Advertisement

D-Glucosamine and N-Acetyl D-Glucosamine: Their Potential Use as Regenerative Medicine

  • Tanvi Jain
  • Hridyesh Kumar
  • Pradip Kumar DuttaEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Glucosamine (GlcN), an amino sugar, is a compound derived from substitution of a hydroxyl group of a glucose molecule with an amino group. GlcN and its acetylated derivative, N-acetylglucosamine (GlcNAc), have been widely used in food, cosmetics, and pharmaceutical industries and are currently produced by acid hydrolysis of chitin (a linear polymer of GlcNAc) extracted from crab and shrimp shells. In this review, distribution and production of GlcN and GlcNAc, their chemistry and determination in the complex samples will be treated first. This review will describe the procedure to identify a high-quality glucosamine product for Glucosamine/chondroitin Arthritis Intervention Trial (GAIT) and to clarify confusing product information and nomenclature. GlcN is a precursor of the glycosaminoglycans and proteoglycans that make up articular cartilage. Glucosamine sulfate and glucosamine hydrochloride have used for the treatment of osteoarthritis for more than 30 years, with no major known side effects. The notion that augmenting the intake of the precursor molecule, glucosamine, may directly stimulate articular proteoglycan synthesis to modulate osteoarthritis has provided the rationale for its widespread use. Theoretically, exogenous glucosamine may augment glycosaminoglycan synthesis in cartilage. There is a simultaneous theoretical concern that it might also induce insulin resistance in insulin-sensitive tissues. While the efficacy of glucosamine was published in the definitive medical journals, there were views against it. This concern will be also discussed. While glucosamine was not effective without combination with chondroitin sulfate in the some trial, glucosamine alone was effective in the other trial. Some concerns about these trials will be discussed together with the mechanism of action of glucosamine and chondroitin for antiarthritic potential. Finally, the review will focus on the biomedical and other application of the glucosamine and chitosan oligosaccharide. Such biomedical applications include wound healing, bone regeneration, antibacterial effect, and oral hygiene. It also discusses the role of chitosan oligosaccharide as a drug carrier for molecular therapies, such as the drug and the gene delivery systems and the role in imaging for tumor and cancer detection.

Keywords

Chitin Glucosamine D-Glucosamine N-Acetyl D-glucosamine Osteoarthritis 

Abbreviations

GlcN

Glucosamine

GlcNAc

N-acetylglucosamine

NAG

N-acetyl-D-glucosamine

GS

Glucosamine Sulphate

OA

Osteoarthritis

GAGs

Glycosaminoglycans

GlcNHCl

Glucosamine hydrochloride

RP-HPLC

Reversed phase high-performance liquid chromatography

HCl

Hydrochloric acid

NaOH

Sodium hydroxide

rRNA

Ribosomal ribonucleic acid

GEO

Genetically engineered organisms

IGF-I

Growth factor-I

bFGF

Basic fibroblast growth factor

TGF-b1

Transforming growth factor bea1

TMJ

Temporomandibular joint

HA

Hyaluronic acid

QD

Quantum Dots

GAIT

Glucosamine/chondroitin Arthritis Intervention Trial

Notes

Acknowledgments

Tanvi Jain and Hridyesh Kumar gratefully acknowledged the research support both from Institute and TEQIP-II, MNNIT Allahabad.

References

  1. 1.
    Flash J, Pilet PE, Jolles P (1992) What’s new in chitin research? Experientia 48:701–716CrossRefGoogle Scholar
  2. 2.
    Shibata Y, Foster LA, Metzger WJ, Myrvik QN (1997) Alveolar macrophage priming by intravenous administration of chitin particles, polymers of N-acetyl-D-glucosamine, in mice. Infect Immun 65:1734–1741Google Scholar
  3. 3.
    Shibata Y, Honda I, Justice JO, Van Scott MR, Nakamura RM, Myrvik QN (2001) The adjuvant N-acetyl-D-glucosamine polymer up-regulates Th1 immunity but down-regulates Th2 immunity against a mycobacterial protein (MPB-59) in interleukin-10-knockout and wild-type mice. Infect Immun 69:6123–6130CrossRefGoogle Scholar
  4. 4.
    Suzuki K, Mikami T, Okawa Y, Tokoro A, Suzuki S, Suzuki M (1986) Antitumor effect of hexa-N-acetylchitohexaose and chitohexaose. Carbohydr Res 151:403–408CrossRefGoogle Scholar
  5. 5.
    Creamer P (2000) Osteoarthritis pain and its treatment. Curr Opin Rheumatol 12:450–455CrossRefGoogle Scholar
  6. 6.
    Aam BB, Heggset EB, Norberg AL, Sorlie M, Varum KM, Eijsink VG (2010) Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs 8:1482–1517CrossRefGoogle Scholar
  7. 7.
    Yang CJ, Liu YK, Liu CL, Shen CN, Kuo ML, Su CC, Tseng CP, Yen TC, Shen CR (2009) Inhibition of acidic mammalian chitinase by RNA interference suppresses ovalbumin-sensitized allergic asthma. Hum Gene Ther 20:1597–1606CrossRefGoogle Scholar
  8. 8.
    Shen CR, Juang JH, Tsai ZT, Wu ST, Tsai FY, Wang JJ, Liu CL, Yen TC (2011) Preparation, characterization and application of superparamagnetic iron oxide encapsulated with N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride. Carbohydr Polym 84:781–784CrossRefGoogle Scholar
  9. 9.
    Chen JK, Shen CR, Liu CL (2010) N-acetylglucosamine: production and applications. Mar. Drugs 8:2493–2516CrossRefGoogle Scholar
  10. 10.
    Jain T, Dutta PK (2011) Chitin nanoparticles for drug delivery: preparation, characterization and evaluation. Asian Chitin J 7:13–18Google Scholar
  11. 11.
    Salvatore S, Heuschkel R, Tomlin S, Davies SE, Edwards S, Walker-Smith JA, French I, Murch SH (2011) A pilot study of N-acetyl glucosamine, a nutritional substrate for glycosaminoglycan synthesis, in pediatric chronic inflammatory bowel disease. Aliment Pharmacol Ther 14:1567–1579CrossRefGoogle Scholar
  12. 12.
    Kumar H, Srivastava R, Dutta PK (2013) Highly luminescent chitosan-l-cysteine functionalized CdTe quantum dots film: synthesis and characterization. Carbohydr Polym 97:327–334CrossRefGoogle Scholar
  13. 13.
    Kimball AB, Kaczvinsky JR, Li J, Robinson LR, Matts PJ, BergeCA Miyamoto K, Bissett DL (2011) Reduction in the appearance of facial hyperpigmentation after use of moisturizers with a combination of topical niacinamide and N-acetyl glucosamine. Int J Mol Sci 12:1194–1198Google Scholar
  14. 14.
    Dutta PK, Dutta J, Tripathi VS (2004) Chitin and chitosan: Chemistry, properties and applications. J Sci Ind Res 63:20–31Google Scholar
  15. 15.
    Rath P, Sanya K, Kamontip K, Mongkol S, Seiichi A (2002) Quantitative production of 2-acetamido-2-deoxy-D-glucose from crystalline chitin by bacterial chitinase. Carbohydr Res 337:557–559CrossRefGoogle Scholar
  16. 16.
    Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182CrossRefGoogle Scholar
  17. 17.
    Dutta J, Chattopadhyaya MC, Tripathi VS, Dutta PK (2004) Chitin & Chitosan: novel biomaterials waiting for future developments. J Polym Mater 21:321–332Google Scholar
  18. 18.
    Fasbender MH (1994) Glucosamine sulfate compared to ibuprofen in osteoarthritis of the knee. Osteoart Cart 2:61–69CrossRefGoogle Scholar
  19. 19.
    Hackman RH, Goldberg M (1974) Light-scattering and infrared-spectrophotometric studies of chitin and chitin derivatives. Carbohydr Res 38:35–45CrossRefGoogle Scholar
  20. 20.
    Jollès P, Muzzarelli RAA (eds) (1999) Chitin and Chitinases. Birkhauser Verlag publishers, Basel SwitzerlandGoogle Scholar
  21. 21.
    Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M, Imanaka TA (1999) Unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon pyrococcus kodakaraensis KOD1. Appl Environ Microbiol 65:5338–5344Google Scholar
  22. 22.
    Mao JS, Liu HF, Yin YJ, Yao KD (2003) The properties of chitosan-gelatin membrane and scaffolds modified with hyaluronic acid by different methods. Biomaterials 24:1621–1629CrossRefGoogle Scholar
  23. 23.
    Talent JM, Gracy RW (1996) Pilot study of oral polymeric N-acetyl-D-glucosamine as a potential treatment for patients with osteoarthritis. Clin Ther 18:1184–1190CrossRefGoogle Scholar
  24. 24.
    Angelis PL (1999) Molecular directionality of polysaccharide polymerization by the pasteurella multocida hyaluronan synthase. J Biol Chem 274:26557–26562CrossRefGoogle Scholar
  25. 25.
    Turely EA, Bowman P, Kytryk MA (1985) Effects of hyaluronate and hyaluronate binding proteins on cell motile and contact behaviour. J Cell Sci 78:133–145Google Scholar
  26. 26.
    Alho AM, Underhill CB (1989) The hyaluronate receptor is preferentially expressed on proliferating epithelial cells. J Cell Biol 108:1557–1565CrossRefGoogle Scholar
  27. 27.
    Toole BP, Jackson G, Gross J (1972) Hyaluronate in morphogenesis: inhibition of chondrogenesis in vitro. Proc Natl Acad Sci 69:1384–1386CrossRefGoogle Scholar
  28. 28.
    Brecht M, Mayer U, Schlosser E, Prehm P (1986) Increased hyaluronate synthesis is required for fibroblast detachment and mitosis. J Biochem 239:445–450CrossRefGoogle Scholar
  29. 29.
    Dube B, Luke HJ, Aumaille M, Prehm P (2001) Hyaluronan reduces migration and proliferation in CHO cells. Biochim Biophys Acta 1538:283–289CrossRefGoogle Scholar
  30. 30.
    Kobata A, Ginsburg V (1969) Oligosaccharides of human milk: isolation and characterization. Arch Biochem Biophys 130:509–513CrossRefGoogle Scholar
  31. 31.
    Miller JB, Bull S, Miller J, McVeagh P (1994) The oligosaccharide composition of human milk: temporal and individual variations in monosaccharide components. J Pediatri. Gastroenterol Nutr 19:371–376CrossRefGoogle Scholar
  32. 32.
    Tharanathan RN, Kittur FS (2003) Chitin—the undisputed biomolecule of great potential. Crit Rev Food Sci Nutr 43:61–87CrossRefGoogle Scholar
  33. 33.
    Howard MB, Ekborg NA, Weiner RM, Hutcheson SW (2003) Detection and characterization of chitinases and other chitin-modifying enzymes. J Ind Microbiol Biotechnol 30:627–635CrossRefGoogle Scholar
  34. 34.
    Kurita K (2006) Chitin and chitosan: functional biopolymers from marine crustaceans. Mar Biotechnol 8:203–226CrossRefGoogle Scholar
  35. 35.
    Hitoshi S, Shizu F, Naoko Y, Norioki K, Atsuyoshi N (2002) Production of N-acetyl-D-glucosamine from α-chitin by crude enzymes from aeromonas hydrophila H-2330. Carbohydr Res 337:761–763CrossRefGoogle Scholar
  36. 36.
    Falk M, Smith DG, McLachla J, McInnes AG (1966) Studies on chitin (Beta-(1-]4)-Linked 2-Acetamido-2-Deoxy-D-Glucan) fibers of diatom thalassiosira fluviatilis hustedt. J Canad Chem 44:2269–2281CrossRefGoogle Scholar
  37. 37.
    Kuyama H, Nakahara Y, Nukada T, Ito Y, Ogawa T (1993) Stereo controlled synthesis of chitosan dodecamer. Carbohydr Res 243:1–7CrossRefGoogle Scholar
  38. 38.
    Aly MRE, Ibrahim E, Ashry ESH, Schmidt RR (2001) Synthesis of chitotetraose and chitohexaose based on dimethylmaleoyl protection. Carbohydr Res 331:129–142CrossRefGoogle Scholar
  39. 39.
    Aly MRE, Castro-Palomino JC, Ibrahim ESI, El-Ashry FSH, Schmidt RR (1998) The dimethylmaleoyl group as amino protective group-application to the synthesis of glucosamine-containing oligosaccharides. Eur J Org Chem 8:2305–2316CrossRefGoogle Scholar
  40. 40.
    Bohlman JA, Schisler DO, Hwang KO, Hennling JP, Trinkle JR, Anderson TB, Steinke JD, Vanderhoff A, (2010) N-Acetyl-D-glucosamine and Process for Producing N-Acetyl-D-glucosamine. US Patent NO. 6693188B2Google Scholar
  41. 41.
    Sashiwa H, Fujishima S, Yamano N, Kawasaki N, Nakayama A, Muraki E, Aiba S (2001) Production of N-Acetyl-D-glucosamine from β-Chitin by enzymatic hydrolysis. Chem Lett 31:308–309CrossRefGoogle Scholar
  42. 42.
    Vårum KM, Ottoy MH, Smidsrod O (2001) Acid hydrolysis of chitosans. Carbohydr Polym 46:89–98CrossRefGoogle Scholar
  43. 43.
    Zhan WS (2007) Process for Preparing Refined N-Acetyl-D-aminoglucose. CN Patent NO 1907993Google Scholar
  44. 44.
    Trombotto S, Ladavière C, Delolme F, Domard A (2008) Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromolecules 9:1731–1738CrossRefGoogle Scholar
  45. 45.
    Goyal N, Mangunuru HPR, Parikh B, Shrestha S, Wang S (2014) Beilstein synthesis and characterization of pH responsive D-glucosamine based molecular gelators. J Org Chem 10:3111–3121Google Scholar
  46. 46.
    Sibi G, Dhananjaya K, Ravikumar KR, Mallesha H, Venkatesha RT, Trivedi D, Bhusal PK, Gowda K (2013) Preparation of glucosamine hydrochloride from crustacean shell waste and It’s quantitation by RP-HPLC. American-Eurasian J Sci Res 8:63–67Google Scholar
  47. 47.
    Seo S, King JM, Prinyawiwatkul W (2007) Simultaneous depolymerization and decolorization of Chitosan by ozone treatment. J Food Sci 72:522–526CrossRefGoogle Scholar
  48. 48.
    Kuk JH, Jung WJ, Jo GH, Kim YC, Kim KY, Park RD (2005) Production of N-acetyl-β-D-glucosamine from chitin by Aeromonas sp. GJ-18 crude enzyme. Appl Microbiol Biotechnol 68:384–389CrossRefGoogle Scholar
  49. 49.
    Gooday BW (1977) Biosynthesis of the fungal wall—mechanisms and implications. the first fleming lecture. J Gen Microbiol 99:1–11CrossRefGoogle Scholar
  50. 50.
    Fuchs RL, McPherson SA, Drahos DJ (1986) Cloning of a serratia marcescens gene encoding chitinase. Appl Environ Microbiol 51:504–509Google Scholar
  51. 51.
    Abeles FB, Bosshart RP, Forrence LE, Habig WH (1971) Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol 47:129–134CrossRefGoogle Scholar
  52. 52.
    Cohen-Kupiec R, Chet I (1998) The molecular biology of chitin digestion. Curr Opin Biotechnol 9:270–277CrossRefGoogle Scholar
  53. 53.
    Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, Hamid Q, Elias JA (2004) Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science 204:1678–1682CrossRefGoogle Scholar
  54. 54.
    Gooday GW (1990) The ecology of chitin degradation. Adv Microb Ecol 11:387–430CrossRefGoogle Scholar
  55. 55.
    Muraki E, Yaku F, Kojima H (1993) Preparation and crystallization of D-glucosarnine oligosaccharides with dp 6-8. Carbohydr Res 239:227–237CrossRefGoogle Scholar
  56. 56.
    Mori T, Ichikawa W, KitaY, Tetsuka Y (2010) Method for fermentative production of N-Acetyl-D-glucosamine by microorganism. US Patent NO. 20100055746Google Scholar
  57. 57.
    Roberts RL, Cabib E (1982) Serratia marcescens chitinase: one-step purification and Use for the determination of chitin. Anal Biochem 127:402–412CrossRefGoogle Scholar
  58. 58.
    Oppenheim AB, Chet I (1992) Cloned chitinase in fungal plant—pathogen control strategies. Trends Biotechnol 10:392–394CrossRefGoogle Scholar
  59. 59.
    Pan CH, Rim SL, Kim SI (1996) Expression of two cDNAs encoding class I chitinases of rice in Escherichia coli. Biosci Biotech Biochem 60:1346–1348CrossRefGoogle Scholar
  60. 60.
    Setthakaset P, Pichyangkura R, Ajavakom A, Sukwattanasinitt M (2008) Preparation of N-acetyl-D-Glucosamine using Enzyme from Aspergillus sp. J Metals, Mater Minerals 18:53–57Google Scholar
  61. 61.
    Chen JK, Shen CR, Yeh CH, Fang BS, Huang TL, Liu CL (2011) N-Acetyl Glucosamine obtained from chitin by chitin degrading factors in chitinbacter tainanesis. Int J Mol Sci 12:1187–1195CrossRefGoogle Scholar
  62. 62.
    Sun Y, Zhang J, Wua S, Wang S (2013) Preparation of d-glucosamine by hydrolysis of chitosan with chitosanase and β-d-glucosaminidase. Int J Biol Macromol 61:160–163CrossRefGoogle Scholar
  63. 63.
    Estroff LA, Hamilton AD (2004) Water gelation by small organic molecules. Chem Rev 104:1201–1218CrossRefGoogle Scholar
  64. 64.
    Kiyonaka S, Sada K, Yoshimura I, Shinkai S, Kato N, Hamachi I (2004) Semi-wet peptide/protein array using supramolecular hydrogel. Nat Mater 3:58–64CrossRefGoogle Scholar
  65. 65.
    Silva GA, Czeisler C, Niece KL, Beniash E, Harrington D, Kessler JA (2004) Stupp SI (2004) selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 303:1352–1355CrossRefGoogle Scholar
  66. 66.
    Zhang SG, Holmes TC, Dipersio CM, Hynes RO, Su X, Rich A (1995) Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16:1385–1393CrossRefGoogle Scholar
  67. 67.
    Shaunak S, Thomas S, Gianasi E, Godwin A, Jones E, Teo I, Mireskandari K, Luthert P, Duncan R, Patterson S, Khaw P, Brocchini S (2004) Polyvalent dendrimer glucosamine conjugates prevent scar tissue formation. Nat Biotechnol 22:977–984CrossRefGoogle Scholar
  68. 68.
    Wang L, Detamore MS (2009) Effects of growth factors and glucosamine on porcine mandibular condylar cartilage cells and hyaline cartilage cells for tissue engineering applications. Arch Oral Biol 54:1–5CrossRefGoogle Scholar
  69. 69.
    Wertz PW, Bergh VB (1998) The physical, chemical and functional properties of lipid in the skin and other biological barrier. Chem Phys Lipids 91:85–96CrossRefGoogle Scholar
  70. 70.
    Bissett D, Robinson LR, Raleigh PS, Miyamoto K, Hakozaki T, Li J, Klem GR (2007) Reduction in the appearance of facial hyperpigmentation by topical N-Acetyl Glucosamine. J Cosmet Dermatol 6:20–26CrossRefGoogle Scholar
  71. 71.
    Bissett D, Farmer T, McPhail S, Reichling T, Tiesman JP, Juhlim KD, Hurley GJ, Robinson MK (2007) Genomic expression changes induced by topical N-acetylglucosamine in skin equivalent cultures in vitro. J Cosmet Dermatol 6:232–238CrossRefGoogle Scholar
  72. 72.
    Riordan NH (1999) Skin Treatment System. US Patent NO 5866142Google Scholar
  73. 73.
    Hwang JI, Kim KS (2005) Cosmetics Composition Comprising Extract of Natural Materials for Improving Acne and Skin Wrinkles and Whitening Skin. KR Patent NO 20050004355 AGoogle Scholar
  74. 74.
    Minami S, Okamoto Y (2007) Drug for Remedy or Treatment of Wound. EP Patent NO 1749532Google Scholar
  75. 75.
    Flessner MF, Lofthouse J, Williams A (2002) Chronic alteration of sub-peritoneal tissue and peritoneal transport. Adv Perit Dial 18:12–14Google Scholar
  76. 76.
    Dev A, Mohan JC, Sreeja V, Tamura H, Patzke GR, Hussain F, Weyenet S, Nair SV, Jayakumar R (2010) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 79:1073–1079CrossRefGoogle Scholar
  77. 77.
    Kamiyama K, Onishi H, Machida Y (1999) Biodisposition characteristics of N-succinyl-chitosan and glycol- chitosan in normal and tumor-bearing mice. Biol Pharm Bull 22:179–186CrossRefGoogle Scholar
  78. 78.
    Ishihara M, Obara K, Nakamura S, Fujita M, Masuoka K, Kanatani Y, Takase B, Hattori H, Morimoto Maehara T, Kikuchi M (2006) Chitosan hydrogel as a drug delivery carrier to control angiogenesis. J Artif Organs 9:8–16CrossRefGoogle Scholar
  79. 79.
    Zhao Y, Chen G, Sun M, Jin Z, Gao C (2006) Study on preparation of the pH sensitive hydroxyethyl chitin/poly (acrylic acid) hydrogel and its drug release property. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 23:338–341Google Scholar
  80. 80.
    Haidar ZS, Hamdy RC, Tabrizian M (2008) Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 29:1207–1215CrossRefGoogle Scholar
  81. 81.
    Drovanti A, Bignamini AA, Rovati AL (1980) Therapeutic activity of oral glucosamine sulfate in osteoarthritis: a placebo-controlled double-blind investigation. Clin Ther 3:260Google Scholar
  82. 82.
    Russell AS, Aghazadeh-Habashi A, Jamali F (2002) Active ingredient consistency of commercially available glucosamine sulfate products. J Rheumatol 29:2407–2409Google Scholar
  83. 83.
    Laverty S, Sandy JD, Celeste C, Vachon P, Marier JF, Plaas AH (2005) Synovial fluid levels and serum pharmacokinetics in a large animal model following treatment with oral glucosamine at clinically relevant doses. Arthritis Rheum 52:181–191CrossRefGoogle Scholar
  84. 84.
    Clegg DO, Reda DJ, Harris CL, Klein MA, O’Dell JR, Hooper MM, Bradley JD, Bingham CO 3rd, Weisman MH, Jackson CG, Lane NE, Cush JJ, Moreland LW, Schumacher HR Jr, Oddis CV, Wolfe F, Molitor JA, Yocum DE, Schnitzer TJ, Furst DE, Sawitzke AD, Shi H, Brandt KD, Moskowitz RW, Williams HJ (2006) Glucosamine, chondroitin sulfate, and the two in combination for painful knee osteoarthritis. N Engl J Med 354:795–808CrossRefGoogle Scholar
  85. 85.
    McAlindon T, Formica M, LaValley M, Lehmer M, Kabbara K (2004) Effectiveness of glucosamine for symptoms of knee osteoarthritis: results from an internet-based randomized double-blind controlled trial. Am J Med 117:643–649CrossRefGoogle Scholar
  86. 86.
    McAlindon T, Formica M, Kabbara K, LaValley M, Lehmer M (2003) Conducting clinical trials over the internet: feasibility study. BMJ 327:484–487CrossRefGoogle Scholar
  87. 87.
    Hochberg MC, Martel-Pelletier J, Monfort J, Möller I, Castillo JR, Arden N, Berenbaum F, Blanco FJ, Conaghan PG, Doménech G, Henrotin Y, Pap T, Richette P, Sawitzke A, du Souich P, Pelletier JP (2015) Combined chondroitin sulfate and glucosamine for painful knee osteoarthritis: a multicentre, randomised, double-blind, non-inferiority trial versus celecoxib. Ann Rheum Dis 2014:206792Google Scholar
  88. 88.
    Tadal M, Oikawal A, Iwata R, Fujiwara T, Kubota K, Matsuzawa T, Sugiyama H, Ido T, Ishiwata K, Sato T (1989) An efficient, one-pot synthesis of 2-deoxy-2-[18F]fluoroacetamido-D-glucopyranose (N-[18F]fluoroacetyl-D-glucosamine), potential diagnostic imaging agent. J Labelled Compd Radiopharm 27:1317–1324CrossRefGoogle Scholar
  89. 89.
    Fujiwara T, Kubota K, Sato T, Matsuzawa T, Tada M, Iwata R, Itoh M, Hatazawa J, Sato K, Fukuda H, Ido T (1990) N-[18F] fluoroacetyl-D-glucosamine: a potential agent for cancer diagnosis. J Nucl Med 31:1654–1658Google Scholar
  90. 90.
    Yang Z, Xiong C, Zhang R, Zhu H, Li C (2012) Synthesis and evaluation of 68 Ga-labeled DOTA-2-deoxy-D-glucosamine as a potential radiotracer in μPET imaging. Am J Nucl Med Mol Imaging 2:499–507Google Scholar
  91. 91.
    Qi CM, He Y, Wang X, Feng M, Xu JL, Ding R, Liu H, Chen YR, Li F, Zhu ZH, Dang YH, Zhang ST, Xie Y (2011) Synthesis and evaluation of N-(2-[18F]fluoro-4-nitrobenzoyl)glucosamine: a preliminary report. J Radioanal Nucl Chem 287:913–920CrossRefGoogle Scholar
  92. 92.
    Igawa K, Xie MF, Ohba H, Yamada S, Hayashi Y (2014) D-glucosamine conjugation accelerates the labeling efficiency of quantum dots in osteoblastic cells. Biomed Res Int 2014:821607Google Scholar
  93. 93.
    Carroll L, Witney TH, Aboagye EO (2013) Design and synthesis of novel 18F-radiolabelled glucosamine derivatives for cancer imaging. Med Chem Commun 4:653CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Tanvi Jain
    • 1
    • 2
  • Hridyesh Kumar
    • 2
  • Pradip Kumar Dutta
    • 2
    • 3
    Email author
  1. 1.Department of Chemical EngineeringMN National Institute of TechnologyAllahabadIndia
  2. 2.Department of ChemistryMN National Institute of TechnologyAllahabadIndia
  3. 3.Member, Centre for Medical Diagnostic & ResearchMN National Institute of TechnologyAllahabadIndia

Personalised recommendations