Advertisement

Functionalized Chitosan: A Quantum Dot-Based Approach for Regenerative Medicine

  • Hridyesh Kumar
  • Pradip Kumar DuttaEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Quantum dots (QDs) are the semiconducting inorganic substances that form luminescent nanocrystals with unique optical properties. The formation of shell and or functionalization of it may be utilized as probes or carriers for target-specific cells or tissues for proper utilization in the field of regenerative medicine. Thus, the association of chitosan makes the entire body as biocompatible and suitable for optical stability in physiological environment. QDs-bound hybridization probe design reported for detection of intracellular pre-miRNA using chitosan poly(γ-glutamic acid) complex as a gene vector toward the progress and prognosis of cancer. It is also demonstrated that chitosan-based QD hybrid nanospheres can be internalized by tumor cells and hence act as labeling agent in cell imaging by optical microscopy. The challenge of such cell imaging in the field of molecular imaging is also being discussed. Overall, the interest in using chitosan–QDs in regenerative medicine and the current barriers to moving the technique into the clinic as great challenges will also be discussed.

Keywords

Chitosan Functionalization Quantum dot Regenerative medicine 

Abbreviations

AFt

Apoferritin

ATP

Adenosine triphosphate

CMC

Carboxymethyl chitosan

CNT

Carbon nanotubes

CD

Cyclodextrin

DTG

Dithioglycerol

DCC

N,N′:dicyclohexylcarbodiimide

DNA

Deoxyribose nucleic acid

ECM

Extracellular network

EDAC

1-Ethyl-3-(-3-dimethylaminopropyl)carbodiimide

GNP

Gold nanoparticle

GSH

Glutathione

LA

Lipoic acid

MPA

Mercaptopropionic acid

MPS

Mercaptopropyltris(methyloxy)silane

MSA

Mercaptosuccinic acid

MUA

Mercaptoundecanoic acid

NPs

Nanoparticles

NHS

N-Hydroxysuccinimide

PEG

Polyethylene glycol

PVA

Polyvinyl alcohol

PVK

Polyvinylcarbazole

QDs

Quantum Dots

RNA

Ribose nucleic acid

SA

Sialic acid

TEM

Transmission electron microscope

TGA

Thioglycolic acid

TGL

Thioglycerol

TOP

Trioctylphosphine

TOPO

Trioctylphosphine oxide

Notes

Acknowledgments

One of the authors (HK) gratefully acknowledged the financial support from UGC, New Delhi and TEQIP-II, MNNIT Allahabad during his Ph.D.Thesis work.

References

  1. 1.
    Bäuerlein E (ed) (2004) Biomineralization: progress in biology, molecular biology and application. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446CrossRefGoogle Scholar
  3. 3.
    Arai Y, Nagai T (2014) Real-time chemiluminescence imaging using nano-lantern probes. Curr Protoc Chem Biol 6:221–236CrossRefGoogle Scholar
  4. 4.
    Sun NF, Liu ZA, Huang WB, Tian AL, Hu SY (2014) The research of nanoparticles as gene vector for tumor gene therapy. Crit Rev Oncol Hematol 89:352–357CrossRefGoogle Scholar
  5. 5.
    Lima AC, Mano JF (2015) Micro/nano-structured superhydrophobic surfaces in the biomedical field: part II: applications overview. Nanomedicine 10:271–297CrossRefGoogle Scholar
  6. 6.
    Frigerio C, Ribeiro DSM, Rodrigues SSM, Abreu VLRG, Barbosa JAC, Prior JAV, Marques KL, Santos JLM (2012) Application of quantum dots as analytical tools in automated chemical analysis: a review. Anal Chim Acta 735:9–22CrossRefGoogle Scholar
  7. 7.
    Bruchez JM, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016CrossRefGoogle Scholar
  8. 8.
    Chan WCW, Nie SM (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018CrossRefGoogle Scholar
  9. 9.
    Ho YP, Leong KW (2010) Quantum dot-based theranostics. Nanoscale 2:60–68CrossRefGoogle Scholar
  10. 10.
    Chan WCW, Maxwell DJ, Gao XH, Bailey RE, Han MY, Nie SM (2002) Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13:40–46CrossRefGoogle Scholar
  11. 11.
    Resch GU, Grabolle M, Cavaliere JS, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775CrossRefGoogle Scholar
  12. 12.
    Kagan CR, Murray CB, Nirmal M, Bawendi MG (1996) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76:1517–1520CrossRefGoogle Scholar
  13. 13.
    Xu Y, Shi Y, Ding SA (2008) A chemical approach to stem-cell biology and regenerative medicine. Nature 453:338–344CrossRefGoogle Scholar
  14. 14.
    Levin M (2011) The wisdom of the body: future techniques and approaches to morphogenetic fields in regenerative medicine, developmental biology and cancer. Regen Med 6:667–673CrossRefGoogle Scholar
  15. 15.
    Garate Z, Davis BR, Quintana BO, Segovia JC (2013) New frontier in regenerative medicine: site-specific gene correction in patient-specific induced pluripotent stem cells. Hum Gene Ther 24:571–583CrossRefGoogle Scholar
  16. 16.
    Zack-Williams SD, Butler PE, Kalaskar DM (2015) Current progress in use of adipose derived stem cells in peripheral nerve regeneration. World J Stem Cells 7:51–64CrossRefGoogle Scholar
  17. 17.
    Senarath YK, McArdle A, Renda A, Longaker MT, Quarto N (2014) Adipose-derived stem cells: a review of signaling networks governing cell fate and regenerative potential in the context of craniofacial and long bone skeletal repair. Int J Mol Sci 15:9314–9330CrossRefGoogle Scholar
  18. 18.
    Griffith LG, Naughton G (2002) Tissue engineering–current challenges and expanding opportunities. Science 295:1009–1014CrossRefGoogle Scholar
  19. 19.
    Kfoury C (2007) Therapeutic cloning: promises and issues. Mcgill J Med 10:112–120Google Scholar
  20. 20.
    Niidome T, Huang L (2002) Gene therapy progress and prospects: nonviral vectors. Gene Ther 9:1647–1652CrossRefGoogle Scholar
  21. 21.
    Atta HM (2010) Gene therapy for liver regeneration: experimental studies and prospects for clinical trials. World J Gastroenterol 16:4019–4030CrossRefGoogle Scholar
  22. 22.
    Kimelman BN, Kallai I, Lieberman JR, Schwarz EM, Pelled G, Gazit D (2012) Gene therapy approaches to regenerating bone. Adv Drug Deliv Rev 64:1320–1330CrossRefGoogle Scholar
  23. 23.
    Mekhail M, Tabrizian MA (2014) Injectable chitosan-based scaffolds in regenerative medicine and their clinical translatability. Adv Healthc Mater 3:1529–1545CrossRefGoogle Scholar
  24. 24.
    Zhao XJ, Zhang SG (2007) Designer self-assembling peptide materials. Macromol Biosci 7:13–22CrossRefGoogle Scholar
  25. 25.
    Mata A, Hsu L, Capito R, Aparicio C, Henrikson K, Stupp SI (2009) Micropatterning of bioactive self-assembling gels. Soft Matt 5:1228–1236CrossRefGoogle Scholar
  26. 26.
    Pastist CM, Mulder MB, Gautier SE, Maquet V, Jérôme R, Oudega M (2004) Freeze-dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 25:1569CrossRefGoogle Scholar
  27. 27.
    Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, Langer R (1999) Functional arteries grown in vitro. Science 284:489–493CrossRefGoogle Scholar
  28. 28.
    Ma PX, Langer R (1999) Morphology and mechanical function of long-term in vitro engineered cartilage. J Biomed Mater Res 44:217–221CrossRefGoogle Scholar
  29. 29.
    Dutta J, Dutta PK (eds) (2005) Chitosan a material for 21st century. Publication Contai, SSM IntlGoogle Scholar
  30. 30.
    Dutta J, Dutta PK, Rinki K (2008) Current research on chitin and chitosan for tissue engineering applications and future demands on bioproducts. In: Jayakumar R, Prabaharan M (eds) Current research and developments on chitin and chitosan in biomaterials science. Research Signpost, TrivandrumGoogle Scholar
  31. 31.
    Jiang T, Kumbar SG, Nair LS, Laurencin CT (2008) Biologically active chitosan systems for tissue engineering and regenerative medicine. Curr Top Med Chem 8:354–364CrossRefGoogle Scholar
  32. 32.
    Jana S, Gandhi A, Sen KK, Basu SK (eds) (2014) Biomedical applications of chitin and chitosan derivatives. CRC Press Taylor & Francis Group, LondonGoogle Scholar
  33. 33.
    Singh J, Dutta PK, Dutta J, Hunt AJ, Macquarrie DJ, Clark JH (2009) Preparation and properties of highly soluble chitosan-L-glutamic acid aerogel derivative. Carbohyd Polym 76:188–195CrossRefGoogle Scholar
  34. 34.
    Singh J, Dutta PK (2009) Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical application. Int J Biol Macromol 45:384–392CrossRefGoogle Scholar
  35. 35.
    Tripathi S, Mehrotra GK, Dutta PK (2009) Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohyd Polym 79:711–716CrossRefGoogle Scholar
  36. 36.
    Singh J, Dutta PK (2010) Preparation, antibacterial & physicochemical behavior of chitosan/ofloxacin complexes. Int J Polym Mater 59:793CrossRefGoogle Scholar
  37. 37.
    Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203CrossRefGoogle Scholar
  38. 38.
    Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539CrossRefGoogle Scholar
  39. 39.
    Srivastava R, Tiwari DK, Dutta PK (2011) 4-(Ethoxycarbonyl) phenyl-l-amino-oxobutanoic acid–chitosan complex as a new matrix for silver nanocomposite film: preparation, characterization and antibacterial activity. Int J Biol Macromol 49:863–870CrossRefGoogle Scholar
  40. 40.
    Yadav SK, Mahapatra SS, Yadav MK, Dutta PK (2013) Mechanically robust biocomposite films of chitosan grafted carbon nanotubes via the [2+1] cycloaddition of nitrenes. RSC Adv 3:23631–23637Google Scholar
  41. 41.
    Singh J, Srivastava M, Dutta J, Dutta PK (2010) Preparation and properties of hybrid monodispersed magnetic -Fe2O3 based chitosan nanocomposite film for industrial and biomedical applications. Int J Biol Macromol 48:170–176CrossRefGoogle Scholar
  42. 42.
    Kumar H, Srivastava R, Dutta PK (2013) Highly luminescent chitosan-L-cysteine functionalized CdTe quantum dots film: synthesis and characterization. Carbohydr Polym 12(97):327–334CrossRefGoogle Scholar
  43. 43.
    Kumar H, Srivastava R, Singh BK, Dutta PK (2012) Synthesis and antibacterial activity of CdTe quantam dots (QD)-chitosan nanocomposite film. Asian Chitin J 8:27–30Google Scholar
  44. 44.
    Singh BK, Sirohi R, Archana D, Jain A, Dutta PK (2015) Porous chitosan scaffolds: a systematic study for choice of crosslinker and growth factor incorporation. Int J Polym Mater 64:242–252CrossRefGoogle Scholar
  45. 45.
    Dutta PK, Kumar H, Tiwari DK, Archana D, Rizvi KS, Kumar A, Singh BK, Srivastava R (2011) The glimpses of chitosan nanoparticles. Asian Chitin J 7:103–106Google Scholar
  46. 46.
    Dutta PK, Srivastava R, Dutta J (eds) (2013) Functionalized nanoparticles and chitosan-based functional nanomaterials. In: Dutta PK, Dutta J (ed) Multifaceted development and application of biopolymers for biology, biomedicine and nanotechnology. Adv Polym Sci 254:1–50Google Scholar
  47. 47.
    Qiu Y, Ma Zand HuPA (2014) Environmentally benign magnetic chitosan/Fe3O4 composites as reductant and stabilizer for anchoring Au NPs and their catalytic reduction of 4-nitrophenol. J Mater Chem A 2:1347Google Scholar
  48. 48.
    Ramasamy RP, Maliyekkal MS (2014) Formation of gold nanoparticles upon chitosan leading to formation and collapse of gels. New J Chem 38:63–69CrossRefGoogle Scholar
  49. 49.
    Safari J, Javadian L (2014) Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv 4:48973–48979CrossRefGoogle Scholar
  50. 50.
    Tiwari AP, Satvekar RK, Rohiwal SS, Karande VA, Raut AV, Patil PG, Shete PG, Ghosh SJ, Pawar SH (2015) Magneto-separation of genomic deoxyribose nucleic acid using pH responsive Fe3O4@silica@chitosan nanoparticles in biological samples. RSC Adv 5:8463–8470CrossRefGoogle Scholar
  51. 51.
    Mallick S, Sanpui P, Ghosh SS, Chattopadhyay A, Paul A (2015) Synthesis, characterization and enhanced bactericidal action of a chitosan supported core–shell copper–silver nanoparticle composite. RSC Adv 5:12268–12276CrossRefGoogle Scholar
  52. 52.
    Liu X, Huang H, Liu G, Zhou W, Chen Y, Jin Q, Ji J (2013) Multidentate zwitterionic chitosan oligosaccharide modified gold nanoparticles: stability, biocompatibility and cell interactions. Nanoscale 5:3982–3991CrossRefGoogle Scholar
  53. 53.
    Huang JH, Lai TC, Cheng LC, Liu RH, Lee CH, Hsiao M, Chen CH, Her LJ, Tsai DP (2011) Modulating cell-uptake behavior of Au-based nanomaterials via quantitative biomolecule modification. J Mater Chem 21:14821–14829CrossRefGoogle Scholar
  54. 54.
    Veerapandian M, Zhu XX, Giasson S (2015) Chitosan-modified silver@ruthenium hybrid nanoparticles: evaluation of physico-chemical properties and bio-affinity with sialic acid. J Mater Chem B 3:665–672CrossRefGoogle Scholar
  55. 55.
    Ensafi AA, Jafari AM, Dorostkar N, Ghiaci M, Martiınez-Huerta MV, Fierro JLG (2014) The fabrication and characterization of Cu-nanoparticle immobilization on a hybrid chitosan derivative-carbon support as a novel electrochemical sensor: application for the sensitive enzymeless oxidation of glucose and reduction of hydrogen peroxide. J Mater Chem B 2:706–717CrossRefGoogle Scholar
  56. 56.
    Devi R, Yadav S, Pundir CS (2012) Amperometric determination of xanthine in fish meat by zinc oxide nanoparticle/chitosan/multiwalled carbon nanotube/polyaniline composite film bound xanthine oxidase. Analyst 137:754–759CrossRefGoogle Scholar
  57. 57.
    Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4:1313–1323CrossRefGoogle Scholar
  58. 58.
    Xiao W, Xu J, Liu X, Hu Q, Huang J (2013) Antibacterial hybrid materials fabricated by nanocoating of microfibril bundles of cellulose substance with titania/chitosan/silver-nanoparticle composite films. J Mater Chem B 1:3477–3485CrossRefGoogle Scholar
  59. 59.
    Fan Y, Huang Y (2012) The effective peroxidase-like activity of chitosan-functionalized CoFe2O4 nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose. Analyst 137:1225–1231CrossRefGoogle Scholar
  60. 60.
    Petkova P, Francesko A, Fernandes MM, Mendoza E, Perelshtein I, Gedanken A, Tzanov T (2014) Sonochemical coating of textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl Mater Interfaces 6:1164–1172CrossRefGoogle Scholar
  61. 61.
    Sashiwa H, Aiba S (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29:887–908CrossRefGoogle Scholar
  62. 62.
    Kurita K (2001) Controlled functionalisation of the polysaccharide chitin. Prog Polym Sci 26:1921–1971CrossRefGoogle Scholar
  63. 63.
    Morimoto M, Saimoto H, Usui H, Okamoto Y, Minami S, Shigemasa Y (2002) Control of functions of chitin and chitosan by chemical modification. Trends Glycosci Glycotech 14:205–222CrossRefGoogle Scholar
  64. 64.
    Macquarrie DJ, Hardy JEE (2005) Applications of functionalized chitosan in catalysis. Ind Eng Chem Res 44:8499–8520CrossRefGoogle Scholar
  65. 65.
    Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS (2008) Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 26:1–21CrossRefGoogle Scholar
  66. 66.
    Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative. J Surg Res 133:185–192CrossRefGoogle Scholar
  67. 67.
    Felice F, Zambito Y, Belardinelli E, Fabiano A, Santoni T, Stefano RD (2015) Effect of different chitosan derivatives on in vitro scratch wound assay: a comparative study. Int J Biol Macromol 76:236–241CrossRefGoogle Scholar
  68. 68.
    Saranya N, Moorthi A, Saravanan S, Pandima Devi M, Selvamurugan N (2011) Chitosan and its derivatives for gene delivery. Int J Biol Macromol 48:234–238CrossRefGoogle Scholar
  69. 69.
    Hardy JF, Hubert S, Macquarrie DJ, Wilson AJ (2004) Chitosan-based heterogeneous catalysts for Suzuki and Heck reactions. Green Chem 6:53–56CrossRefGoogle Scholar
  70. 70.
    Tojima T, Katsura H, Han S, Tanida F, Nishi N, Tokura S, Sakaira N (1998) Preparation of an β cyclodextrin linked chitosan derivative via reductive amination strategy. J Polym Sci Polym Chem 36:1965–1968CrossRefGoogle Scholar
  71. 71.
    Chen S, Wang Y (2001) Study on β-cyclodextrin grafting with chitosan and slow release of its inclusion complex with radioactive iodine. J Appl Polym Sci 82:2414–2421CrossRefGoogle Scholar
  72. 72.
    Sun W, Xia CG, Wang HW (2002) Efficient heterogeneous catalysts for the cyclopropanation of olefins. New J Chem 26:755–758CrossRefGoogle Scholar
  73. 73.
    Millotti G, Samberger C, Fröhlich E, Sakloetsakun D, Bernkop SA (2010) Synthesis and characterization of a novel thiolated chitosan. J Mater Chem 20:2432–2440CrossRefGoogle Scholar
  74. 74.
    Sashiwa H, Shigemasa Y, Roy R (2000) Chemical modification of chitosan 3 hyperbranched chitosan-sialic acid dendrimer hybrid with tetraethylene glycol spacer. Macromolecules 33:6913–6915CrossRefGoogle Scholar
  75. 75.
    Sashiwa H, Yamamori N, Ichinose Y, Sunamoto J, Aiba SI (2003) Michael reaction of chitosan with various acryl reagents in water. Biomacromolecules 4:1250–1254CrossRefGoogle Scholar
  76. 76.
    Sashiwa H, Kawasaki N, Nakayama A, Muraki E, Yamamoto N, Aiba SI (2002) Chemical modification of chitosan 14 synthesis of water-soluble chitosan derivatives by simple acetylation. Biomacromolecules 3:1126–1128CrossRefGoogle Scholar
  77. 77.
    Sashiwa H, Thompson JM, Das SK, Shigemasa Y, Tripathy S, Roy R (2000) Chemical modification of chitosan: preparation and lectin binding properties of α-galactosyl-chitosan conjugates potential inhibitors in acute rejection following xenotransplantation. Biomacromolecules 1:303–305CrossRefGoogle Scholar
  78. 78.
    Li M, Xin M, Miyashita T (2002) Preparation of N, N dilauryl chitosan langmuir–blodgett film. Polym Int 51:889–891CrossRefGoogle Scholar
  79. 79.
    Heras A, Rodríguez NM, Ramos VM, Agulló E (2003) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohydr Polym 52:39–46CrossRefGoogle Scholar
  80. 80.
    Ramos VM, Rodríguez NM, Henning I, Díaz MF, Monachesi MP, Rodríguez MS, Abarrategi A, Correas MV, López JL, Agulló E (2006) Poly(ethylene glycol)-crosslinked N-methylene phosphonic chitosan-preparation and characterization. Carbohydr Polym 64:328–336CrossRefGoogle Scholar
  81. 81.
    Park IK, Yang J, Jeong HJ, Bom HS, Harada I, Akaike T, Kim SI, Cho CS (2003) Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment. Biomaterials 24:2331–2337CrossRefGoogle Scholar
  82. 82.
    Lee KY, Kim JH, Kwon IC, Jeong SY (2000) Self-aggregates of deoxycholic acid-modified chitosan as a novel carrier of Adriamycin. Colloid Polym Sci 278:1216CrossRefGoogle Scholar
  83. 83.
    Martin L, Wilson CG, Koosha F, Tetley L, Gral AI, Senel S, Uchegbu IF (2002) The release of model macromolecules may be controlled by the hydrophobicity of palmitoyl glycol chitosan hydrogels. J Control Rel 80:87–100CrossRefGoogle Scholar
  84. 84.
    Nishiyama Y, Yoshida T, Mori T, Ishii S, Kurita K (1998) Asymmetric reduction with chitosan/dihydronicotinamide conjugates: influence of L-alanine spacer arms on reducing performance. React Funct Polym 37:83–91CrossRefGoogle Scholar
  85. 85.
    Kurita K, Hiyakama M, Nishiyama Y, Harata M (2002) Polymeric asymmetric reducing agents: preparation and reducing performance of chitosan/dihydronicotinamide conjugates having L- and D-phenylalanine spacer arms. Carbohydr Polym 47:7–14CrossRefGoogle Scholar
  86. 86.
    Hojo K, Maeda M, Mu Y, Kamada H, Tsutsumi Y, Nishiyama Y, Yoshikawa T, Kurita K, Block LH, Mayumi T, Kawasaki K (2000) Facile synthesis of a chitosan hybrid of a lamininrelated peptide and its antimetastatic effect in mice. J Pharm Pharmacol 52:67–73CrossRefGoogle Scholar
  87. 87.
    Fujii S, Kumugai H, Noda M (1980) Preparation of poly(acyl) chitosans. Carbohydr Res 83:389–393CrossRefGoogle Scholar
  88. 88.
    Paiva D, Ivanova G, Pereira MC, Rocha S (2013) Chitosan conjugates for DNA delivery. Phys Chem Chem Phys 15:11893–11899CrossRefGoogle Scholar
  89. 89.
    Du YZ, Ying XY, Wang L, Zhai Y, Yuan H, Yu RS, Hu FQ (2010) Sustained release of ATP encapsulated in chitosan oligosaccharide nanoparticles. Int J Pharm 392:164–169CrossRefGoogle Scholar
  90. 90.
    Mao HQ, Roy K, Troung-Le VL, Janes KA, Lin KY, Wang Y, August JT, Leong KW (2001) Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency. J Control Rel 70:399–421CrossRefGoogle Scholar
  91. 91.
    Howard KA, Rahbek UL, Liu X, Damgaard CK, Glud SZ, Andersen MØ, Hovgaard MB, Schmitz A, Nyengaard JR, Besenbacher F, Kjems J (2006) RNA interference in vitro and in vivo using a novel chitosan/siRNA nanoparticle system. Mol Ther 14:476–484CrossRefGoogle Scholar
  92. 92.
    Salva E, Turan SO, Eren F, Akbuğa J (2014) The enhancement of gene silencing efficiency with chitosan-coated liposome formulations of siRNAs targeting HIF-1α and VEGF. Int J Pharm 478:147–154CrossRefGoogle Scholar
  93. 93.
    Bradshaw M, Zou J, Byrne L, Iyer KS, Stewart SG, Raston CL (2011) Pd(II) conjugated chitosan nanofibre mats for application in Heck cross-coupling reactions. Chem Comm 47:12292–12294CrossRefGoogle Scholar
  94. 94.
    Yao R, Meng F, Zhang L, Ma D, Wang M (2009) Defluoridation of water using neodymium-modified chitosan. J Hazard Mater 165:454–460CrossRefGoogle Scholar
  95. 95.
    Zheng Y, Yi Y, Qi Y, Wang Y, Zhang W, Du M (2006) Preparation of chitosan–copper complexes and their antitumor activity. Bioorg Med Chem Lett 16:4127–4129CrossRefGoogle Scholar
  96. 96.
    Zhao CZ, Egashira N, Kurauchi Y, Ohga K (1998) Electrochemiluminescence oxalic acid sensor having a platinum electrode coated with chitosan modified with a ruthenium (II) complex. Electrochim Acta 43:2167–2173CrossRefGoogle Scholar
  97. 97.
    Liu Y, Luo S, Wei W, Liu X, Zeng X (2009) Methanol sensor based on the combined electrocatalytic oxidative effect of chitosan-immobilized nickel(II) and the antibiotic cefixime on the oxidation of methanol in alkaline medium. Microchim Acta 164:351–355CrossRefGoogle Scholar
  98. 98.
    Chena S, Wua G, Zeng H (2005) Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydr Polym 60:33–38CrossRefGoogle Scholar
  99. 99.
    Shi Z, Neoh KG, Kang ET, Poh CK, Wang W (2009) Surface functionalization of titanium with carboxymethyl chitosan and immobilized bone morphogenetic protein-2 for enhanced osseointegration. Biomacromolecules 10:1603–1611CrossRefGoogle Scholar
  100. 100.
    Madelung O, Schulz M, Weiss H (eds) (1982) Landolt-Bornstein: numerical data and functional relationships in science and technology. In: Crystal and solid state physics. New Series, Group III, vol III/17b. Springer, BerlinGoogle Scholar
  101. 101.
    Weller H, Schmidt H, Koch U, Fojtik A, Baral S, Henglein A, Kunath W, Weiss K, Dieman E (1986) Photochemistry of colloidal semiconductors. Onset of light absorption as a function of size of extremely small CdS particles. Chem Phys Lett 124:557CrossRefGoogle Scholar
  102. 102.
    Spanhel L, Haase M, Weller H, Henglein A (1987) Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J Am Chem Soc 109:5649–5655CrossRefGoogle Scholar
  103. 103.
    Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873CrossRefGoogle Scholar
  104. 104.
    Steigerwald ML, Brus LE (1990) Semiconductor crystallites: a class of large molecules. Acc Chem Res 23:183–188CrossRefGoogle Scholar
  105. 105.
    Brus L (1986) Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 90:2555–2560CrossRefGoogle Scholar
  106. 106.
    Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80:4403–4409CrossRefGoogle Scholar
  107. 107.
    Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715CrossRefGoogle Scholar
  108. 108.
    Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL (2013) Developing chemistries that facilitate nanotechnology. Chem Rev 113:1904–2074CrossRefGoogle Scholar
  109. 109.
    Algar WR, Prasuhn DE, Stewart MH, Jennings TL, Blanco-Canosa JB, Dawson PE, Medintz IL (2011) The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug Chem 22:825–858CrossRefGoogle Scholar
  110. 110.
    Parak WJ, Boudreau R, Le Gros M, Gerion D, Zanchet D (2002) Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 14:882–885CrossRefGoogle Scholar
  111. 111.
    Mattoussi H, Mauro J, Goldman ER, Anderson GP, Sundar VC, Mikulec FV (2000) Selfassembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150CrossRefGoogle Scholar
  112. 112.
    Ong WL, Rupich SM, Talapin DV, McGaughey AJ, Malen JA (2013) Surface chemistry mediates thermal transport in three-dimensional nanocrystal arrays. Nat Mater 12:410–415CrossRefGoogle Scholar
  113. 113.
    Bera D, Lei Qian L, Tseng TK, Holloway PH (2010) Quantum dots and their multimodal applications: a review. Mater 3:2260–2345CrossRefGoogle Scholar
  114. 114.
    Talapin DV, Haubold S, Rogach AL, Kornowski A, Haase M, Weller H (2001) A novel organometallic synthesis of highly luminescent CdTe nanocrystals. J Phys Chem B 105:2260–2263CrossRefGoogle Scholar
  115. 115.
    Hammer NI, Emrick T, Barnes MD (2007) Quantum dots coordinated with conjugated organic ligands: new nanomaterials with novel photophysics. Nanoscale Res Lett 2:282–290CrossRefGoogle Scholar
  116. 116.
    Mei BC, Susumu K, Medintz IL, Delehanty JB, Mountziaris TJ, Mattoussi H (2008) Modular poly(ethylene glycol) ligands for biocompatible semiconductor and gold nanocrystals with extended pH and ionic stability. J Mater Chem 18:4949–4958CrossRefGoogle Scholar
  117. 117.
    Bloemen M, Stappen TV, Willot P, Lammertyn J, Koeckelberghs G, Geukens N, Gils A, Verbiest T (2014) Heterobifunctional PEG ligands for bioconjugation reactions on iron oxide nanoparticles. PLoS ONE 9:e109475CrossRefGoogle Scholar
  118. 118.
    Kim S, Bawendi MG (2003) Oligomeric ligands for luminescent and stable nanocrystal quantum dots. J Am Chem Soc 125:14652–14653CrossRefGoogle Scholar
  119. 119.
    Zhang Y, Clapp A (2011) Overview of stabilizing ligands for biocompatible quantum dot nanocrystals. Sensors 11:11036–11055CrossRefGoogle Scholar
  120. 120.
    Kloepfer JA, Mielke RE, Wong MS, Nealson KH, Stucky G, Nadeau JL (2003) Quantum dots as strain- and metabolism-specific microbiological labels. Appl Environ Microbiol 69:4205–4213CrossRefGoogle Scholar
  121. 121.
    Derfus AM, Chan WC, Bhatia SN (2004) Probing the cytotoxicity of semiconductor quantum dots. Nano Lett 4:11–18CrossRefGoogle Scholar
  122. 122.
    Dabbousi BO, Bawendi MG, Onitsuka O, Rubner MF (1995) Electroluminescence from CdSe quantumdot/polymer composites. Appl Phys Lett 66:1316–1320CrossRefGoogle Scholar
  123. 123.
    Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150CrossRefGoogle Scholar
  124. 124.
    Gerion D, Pinaud F, Williams SC, Parak WJ, Zanchet D, Weiss Alivisatos AP (2001) Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. J Phys Chem B 105:8861–8871CrossRefGoogle Scholar
  125. 125.
    Palui G, Avellini T, Zhan N, Pan F, Gray D, Alabugin I, Mattoussi H (2012) Photoinduced phase transfer of luminescent quantum dots to polar and aqueous media. J Am Chem Soc 134:16370–16378CrossRefGoogle Scholar
  126. 126.
    Mansur HS, Mansur AP (2011) CdSe quantum dots stabilized by carboxylic-functionalized PVA: synthesis and UV–vis spectroscopy characterization. Mater Chem Phys 125:709–717CrossRefGoogle Scholar
  127. 127.
    Zhou S, Chen Q, Hu X, Zhao T (2012) Bifunctional luminescent superparamagnetic nanocomposites of CdSe/CdS-Fe3O4 synthesized via a facile method. J Mater Chem 22:8263–8270CrossRefGoogle Scholar
  128. 128.
    Yang Z, Chen S, Hu W, Yin N, Zhang W, Xiang C, Wang H (2012) Flexible luminescent CdSe/bacterial cellulose nanocomoposite membranes. Carbohydr Polym 88:173–178CrossRefGoogle Scholar
  129. 129.
    Liu Y, Kim M, Wang Y, Wang YA, Peng X (2006) Highly luminescent, stable, and water-soluble CdSe/CdS core-shell dendron nanocrystals with carboxylate anchoring groups. Langmuir 22:6341–6634CrossRefGoogle Scholar
  130. 130.
    Dong C, Ren J (2011) Water-soluble mercaptoundecanoic acid (MUA)-coated CdTe quantum dots: one-step microwave synthesis, characterization and cancer cell imaging. Luminescence 27:199–203CrossRefGoogle Scholar
  131. 131.
    Law WC, Yong KT, Roy I, Ding H, Hu R, Zhao W, Prasad PN (2009) Aqueous-phase synthesis of highly luminescent CdTe/ZnTe core/shell quantum dots optimized for targeted bioimaging. Small 5:1302–1310CrossRefGoogle Scholar
  132. 132.
    Yuwen L, Bao B, Liu G, Tian J, Lu H, Luo Z, Zhu X, Boey F, Zhang H, Wang L (2011) One-pot encapsulation of luminescent quantum dots synthesized in aqueous solution by amphiphilic polymers. Small 7:1456–1463CrossRefGoogle Scholar
  133. 133.
    Ma N, Marshall AF, Gambhir SS, Rao J (2010) Facile synthesis, silanization, and biodistribution of biocompatible quantum dots. Small 6:1520–1528CrossRefGoogle Scholar
  134. 134.
    Ananth DA, Rameshkumar A, Jeyadevi R, Jagadeeswari S, Nagarajan N, Renganathan R, Sivasudha T (2015) Antibacterial potential of rutin conjugated with thioglycolic acid capped cadmium telluride quantum dots (TGA-CdTe QDs). Spectrochim Acta 138:684–692CrossRefGoogle Scholar
  135. 135.
    Shavel A, Gaponik N, Eychmuller A (2004) Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe(S) nanocrystals. Phys Chem B 108:5905–5908CrossRefGoogle Scholar
  136. 136.
    Chen HS, Lo B, Hwang JY, Chang GY, Chen CM, Tasi SJ, Wang SJ (2004) Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. J Phys Chem B 108:17119–17123CrossRefGoogle Scholar
  137. 137.
    Hering VR, Faulin TS, Triboni ER, Rodriguez SD, Bernik DL, Schumacher RI, Mammana VI, Alario AF, Abdalla DP, Gibson G, Politi JM (2004) Violet ZnSe/ZnS as an alternative to green CdSe/ZnS in nanocrystal-fluorescent protein FRET systems. Bioconjugate Chem 20:1237–124CrossRefGoogle Scholar
  138. 138.
    Li C, Jiang D, Zhang L, Xia J, Li Q (2012) Controlled synthesis of ZnS quantum dots and ZnS quantum flakes with graphene as a template. Langmuir 28:9729–9734CrossRefGoogle Scholar
  139. 139.
    Dong B, Cao L, Sua G, Liu W (2010) Facile synthesis of highly luminescent UV-blue emitting ZnSe/ZnS core/shell quantum dots by a two-step method. Chem Commun 46:7331–7333CrossRefGoogle Scholar
  140. 140.
    Kim S, Park J, Kim T, Jang E, Jun S, Jang H, Kim B, Kim SK (2011) Reverse type-I ZnSe/InP/ZnS core/shell/shell nanocrystals: cadmium-free quantum dots for visible luminescence. Small 7:70–73CrossRefGoogle Scholar
  141. 141.
    Pradhan N, Battaglia DM, Liu Y, Peng X (2007) Efficient, stable, small, and water-soluble doped ZnSe nanocrystal emitters as non-cadmium biomedical labels. Nano Lett 7:312–317CrossRefGoogle Scholar
  142. 142.
    Sun L, Wang Q (2014) PbS quantum dots capped with amorphous zns for bulk heterojunction solar cells: the solvent effect. ACS Appl Mater Interfaces 6:14239–14246CrossRefGoogle Scholar
  143. 143.
    Neo MS, Venkatram N, Li GS, Chin WS, Ji W (2010) Synthesis of PbS/CdS Core-Shell QDs and their nonlinear optical properties. J Phys Chem C 114:18037–18044CrossRefGoogle Scholar
  144. 144.
    Bradshaw TD, Junor M, Patane A, Clarke P, Thomas NR, Li M, Mann S, Turyanska L (2013) Apoferritin encapsulated PbS quantum dots significantly inhibit growth of colorectal carcinoma cells. J Mater Chem 1:6254–6260CrossRefGoogle Scholar
  145. 145.
    Zhao H, Chaker M, Ma D (2011) Effect of CdS shell thickness on the optical properties of water-soluble, amphiphilic polymer-encapsulated PbS/CdS core/shell quantum dots. J Mater Chem 21:17483–17491CrossRefGoogle Scholar
  146. 146.
    Nakane Y, Tsukasaki Y, Sakata T, Yasuda H, Jin T (2013) Aqueous synthesis of glutathione-coated PbS quantum dots with tunable emission for non-invasive fluorescence imaging in the second near-infrared biological window (1000–1400 nm). Chem Commun 9:7584–7586CrossRefGoogle Scholar
  147. 147.
    Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, Scrivens WA (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736CrossRefGoogle Scholar
  148. 148.
    Shen JH, Zhu YH, Yang XL, Li CZ (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686CrossRefGoogle Scholar
  149. 149.
    Cao L, Wang X, Meziani MJ, Lu F, Wang H, Luo PG, Lin Y, Harruff BA, Veca LM, Murray D, Xie SY, Sun YP (2007) Carbon dots for multiphoton bioimaging. J Am Chem Soc 129:11318–11319CrossRefGoogle Scholar
  150. 150.
    Hu SL, Niu KY, Sun J, Yang J, Zhao NQ, Du XW (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488CrossRefGoogle Scholar
  151. 151.
    Sun YP, Wang X, Lu F, Cao L, Meziani MJ, Luo PG, Gu L, Veca LM (2008) Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J Phys Chem C 112:18295–18298CrossRefGoogle Scholar
  152. 152.
    Sun YP, Zhou B, Lin Y, Wang W, Fernando KA, Pathak P, Meziani MJ, Harruff BA, Wang X, Wang H, Luo PG, Yang H, Kose ME, Chen B, Veca LM, Xie SY (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757CrossRefGoogle Scholar
  153. 153.
    Lu J, Yang JX, Wang J, Lim A, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375CrossRefGoogle Scholar
  154. 154.
    Zhao QL, Zhang ZL, Huang BH, Peng J, Zhang M, Pang DW (2008) Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem Commun 41:5116–5118CrossRefGoogle Scholar
  155. 155.
    Zheng L, Chi Y, Dong Y, Lin J, Wang B (2009) Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc 131:4564–4565CrossRefGoogle Scholar
  156. 156.
    Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, Ding Z (2007) An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 129:744–745CrossRefGoogle Scholar
  157. 157.
    Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Surface functionalized carbogenic quantum dots. Small 4:455–458CrossRefGoogle Scholar
  158. 158.
    Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Photoluminescent carbogenic dots. Chem Mater 20:4539–4541CrossRefGoogle Scholar
  159. 159.
    Dutta PK, Ghosh T, Kumar H, Jain T, Singh Y (2015) Hydrothermal and solvothermal synthesis of carbon dots from chitosan-ethanol system. Asian Chitin J 11:1–4Google Scholar
  160. 160.
    Zhu H, Wang XL, Li YL, Wang ZJ, Yang F, Yang XR (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 34:5118–5120CrossRefGoogle Scholar
  161. 161.
    Kumar H, Dutta PK (2014) Chitosan-QD nanocomposite: synthetic strategy and application. Asian Chitin J 10:19–24Google Scholar
  162. 162.
    Dallinger D, Kappe CO (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107:2563–2591CrossRefGoogle Scholar
  163. 163.
    Maeng YJ, Choi SW, Kim HO, Kim JH (2010) Culture of human mesenchymal stem cells using electrosprayed porous chitosan microbeads. J Biomed Mater Res, Part A 92:869–876Google Scholar
  164. 164.
    Jayakumar R, Prabaharan M, Nair SV, Tamura H (2010) Novel chitin and chitosan nanofibers in biomedical applications. Biotechnol Adv 28:142–150CrossRefGoogle Scholar
  165. 165.
    Wan MW, Petrisor IG, Lai HT, Kim D, Yen TF (2004) Copper adsorption through chitosan immobilized on sand to demonstrate the feasibility for in situ decontamination. Carbohydr Polym 55:249–254CrossRefGoogle Scholar
  166. 166.
    Ngah WS, Fatinathan S (2010) Adsorption characterization of Pb(II) and Cu(II) by chitosan- tripolyphosphate beads. J Environ Manage 91:958–969CrossRefGoogle Scholar
  167. 167.
    Futalan CM, Kan CC, Dalida ML, Hsien KJ, Pascua C, Wan MW (2011) Comparative and competitive adsorption of copper, lead and nickel using chitosan immobilized on bentonite. Carbohydr Polym 83:528–536CrossRefGoogle Scholar
  168. 168.
    Popuri SR, Vijaya Y, Boddu VM, Krishnaiah A (2009) Adsorptive removal of copper and nickel ions from water using chitosan coated PVC beads. Bioresour Technol 100:194–199CrossRefGoogle Scholar
  169. 169.
    Laus R, de Favere VD (2011) Competitive adsorption of Cu(II) and Cd(II) ions by chitosan crosslinked with epichlorohydrin-triphosphate. Bioresour Technol 02:8769–8776CrossRefGoogle Scholar
  170. 170.
    Gupta N, Kushwaha AK, Chattopadhyaya MC (2012) Adsorptive removal of Pb(II), Co(II) and Ni(II) by hydroxyapatite/chitosan composite from aqueous solution. J Taiwan Inst Chem Eng 43:125–131CrossRefGoogle Scholar
  171. 171.
    Suguna M, Siva Kumar N, Subba Reddy A, Boddu VM, Krishnaiah A (2011) Biosorption of Lead(II) and from aqueous solutions on glutaraldehyde cross-linked chitosan beads. Can J Che Eng 89:833–843CrossRefGoogle Scholar
  172. 172.
    Monier M, Abdel-Latif DA (2012) Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J Hazard Mater 209–210:240–249CrossRefGoogle Scholar
  173. 173.
    Monier M, Ayad DM, Abdel-Latif DA (2012) Adsorption of Cu(II), Cd(II) and Ni(II) ions by cross-linked magnetic chitosan-2-aminopyridine glyoxal Schiff’s base. Colloid Surf B: Biointerf 94:250–258CrossRefGoogle Scholar
  174. 174.
    Li Z, Du Y, Zhang Z, Pang D (2003) Preparation and characterization of CdS quantum dots chitosan biocomposite. React Funct Polym 55:35–43CrossRefGoogle Scholar
  175. 175.
    Mansur AAP, Mansur HS, Ramanery FP, Oliveira LC, Souza PP (2014) “Green” colloidal ZnS quantum dots/chitosan nano-photocatalysts for advanced oxidation processes: Study of the photodegradation oforganic dye pollutants. Appl Catal B 158–159:269–279CrossRefGoogle Scholar
  176. 176.
    Chang SQ, Kang B, Dai YD, Zhang HX, Chen D (2011) One-step fabrication of biocompatible chitosan coated ZnS and ZnS:Mn2+quantum dots via γ gradiation route. Nanoscale Res Lett 6:591CrossRefGoogle Scholar
  177. 177.
    Wang L, Sun Y, Xie X (2014) Structural and optical properties of Cu-doped ZnS nanoparticles formed in chitosan/sodium alginate multilayer films. Luminescence 29:288–292CrossRefGoogle Scholar
  178. 178.
    Xia H, He G, Peng J, Li W, Fang Y (2010) Preparation and fluorescent sensing applications of novel CdSe–chitosan hybrid films. Appl Surf Sci 256:7270–7275CrossRefGoogle Scholar
  179. 179.
    Kang B, Chang SQ, Dai YD, Chen D (2008) Synthesis of green CdSe/chitosan quantum dots using a polymer-assisted γ-radiation route. Radiat Phys Chem 77:859–863CrossRefGoogle Scholar
  180. 180.
    Gong HM, Wang XH, Du YM, Wang QQ (2006) Optical nonlinear absorption and refraction of CdS and CdS-Ag core-shell quantum dots. J Chem Phys 125:024707CrossRefGoogle Scholar
  181. 181.
    Mansur AAP, Mansur HS, Soriano-Araújo A, Lobato ZIP (2014) Fluorescent nanohybrids based on quantum dot−chitosan−antibody as potential cancer biomarkers. ACS Appl Mater Interfaces 6:11403–11412CrossRefGoogle Scholar
  182. 182.
    Jiang Z, Zhao C, Liu X (2014) Synthesis of poly(ethylene glycol)-graft-chitosan and using as ligandfor fabrication of water-soluble quantum dots. Colloids Surf, B 115:260–266CrossRefGoogle Scholar
  183. 183.
    Wu W, Shen J, Banerjee P, Zhou S (2010) Chitosan-based responsive hybrid nanogels for integration of optical pH-sensing, tumor cell imaging and controlled drug delivery. Biomaterials 31:8371–8381CrossRefGoogle Scholar
  184. 184.
    Shen M, Jia W, Lin C, Fan G, Jin Y, Chen X, Chen G (2014) Facile synthesis of folate-conjugated magnetic/fluorescent bifunctional microspheres. Nanoscale Res Lett 9:558CrossRefGoogle Scholar
  185. 185.
    Wang Y, Geng Z, Guo M, Chen Y, Guo X, Wang X (2014) Electroaddressing of ZnS quantum dots by codeposition with chitosan to construct fluorescent and patterned device surface. ACS Appl Mater Interf 6:15510–15515Google Scholar
  186. 186.
    Ma Q, Lin ZH, Yang N, Li Y, Su XG (2014) A novel carboxymethyl chitosan–quantum dot-based intracellular probe for Zn2+ ion sensing in prostate cancer cells. Acta Biomater 10:868–874CrossRefGoogle Scholar
  187. 187.
    Li Y, Chen WC, Chen SM, Lou BS, Ali MA, Al-Hemaid FMA (2014) Detection of real sample DNA at a cadmium sulfide—chitosan/gelatin modified electrode. Colloids Surf, B 113:85–91CrossRefGoogle Scholar
  188. 188.
    He Z, Zhu H, Zhou P (2012) Microwave-assisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging. J Fluoresc 22:193–199CrossRefGoogle Scholar
  189. 189.
    Lee JI, Ha KS, Yoo HS (2008) Quantum-dot-assisted fluorescence resonance energy transfer approach for intracellular trafficking of chitosan/DNA complex. Acta Biomater 4:791–798CrossRefGoogle Scholar
  190. 190.
    Udaybhaskar P, Iyengar L, Rao AVSP (1990) Cr(VI) interaction with chitosan. J Appl Polym Sci 39:739–747CrossRefGoogle Scholar
  191. 191.
    Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M (2005) Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials 26:6176–6184CrossRefGoogle Scholar
  192. 192.
    Yang TC, Zall RR (1984) Absorption of metals by natural polymers generated from seafood processing wastes. Ind Eng Chem Prod Res Dev 23:168–172CrossRefGoogle Scholar
  193. 193.
    Maeng YJ, Choi SW, Kim HO, Kim JH (2010) Culture of human mesenchymal stem cells using electrosprayed porous chitosan microbeads. J Biomed Mater Res, Part A 92:869–876Google Scholar
  194. 194.
    Choi SW, Zhang Y, Yeh YC, Wooten AL, Xia Y (2012) Biodegradable porous beads and their potential applications in regenerative medicine. J Mater Chem 22:11442CrossRefGoogle Scholar
  195. 195.
    Bhumiratana S, Vunjak-Novakovic G (2012) Concise review: personalized human bone grafts for reconstructing head and face. Stem Cells Transl Med 1:64–69CrossRefGoogle Scholar
  196. 196.
    Ghosh P, Rameshbabu AP, Dogra N, Dhara S (2014) 2,5-Dimethoxy 2,5-dihydrofuran crosslinked chitosan fibers enhance bone regeneration in rabbit femur defects. RSC Adv 4:19516CrossRefGoogle Scholar
  197. 197.
    Wang Z, Ruan J, Cui DX (2009) Advances and prospect of nanotechnology in stem cells. Nanoscale Res Lett 4:593–605CrossRefGoogle Scholar
  198. 198.
    Ruan J, Ji JJ, Song H, Qian QR, Wang K, Wang C, Cui DX (2012) Fluorescent magnetic nanoparticle-labeled mesenchymal stem cells for targeted imaging and hyperthermia therapy of in vivo gastric cancer. Nanoscale Res Lett 7:309CrossRefGoogle Scholar
  199. 199.
    Patel D, Kell A, Simard B, Deng J, Xiang B, Lin HY, Gruwel M, Tian G (2010) Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes. Biomaterials 31:2866–2873CrossRefGoogle Scholar
  200. 200.
    Shi Z, Neoh KG, Kang ET, Shuter B, Wang SC (2010) Bifunctional Eu3+-doped Gd2O3 nanoparticles as a luminescent and T1 contrast agent for stem cell labeling. Contrast Media Mol Imaging 5:105–111Google Scholar
  201. 201.
    Tseng CL, Shih IL, Stobinski L, Lin FH (2010) Gadolinium hexanedione nanoparticles for stem cell labeling and tracking via magnetic resonance imaging. Biomaterials 31:5427–5435CrossRefGoogle Scholar
  202. 202.
    Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7:3071–3079CrossRefGoogle Scholar
  203. 203.
    Yang K, Li Z, Cao Y, Yu X, Mei J (2009) Effect of peptide-conjugated near-infrared fluorescent quantum dots (NIRF-QDs) on the invasion and metastasis of human tongue squamous cell carcinoma cell line Tca8113 in vitro. Int J Mol Sci 10:4418–4427CrossRefGoogle Scholar
  204. 204.
    Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M, Heinrich JM, Yezhelyev M, Emmrich F, O’Regan R, Bader A (2006) Quantum dots for human mesenchymal stem cells labelling. A size-dependent autophagy activation. Nano Lett 6:2826–2832Google Scholar
  205. 205.
    Solanki A, Kim JD, Lee KB (2008) Nanotechnology for regenerative medicine: nanomaterials for stem cell imaging. Nanomedicine 3:567–578CrossRefGoogle Scholar
  206. 206.
    Lin S, Xie X, Patel MR, Yang YH, Li Z, Cao F, Gheysens O, Zhang Y, Gambhir SS, Rao JH (2007) Quantum dot imaging for embryonic stem cells. BMC Biotechnol 7:67–76CrossRefGoogle Scholar
  207. 207.
    Muller-Borer BJ, Collins MC, Gunst PR, Cascio WE, Kypson AP (2007) Quantum dot labelling of mesenchymal stem cells. J Nanobiotechnol 5:9CrossRefGoogle Scholar
  208. 208.
    Shang W, Zhang X, Zhang M, Fan Z, Sun Y, Han M, Fan L (2014) The uptake mechanism and biocompatibility of graphene quantum dots with human neural stem cells. Nanoscale 6:5799–5806CrossRefGoogle Scholar
  209. 209.
    Zhang M, Bai L, Shang W, Xie W, Ma H, Fu Y, Fang D, Sun H, Fan L, Han M, Liub C, Yang S Facile synthesis of water-soluble, highly fluorescent graphene quantum dots as a robust biological label for stem cells. J Mater Chem 22:7461Google Scholar
  210. 210.
    Baruah S, Ortinero C, Shipin OV, Dutta J (2012) Manganese doped zinc sulfide quantum dots for detection of Escherichia coli. J Fluoresc 22:403–408CrossRefGoogle Scholar
  211. 211.
    Abdelhamid HN, Wu HF (2013) Probing the interactions of chitosan capped CdS quantum dots with pathogenic bacteria and their biosensing application. J Mater Chem B 1:6094CrossRefGoogle Scholar
  212. 212.
    Tan WB, Jiang S, Zhang Y (2007) Quantum-dot based nanoparticles for targeted silencing of HER2/neu gene via RNA interference. Biomaterials 28:1565–1571CrossRefGoogle Scholar
  213. 213.
    Ho YP, Chen HH, Leong KW, Wang TH (2006) Evaluating the intracellular stability and unpacking of DNA nanocomplexes by quantum dots-FRET. J Control Release 116:83–89CrossRefGoogle Scholar
  214. 214.
    Lai S, Chang X, Fu C (2009) Cadmium sulfide quantum dots modified by chitosan as fluorescence probe for copper (II) ion determination. Microchim Acta 165:39–44CrossRefGoogle Scholar
  215. 215.
    Sharma A, Pandey CM, Sumana G, Soni U, Sapra S, Srivastava AK, Chatterjee T, Malhotra BD (2012) Chitosan encapsulated quantum dots platform for leukemia detection. Biosens Bioelectron 38:107–113CrossRefGoogle Scholar
  216. 216.
    Chen Y, Yao R, Wang Y, Chen M, Qiu T, Zhang C (2015) CdS QDs-chitosan microcapsules with stimuli-responsive propertygenerated by gas–liquid microfluidic technique. Colloids Surf, B 125:21–27CrossRefGoogle Scholar
  217. 217.
    Ma L, Liu C (2010) Preparation of chitosan microspheres by ionotropic gelation under a high voltage electrostatic field for protein delivery. Colloids Surf B Biointerfaces 75:448–453CrossRefGoogle Scholar
  218. 218.
    Chang CH, Tsao CT, Chang KY, Young TH, Han JL, Hsieh KH (2010) Chitosan membrane with surface-bonded growth factor in guided tissue regeneration applications. J Bioact Compat Polym 25:465–482CrossRefGoogle Scholar
  219. 219.
    Saber A, Strand SP, Ulfendahl M (2010) Use of the biodegradable polymer chitosan as a vehicle for applying drugs to the inner ear. Eur J Pharm Sci 39:110–115CrossRefGoogle Scholar
  220. 220.
    Ghendon Y, Markushin S, Vasiliev Y, Akopova I, Koptiaeva I, Krivtsov G, Borisova O, Ahmatova N, Kurbatova E, Mazurina S, Gervazieva V Evaluation of properties of chitosan as an adjuvant for inactivated influenza vaccines administered parenterally. J Med Virol 81:494–506Google Scholar
  221. 221.
    Mahkam M (2010) Modified chitosan cross-linked starch polymers for oral insulin delivery. J Bioact Compat Polym 25:406–418CrossRefGoogle Scholar
  222. 222.
    Zhang N, Li J, Jiang W, Ren C, Li J, Xin J, Li K (2010) Effective protection and controlled release of insulin by cationic β-cyclodextrin polymers from alginate/chitosan nanoparticles. Int J Pharm 393:213–219CrossRefGoogle Scholar
  223. 223.
    Kamari A, Ngah WSW (2009) Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloid Surf B: Biointerf 73:257–266CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of ChemistryMN National Institute of TechnologyAllahabadIndia

Personalised recommendations