chondrogenic differentiation of mesenchymal stem cells. Biomaterials 28:4056–4067CrossRefGoogle Scholar
  71. 71.
    Kuo YC, Hsu YR (2009) Tissue-engineered polyethylene oxide/chitosan scaffolds as potential substitutes for articular cartilage. J Biomed Mater Res Part A 91A:277–287CrossRefGoogle Scholar
  72. 72.
    Kuo YC, Ku IN (2008) Cartilage regeneration by novel polyethylene oxide/chitin/chitosan scaffolds. Biomacromolecules 9:2662–2669CrossRefGoogle Scholar
  73. 73.
    Li Z, Gunn J, Chen MH, Cooper A, Zhang M (2008) On-site alginate gelation for enhanced cell proliferation and uniform distribution in porous scaffolds. J Biomed Mater Res Part A 86A:552–559CrossRefGoogle Scholar
  74. 74.
    Li ZS, Zhang MQ (2005) Chitosan-alginate as scaffolding material for cartilage tissue engineering. J Biomed Mater Res Part A 75A:485–493CrossRefGoogle Scholar
  75. 75.
    Pound JC, Green DW, Roach HI, Mann S, Oreffo ROC (2007) An ex vivo model for chondrogenesis and osteogenesis. Biomaterials 28:2839–2849CrossRefGoogle Scholar
  76. 76.
    Frenkel SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, Bong MR, Tian H, Gokhale J, Coutts RD, Kronengold RT (2005) Regeneration of articular cartilage—Evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr Cartil 13:798–807CrossRefGoogle Scholar
  77. 77.
    Yan J, Li X, Liu L, Wang F, Zhu TW, Zhang Q (2006) Potential use of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Artif Cells Blood Substit Immobil Biotechnol 34:27–39CrossRefGoogle Scholar
  78. 78.
    Wang PY, Tsai WB (2013) Modulation of the proliferation and matrix synthesis of chondrocytes by dynamic compression on genipin-crosslinked chitosan/collagen scaffolds. J Biomater Sci Polym Ed 24:507–519CrossRefGoogle Scholar
  79. 79.
    Guo T, Zhao JN, Chang JB, Ding Z, Hong H, Chen JN, Zhang JF (2006) Porous chitosan-gelatin scaffold containing plasmid DNA encoding transforming growth factor-beta 1 for chondrocytes proliferation. Biomaterials 27:1095–1103CrossRefGoogle Scholar
  80. 80.
    Hsu SH, Whu SW, Hsieh SC, Tsai CL, Chen DC, Tan TS (2004) Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif Organs 28:693–703CrossRefGoogle Scholar
  81. 81.
    Yan JH, Li XM, Liu LR, Wang FJ, Zhu TW, Zhang QQ (2006) Potential use of collagen-chitosan-hyaluronan tri-copolymer scaffold for cartilage tissue engineering. Artif Cells Blood Substit Biotechnol 34:27–39CrossRefGoogle Scholar
  82. 82.
    Tan H, Gong Y, Lao L, Mao Z, Gao C (2007) Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. J Mater Sci-Mater Med 18:1961–1968Google Scholar
  83. 83.
    Iwasaki N, Yamane ST, Majima T, Kasahara Y, Minami A, Harada K, Nonaka S, Maekawa N, Tamura H, Tokura S, Shiono M, Monde K, Nishimura SI (2004) Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: Evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules 5:828–833CrossRefGoogle Scholar
  84. 84.
    Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, Minami A, Monde K, Nishimura S (2005) Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials 26:611–619CrossRefGoogle Scholar
  85. 85.
    Shim IK, Lee SY, Park YJ, Lee MC, Lee SH, Lee JY, Lee SJ (2008) Homogeneous chitosan-PLGA composite fibrous scaffolds for tissue regeneration. J Biomed Mater Res Part A 84A:247–255CrossRefGoogle Scholar
  86. 86.
    Noriega SE, Hasanova GI, Schneider MJ, Larsen GF, Subramanian A (2012) Effect of fiber diameter on the spreading, proliferation and differentiation of chondrocytes on electrospun chitosan matrices. Cells Tissues Organs 195:207–221CrossRefGoogle Scholar
  87. 87.
    Neves SC, Teixeira LSM, Moroni L, Reis RL, Van Blitterswijk CA, Alves NM, Karperien M, Mano JF (2011) Chitosan/Poly(epsilon-caprolactone) blend scaffolds for cartilage repair. Biomaterials 32:1068–1079CrossRefGoogle Scholar
  88. 88.
    Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85:325–333CrossRefGoogle Scholar
  89. 89.
    Saengthong S, Piroonpan T, Tangthong T, Pasanphan W (2014) Fabrication of microporous chitosan/silk fibroin as a scaffold material using electron beam. Macromol Res 22:717–724CrossRefGoogle Scholar
  90. 90.
    Deng J, She R, Huang W, Dong Z, Mo G, Liu B (2013) A silk fibroin/chitosan scaffold in combination with bone marrow-derived mesenchymal stem cells to repair cartilage defects in the rabbit knee. J Mater Sci-Mater Med 24:2037–2046Google Scholar
  91. 91.
    Silva SS, Motta A, Rodrigues MT, Pinheiro AFM, Gomes ME, Mano JF, Reis RL, Migliaresi C (2008) Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 9:2764–2774CrossRefGoogle Scholar
  92. 92.
    Zang M, Zhang Q, Davis G, Huang G, Jaffari M, Rios CN, Gupta V, Yu P, Mathur AB (2011) Perichondrium directed cartilage formation in silk fibroin and chitosan blend scaffolds for tracheal transplantation. Acta Biomater 7:3422–3431CrossRefGoogle Scholar
  93. 93.
    She Z, Zhang B, Jin C, Feng Q, Xu Y (2008) Preparation and in vitro degradation of porous three-dimensional silk fibroin/chitosan scaffold. Polym Degrad Stab 93:1316–1322CrossRefGoogle Scholar
  94. 94.
    Mirahmadi F, Tafazzoli-Shadpour M, Shokrgozar MA, Bonakdar S (2013) Enhanced mechanical properties of thermosensitive chitosan hydrogel by silk fibers for cartilage tissue engineering. Mater Sci Eng C, Mater Biol Appl 33:4786–4794CrossRefGoogle Scholar
  95. 95.
    Waldman SD, Couto DC, Grynpas MD, Pilliar RM, Kandel RA (2007) Multi-axial mechanical stimulation of tissue engineered cartilage: Review. Eur Cells Mater 13:66–73; discussion 73–74Google Scholar
  96. 96.
    Li J, Zhao Q, Wang E, Zhang C, Wang G, Yuan Q (2012) Dynamic compression of rabbit adipose-derived stem cells transfected with insulin-like growth factor 1 in chitosan/gelatin scaffolds induces chondrogenesis and matrix biosynthesis. J Cell Physiol 227:2003–2012CrossRefGoogle Scholar
  97. 97.
    Wang PY, Chow HH, Lai JY, Liu HL, Tsai WB (2009) Dynamic compression modulates chondrocyte proliferation and matrix biosynthesis in chitosan/gelatin scaffolds. J Biomed Mater Res Part B-Appl Biomater 91B:143–152CrossRefGoogle Scholar
  98. 98.
    Jung Y, Kim SH, Kim SH, Kim YH, Xie J, Matsuda T, Min BG (2008) Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. J Biomater Sci Polym Ed 19:61–74CrossRefGoogle Scholar
  99. 99.
    Pp BM, Pedro AJ, Peterbauer A, Gabriel C, Redl H, Reis RL (2005) Chitosan particles agglomerated scaffolds for cartilage and osteochondral tissue engineering approaches with adipose tissue derived stem cells. J Mater Sci-Mater Med 16:1077–1085CrossRefGoogle Scholar
  100. 100.
    Malafaya PB, Oliveira JT, Reis RL (2010) The effect of insulin-loaded chitosan particle-aggregated scaffolds in chondrogenic differentiation. Tissue Eng Part A 16:735–747CrossRefGoogle Scholar
  101. 101.
    Malafaya PB, Santos TC, van Griensven M, Reis RL (2008) Morphology, mechanical characterization and in vivo neo-vascularization of chitosan particle aggregated scaffolds architectures. Biomaterials 29:3914–3926CrossRefGoogle Scholar
  102. 102.
    Marchand C, Rivard GE, Sun J, Hoemann CD (2009) Solidification mechanisms of chitosan-glycerol phosphate/blood implant for articular cartilage repair. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 17:953–960CrossRefGoogle Scholar
  103. 103.
    Hoemann CD, Hurtig M, Rossomacha E, Sun J, Chevrier A, Shive MS, Buschmann MD (2005) Chitosan-glycerol phosphate/blood implants improve hyaline cartilage repair in ovine microfracture defects. J Bone Joint Surg Am 87:2671–2686CrossRefGoogle Scholar
  104. 104.
    Lafantaisie-Favreau CH, Guzman-Morales J, Sun J, Chen G, Harris A, Smith TD, Carli A, Henderson J, Stanish WD, Hoemann CD (2013) Subchondral pre-solidified chitosan/blood implants elicit reproducible early osteochondral wound-repair responses including neutrophil and stromal cell chemotaxis, bone resorption and repair, enhanced repair tissue integration and delayed matrix deposition. BMC Musculoskelet Disord 14:27CrossRefGoogle Scholar
  105. 105.
    Marchand C, Chen G, Tran-Khanh N, Sun J, Chen H, Buschmann MD, Hoemann CD (2012) Microdrilled cartilage defects treated with thrombin-solidified chitosan/blood implant regenerate a more hyaline, stable, and structurally integrated osteochondral unit compared to drilled controls. Tissue Eng Part A 18:508–519CrossRefGoogle Scholar
  106. 106.
    Chevrier A, Hoemann CD, Sun J, Buschmann MD (2011) Temporal and spatial modulation of chondrogenic foci in subchondral microdrill holes by chitosan-glycerol phosphate/blood implants. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 19:136–144CrossRefGoogle Scholar
  107. 107.
    Hoemann CD, Sun J, McKee MD, Chevrier A, Rossomacha E, Rivard GE, Hurtig M, Buschmann MD (2007) Chitosan-glycerol phosphate/blood implants elicit hyaline cartilage repair integrated with porous subchondral bone in microdrilled rabbit defects. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 15:78–89CrossRefGoogle Scholar
  108. 108.
    Chevrier A, Hoemann CD, Sun J, Buschmann MD (2007) Chitosan-glycerol phosphate/blood implants increase cell recruitment, transient vascularization and subchondral bone remodeling in drilled cartilage defects. Osteoarthr Cartil/OARS, Osteoarthr Res Soc 15:316–327CrossRefGoogle Scholar
  109. 109.
    Lozinsky VI, Galaev IY, Plieva FM, Savina IN, Jungvid H, Mattiasson B (2003) Polymeric cryogels as promising materials of biotechnological interest. Trends Biotechnol 21:445–451CrossRefGoogle Scholar
  110. 110.
    Kathuria N, Tripathi A, Kar KK, Kumar A (2009) Synthesis and characterization of elastic and macroporous chitosan-gelatin cryogels for tissue engineering. Acta Biomater 5:406–418CrossRefGoogle Scholar
  111. 111.
    Kuo CY, Chen CH, Hsiao CY, Chen JP (2015) Incorporation of chitosan in biomimetic gelatin/chondroitin-6-sulfate/hyaluronan cryogel for cartilage tissue engineering. Carbohydr Polym 117:722–730CrossRefGoogle Scholar
  112. 112.
    Bhat S, Tripathi A, Kumar A (2011) Supermacroprous chitosan-agarose-gelatin cryogels: In vitro characterization and in vivo assessment for cartilage tissue engineering. J Royal Soc, Interf/Royal Soc 8:540–554CrossRefGoogle Scholar
  113. 113.
    Magalhaes J, Lebourg M, Deplaine H, Gomez Ribelles JL, Blanco FJ (2015) Effect of the physicochemical properties of pure or chitosan-coated poly(L-lactic acid)scaffolds on the chondrogenic differentiation of mesenchymal stem cells from osteoarthritic patients. Tissue Eng Part A 21:716–728CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of OrthopedicsThe Second Hospital of Jilin UniversityChangchunPeople’s Republic of China
  2. 2.Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied ChemistryChinese Academy of SciencesChangchunPeople’s Republic of China

Personalised recommendations