Skip to main content

Prospects of Bioactive Chitosan-Based Scaffolds in Tissue Engineering and Regenerative Medicine

  • Chapter
  • First Online:
Chitin and Chitosan for Regenerative Medicine

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Chitosan, a natural-based polymer obtained by alkaline deacetylation of chitin, is non-toxic, biocompatible, and biodegradable. Due to its desired properties, chitosan-based materials are widely considered to fabricate scaffolds for tissue engineering and regenerative medicine. These scaffolds provide characteristic advantages, such as preservation of cellular phenotype, binding and enhancement of bioactive factors, control of gene expression, and synthesis and deposition of tissue-specific extracellular matrix (ECM), to tissue regeneration. Therefore, the scaffolds based on chitosan and its composites have potential to be used in bone, cartilage, liver, nerve, and musculoskeletal tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prabaharan M, Rodriguez-Perez MA, de Saja JA, Mano JF (2007) Preparation and characterization of poly(L-lactic acid)-chitosan hybrid scaffolds with drug release capability. J Biomed Mater Res B Appl Biomater 81:427–434

    Article  CAS  Google Scholar 

  2. Han DK, Park KD, Hubbell JA, Kim YH (1998) Surface characteristics and biocompatibility of lactide-based poly (ethylene glycol) scaffolds for tissue engineering. J Biomater Sci Polym Ed 9:667–680

    Article  CAS  Google Scholar 

  3. Olad A, Azhar FF (2014) The synergetic effect of bioactive ceramic and nanoclay on the properties of chitosan–gelatin/nanohydroxyapatite–montmorillonite scaffold for bone tissue engineering. Ceram Int 40:10061–10072

    Article  CAS  Google Scholar 

  4. Suh FJK, Matthew HWT (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21:2589–2598

    Article  CAS  Google Scholar 

  5. Mano JF, Hungerford G, Ribelles JLG (2008) Bioactive poly (L-lactic acid)-chitosan hybrid scaffolds. Mater Sci Eng, C 28:1356–1365

    Article  CAS  Google Scholar 

  6. Santo VE, Duarte ARC, Gomes ME, Mano JF, Reis RL (2010) Hybrid 3D structure of poly(D, L-lactic acid) loaded with chitosan/chondroitin sulfate nanoparticles to be used as carriers for biomacromolecules in tissue engineering. J Supercrit Fluids 54:320–327

    Article  CAS  Google Scholar 

  7. Martel-Estrada SA, Martínez-Pérez CA, Chacón-Nava JG, García-Casillas PE, Olivas-Armendáriz I (2011) In vitro bioactivity of chitosan/poly (D, L-lactide-co-glycolide) composites. Mater Lett 65:137–141

    Article  CAS  Google Scholar 

  8. Niu X, Feng Q, Wang M, Guo X, Zheng C (2009) In vitro degradation and release behavior of porous poly(lactic acid) scaffolds containing chitosan microspheres as a carrier for BMP-2-derived synthetic peptide. Polym Degrad Stab 94:176–182

    Article  CAS  Google Scholar 

  9. Santo VE, Duarte ARC, Popa EG, Gomes ME, Mano JF, Reis RL (2012) Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. J Control Release 162:19–27

    Article  CAS  Google Scholar 

  10. Xiaoyan A, Jun Y, Min W, Haiyue Z, Li C, Kangdec Y, Fanglian Y (2008) Preparation of chitosan–gelatin scaffold containing tetrandrine-loaded nano-aggregates and its controlled release behavior. Int J Pharm 350:257–264

    Article  Google Scholar 

  11. Zhao L, Burguera EF, Xu HHK, Amin N, Ryou H, Arola DD (2010) Fatigue and human umbilical cord stem cell seeding characteristics of calcium phosphate–chitosan–biodegradable fiber scaffolds. Biomaterials 31:840–847

    Article  CAS  Google Scholar 

  12. Wen Z, Zhang L, Chen C, Liu Y, Wu C, Dai C (2013) A construction of novel iron-foam-based calcium phosphate/chitosan coating biodegradable scaffold material. Mater Sci Eng, C 33:1022–1031

    Article  CAS  Google Scholar 

  13. Meng D, Dong L, Wen Y, Xie Q (2015) Effects of adding resorbable chitosan microspheres to calcium phosphate cements for bone regeneration. Mater Sci Eng, C 47:266–272

    Article  CAS  Google Scholar 

  14. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AB (2006) Biodegradable and bioactive porous polymer, inorganic composite scaffold for bone tissue engineering. Biomaterials 27:3413–3431

    Article  CAS  Google Scholar 

  15. Mansur HS, Costa HS (2008) Nanostructured poly (vinyl alcohol)/bioactive glass and poly (vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem Eng J 137:72–83

    Article  CAS  Google Scholar 

  16. Couto DS, Hong Z, Mano JF (2009) Development of bioactive and biodegradable chitosan-based injectable systems containing bioactive glass nanoparticles. Acta Biomater 5:115–123

    Article  CAS  Google Scholar 

  17. Peter M, Binulal NS, Soumya S, Nair SV, Furuike T, Tamura H, Jayakumar R (2010) Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applications. Carbohydr Polym 79:284–289

    Article  CAS  Google Scholar 

  18. Peter M, Binulal NS, Nair SV, Selvamurugan N, Tamurac H, Jayakumar R (2010) Novel biodegradable chitosan–gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158:353–361

    Article  CAS  Google Scholar 

  19. Yang G, Yang X, Zhang L, Lin M, Sun X, Chen X, Gou Z (2012) Counterionic biopolymers-reinforced bioactive glass scaffolds with improved mechanical properties in wet state. Mater Lett 75:80–83

    Article  CAS  Google Scholar 

  20. Nazemi K, Azadpour P, Moztarzadeh F, Urbanska AM, Mozafari M, Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with PLGA nanoparticles: a therapeutic design for on-demand drug delivery. Mater Lett 138:16–20

    Google Scholar 

  21. Yao Q, Nooeaid P, Roether JA, Dong Y, Zhang Q, Boccaccini AR (2013) Bioglass®-based scaffolds incorporating polycaprolactone and chitosan coatings for controlled vancomycin delivery. Ceram Int 39:7517–7522

    Article  CAS  Google Scholar 

  22. Soundrapandian C, Mahato A, Kundu B, Datta S, Sa B, Basu D (2014) Development and effect of different bioactive silicate glass scaffolds: In vitro evaluation for use as a bone drug delivery system. J Mech Behav Biomed Mater 40:1–12

    Article  CAS  Google Scholar 

  23. Pon-On W, Charoenphandhu N, Teerapornpuntakit J, Thongbunchoo J, Krishnamra N, Tang IM (2014) Mechanical properties, biological activity and protein controlled release by poly(vinyl alcohol)–bioglass/chitosan–collagen composite scaffolds: a bone tissue engineering applications. Mater Sci Eng, C 38:63–72

    Article  CAS  Google Scholar 

  24. Nazemi K, Azadpour P, Moztarzadeh f, Urbanska AM, Mozafari M (2015) Tissue-engineered chitosan/bioactive glass bone scaffolds integrated with PLGA nanoparticles: A therapeutic design for on-demand drug delivery. Mater Lett 138:16–20

    Article  CAS  Google Scholar 

  25. Oliveira JM, Sousa RA, Kotobuki N, Tadokoro M, Hirose M, Mano JF, Reis RL, Ohgushi H (2009) The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly(amidoamine) dendrimer nanoparticles. Biomaterials 30:804–813

    Article  CAS  Google Scholar 

  26. Zhu W, Wang M, Fu Y, Castro NJ, Fu SW, Zhang LG (2015) Engineering a biomimetic three-dimensional nanostructured bone model for breast cancer bone metastasis study. Acta Biomater 14:164–174

    Article  CAS  Google Scholar 

  27. Iwasaki N, Yamane ST, Majima T, Kasahara Y, Minami A, Harada K, Nonaka S, Maekawa N, Tamura H, Tokura S, Shiono M, Monde K, Nishimura S (2004) Feasibility of polysaccharide hybrid materials for scaffolds in cartilage tissue engineering: evaluation of chondrocyte adhesion to polyion complex fibers prepared from alginate and chitosan. Biomacromolecules 5:828–833

    Article  CAS  Google Scholar 

  28. Liverani L, Roether JA, Nooeaid P, Trombetta M, Schubert DW, Boccaccini AR (2012) Simple fabrication technique for multilayered stratified composite scaffolds suitable for interface tissue engineering. Mater Sci Eng, A 557:54–58

    Article  CAS  Google Scholar 

  29. Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mate Interfaces 6(22):20110–20121

    Article  CAS  Google Scholar 

  30. Kim SE, Park JH, Cho YW, Chung H, Jeong SY, Lee EB, Kwon IC (2003) Porous chitosan scaffold containing microspheres loaded with transforming growth factor-β1: implications for cartilage tissue engineering. J Control Release 91:365–374

    Article  CAS  Google Scholar 

  31. Bi L, Li D, Liu J, Hu Y, Yang P, Yang B, Yuan Z (2011) Fabrication and characterization of a biphasic scaffold for osteochondral tissue engineering. Mater Lett 65:2079–2082

    Article  CAS  Google Scholar 

  32. Silva JM, Georgi N, Costa R, Sher P, Reis RL, van Blitterswijk CA, Karperien M, Mano JF (2013) Nanostructured 3D constructs based on chitosan and chondroitin sulphate multilayers for cartilage tissue engineering. PLoS ONE 8(2):e55451

    Article  CAS  Google Scholar 

  33. Yan S, Zhang K, Liu Z, Zhang X, Gan L, Cao B, Chen X, Cui L, Yin J (2013) Fabrication of poly(L-glutamic acid)/chitosan polyelectrolyte complex porous scaffolds fortissue engineering. J Mater Chem B 1(11):1541–1551

    Article  CAS  Google Scholar 

  34. Lee SY, Wee AS, Lim CK, Abbas AA, Selvaratnam L, Merican AM, Ahmad TS, Kamarul T (2013) Supermacroporous poly(vinyl alcohol)-carboxylmethyl chitosan-poly(ethylene glycol) scaffold: An in vitro and in vivo pre-assessments for cartilage tissue engineering. J Mater Sci Mater Med 24(6):1561–1570

    Article  CAS  Google Scholar 

  35. Chen ZX, Li MC, Xin MH, Chen XD, Mao YF (2015) Preparation and characterization of histidine-grafted-chitosan/ poly(L-lactide) scaffolds. J Funct Mater 46(5):05118–05122

    Google Scholar 

  36. Kamoun EA (2015) N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications. J Adv Res doi:10.1016/j.jare.2015.02.002

    Google Scholar 

  37. Wang XH, Li DP, Wang WJ, Feng QL, Cui FZ, Xu YX, Song XH, van der Werf M (2003) Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 24:3213–3220

    Article  CAS  Google Scholar 

  38. Wang X, Yan Y, Lin F, Xiong Z, Wu R, Zhang R, Lu Q (2005) Preparation and characterization of a collagen/chitosan/heparin matrix for an implantable bioartificial liver. J Biomater Sci Polym Ed 16:1063–1080

    Article  CAS  Google Scholar 

  39. Yang J, Cung TW, Nagaoka M, Goto M, Cho CS, Akaike T (2001) Hepatocyte-specific porous polymer-scaffolds of alginate/galactosylated chitosan sponge for liver-tissue engineering. Biotechnol Lett 23:1385–1389

    Article  CAS  Google Scholar 

  40. Chen F, Tian M, Zhang D, Wang J, Wang Q, Yu X, Zhang X, Wan C (2012) Preparation and characterization of oxidized alginate covalently cross-linked galactosylated chitosan scaffold for liver tissue engineering. Mater Sci Eng, C 32:310–320

    Article  Google Scholar 

  41. Lee KH, Shin SJ, Kim CB, Kim JK, Cho YW, Chung BG, Lee SH (2010) Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip. Lab Chip 10:1328–1334

    Article  CAS  Google Scholar 

  42. Fan J, Shang Y, Yang J, Yuan Y (2009) Preparation of galactosylated hyaluronic acid/chitosan scaffold for liver tissue engineering. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 26:1271–1275

    CAS  Google Scholar 

  43. Yang ZY, Mo LH, Duan HM, Li XG (2010) Effects of chitosan/collagen substrates on the behavior of rat neural stem cells. Sci China Life Sciences 53(2):215–222

    Article  CAS  Google Scholar 

  44. Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z (2010) Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A 93(1):164–174

    Google Scholar 

  45. Wrobel S, Serra SC, Ribeiro-Samy S, Sousa N, Heimann C, Barwig C, Grothe C, Salgado AJ, Haastert-Talini K (2014) In vitro evaluation of cell-seeded chitosan films for peripheral nerve tissue engineering. Tissue Eng Part A 20:2339–2349

    Article  CAS  Google Scholar 

  46. Morelli S, Piscioneri A, Messina A, Salerno S, Al-Fageeh MB, Drioli E, Bartolo LD (2015) Neuronal growth and differentiation on biodegradable membranes. J Tissue Eng Regen Med 9(2):106–117

    Article  CAS  Google Scholar 

  47. Freier T, Montenegro R, Shan Koh H, Shoichet MS (2005) Chitin-based tubes for tissue engineering in the nervous system. Biomaterials 26:4624–4632

    Article  CAS  Google Scholar 

  48. Valmikinathan CM, Mukhatyar VJ, Jain A, Karumbaiah L, Dasari M, Bellamkonda RV (2012) Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter 8:1964–1976

    Article  CAS  Google Scholar 

  49. Masuko T, Iwasaki N, Yamane S, Funakoshi T, Majima T, Minami A, Ohsuga N, Ohta T, Nishimura SI (2005) Chitosan–RGDSGGC conjugate as a scaffold material for musculoskeletal tissue engineering. Biomaterials 26:5339–5347

    Article  CAS  Google Scholar 

  50. Rinki K, Dutta PK (2010) Physicochemical and biological activity study of genipin-crosslinked chitosan scaffolds prepared by using supercritical carbon dioxide for tissue engineering applications. Int J Biol Macromol 46:261–266

    Article  CAS  Google Scholar 

  51. Zhang L, Li Y, Li L, Guo B, Ma PX (2014) Non-cytotoxic conductive carboxymethyl-chitosan/aniline pentamer Hydrogels. React Funct Polym 82:81–88

    Article  CAS  Google Scholar 

  52. Cheung HK, Han TTY, Marecak DM, Watkins JF, Amsden BG, Flynn LE (2014) Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials 35:1914–1923

    Article  CAS  Google Scholar 

  53. Martel-Estrada SA, Olivas-Armendáriz I, Santos-Rodríguez E, Martínez-Pérez CA, García-Casillas PE, Hernández-Paz J, Rodríguez-González CA, Chapa-González C (2014) Evaluation of in vitro bioactivity of chitosan/mimosa tenuiflora composites. Mater Lett 119:146–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank DST-Nano Mission, Department of Science and Technology, Government of India for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Prabaharan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Prabaharan, M., Sivashankari, P.R. (2016). Prospects of Bioactive Chitosan-Based Scaffolds in Tissue Engineering and Regenerative Medicine. In: Dutta, P. (eds) Chitin and Chitosan for Regenerative Medicine. Springer Series on Polymer and Composite Materials. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2511-9_2

Download citation

Publish with us

Policies and ethics