Advertisement

Chitosan: A Promising Substrate for Regenerative Medicine in Drug Formulation

  • Madhu Kashyap
  • D. Archana
  • Alok Semwal
  • Joydeep Dutta
  • Pradip Kumar DuttaEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Chitosan plays a most important role in the regenerative medication for wound healing. The adhesive nature of chitosan, with their antifungal and bactericidal character, and their permeability to oxygen, is a very important property associated with the treatment of wounds. Different derivatives and combination of chitosan have been reported for this purpose in the form of hydrogels, fibers, membranes, scaffolds and sponges. The purpose of the chapter is to have a closer look in the work done directly by different researchers on the chitosan formulation with potential medicinal applications to provide a better understanding of its usability in regenerative medicine.

Keywords

Chitosan Regenerative medicine Wound healing Tissue engineering Drug delivery 

Abbreviations

PEC

Polyelectrolyte complex

PVA

Poly(vinyl alcohol)

AgNPs

Silver nanoparticles

NPs

Nanoparticles

MCNs

Magnetic-Chitosan Nanogels

LPO

Lactoperoxidase

E. coli

Escherichia coli

P. aeruginosa

Pseudomonas aeruginosa

Cu

Copper

Notes

Acknowledgments

One of the authors (Madhu Kashyap) gratefully acknowledged the spontaneous support and cooperation from Garm Bharti University during her research work under Ph.D.programme.

References

  1. 1.
    Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133:185–192CrossRefGoogle Scholar
  2. 2.
    Dutta PK, Dutta J, Tripathi VS (2004) Chitin chitosan: chem properties & applications. J Sci Indu Res 63:20–31Google Scholar
  3. 3.
    Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—A short review. Carbohydr Polym 82(2010):227–232CrossRefGoogle Scholar
  4. 4.
    Singh J, Dutta PK (2009) Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications. Int J Biol Macromol 45:384–392CrossRefGoogle Scholar
  5. 5.
    Mehta AS, Singh BK, Singh N, Archana D, Snigdha K, Harniman R, Rahatekar SS, Tewari RP, Dutta PK (2015) Chitosan silk-based three-dimensional scaffolds containing gentamicin encapsulated calcium alginate beads for drug administration and blood compatibility. J Biomater Appl 29:1314–1325CrossRefGoogle Scholar
  6. 6.
    Singh BK, Archana D, Sirohi R, Jain A, Dutta PK (2015) Porous chitosan scaffolds: A systematic study for choice of crosslinker and growth factor incorporation. Int J Polymer Mater 64:242–252CrossRefGoogle Scholar
  7. 7.
    Archana D, Upadhyay L, Tewari RP, Dutta J, Huang YB, Dutta PK (2013) Chitosan-pectin-alginate as a novel scaffold for tissue engineering applications. Indian J Biotechnol 12:475–4828Google Scholar
  8. 8.
    Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76:167–182CrossRefGoogle Scholar
  9. 9.
    Muzzarelli RAA, Morganti P, Morganti G, Palombo P, Palombo M, Biagini G, Belmontec MM, Giantomassic F, Orlandif F, Muzzarelli C (2007) Chitin nanofibrils/chitosan glycolate composites as wound medicaments. Carbohydr Polym 70:274–284CrossRefGoogle Scholar
  10. 10.
    Tripathi S, Mehrotra GK, Dutta PK (2009) Preparation and physicochemical evaluation of chitosan/poly(vinyl alcohol)/pectin ternary film for food-packaging applications. Carbohyd Polym 79:711–716CrossRefGoogle Scholar
  11. 11.
    Singh J, Dutta PK (2010) Preparation, antibacterial & physicochemical behavior of chitosan/ofloxacin complexes. Int J Polym Mater 59:793–807CrossRefGoogle Scholar
  12. 12.
    Archana D, Dutta J, Dutta PK (2013) Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int J Biol Macromol 57:193–203CrossRefGoogle Scholar
  13. 13.
    Archana D, Singh BK, Dutta J, Dutta PK (2013) In vivo evaluation of chitosan–PVP–titanium dioxide nanocomposite as wound dressing material. Carbohydr Polym 95:530–539CrossRefGoogle Scholar
  14. 14.
    Arand AG, Sawaya R (1986) Intraoperative Chem hemost Neurosurg. Neurosurg 18:223–233Google Scholar
  15. 15.
    Wang XH, Li DP, Wang WJ, Feng QL, Cui FZ, Xu YX, Song XH, van der Werf M (2003) Crosslinked collagen/chitosan matrices for artificial livers. Biomaterials 24:3213–3220CrossRefGoogle Scholar
  16. 16.
    Kojima K, Okamoto Y, Miyatake K, Kitamura Y, Minami S (1989) Collagen typing of granulation tissue induced by chitin and chitosan. Carbohydr Polym 37:109–113CrossRefGoogle Scholar
  17. 17.
    Harkins AL, Duri S, Kloth LC, Tran CD (2014) Chitosan-cellulose composite for wound dressing material. Part Antimicrobial activity, blood absorption ability, and biocompatibility: Chitosan-cellulose composite for wound dressing material. J Biomed Mater Res B Appl Biomater 102:1199–1206CrossRefGoogle Scholar
  18. 18.
    Paul W, Sharma CP (2004) Chitin and alginates wound dressings: a short review. Trends Biomater Artif Organs 18:18–23Google Scholar
  19. 19.
    Han F, Dong Y, Song A, Yin R, Li S (2014) Alginate/chitosan based bi-layer composite membrane as potential sustained-release wound dressing containing ciprofloxacin hydrochloride. Appl Surf Sci 311:626–634CrossRefGoogle Scholar
  20. 20.
    Sung JH, Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, Jin SG, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Choi HG (2010) Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan. Int J Pharm 39:2232–2240Google Scholar
  21. 21.
    Kim HJ, Lee HC, Oh JS, Shin BA, Oh CS, Park RD, Yang KS, Cho CS (1999) Polyelectrolyte complex composed of chitosan and sodium alginate for wound dressing application. J Biomater Sci Polym Ed 10:543–556CrossRefGoogle Scholar
  22. 22.
    Alemdaroğlu C, Değim Z, Celebi N, Zor F, Oztürk S, Erdogan D (2006) An investigation on burn wound healing in rats with chitosan gel formulation containing epidermal growth factor. Burns 32:319–327CrossRefGoogle Scholar
  23. 23.
    Arockianathan PM, Sekar S, Kumaran B, Sastry TP (2012) Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol 50:939–946CrossRefGoogle Scholar
  24. 24.
    Radhakumarya C, Antontyb M et al (2011) Drug loaded thermoresponsive and cytocompatible chitosan basedhydrogel as a potential wound dressing. Carbohydr Polym 83:705–713CrossRefGoogle Scholar
  25. 25.
    Pawar HV, Tetteh J, Boatang JS (2013) Preparation, optimisation and characterisation of novel wound healing film dressings loaded with streptomycin and diclofenac. Colloid Surf B Biointerface 102:102–110CrossRefGoogle Scholar
  26. 26.
    Moura LIF, Dias AMA, Leal EC, Carvalho L, De Sousa HC, Carvalho E (2014) Chitosan-based dressings loaded with neurotensin an efficient strategy to improve early diabetic wound healing. Acta Biomater 10:843–857CrossRefGoogle Scholar
  27. 27.
    Kashyap M, Dutta J, Dutta PK (2011) Rheological characteristics of chitosan hydrogels in different solvent systems for wound healing applications. Asian Chitin J 7:15–20Google Scholar
  28. 28.
    Chien KR (2008) Regenerative medicine and human models of human disease. Nature 453:302–305CrossRefGoogle Scholar
  29. 29.
    Khademhosseini A, Vacanti JP, Langer R (2009) Progress in tissue engineering. Sci Am 300:64–71CrossRefGoogle Scholar
  30. 30.
    Place ES, Evans ND, Stevens MM (2009) Complexity in biomaterials for tissue engineering. Nat Mater 8:457–470CrossRefGoogle Scholar
  31. 31.
    Senni K, Pereira J, Gueniche F, Delbarre-Ladrat C, Sinquin C, Ratiskol J, Godeau G, Fischer AM, Helley D, Colliec-Jouault S (2011) Marine polysaccharides: a source of bioactive molecules for cell therapy and tissue engineering Mar. Drugs 9:1664–1681Google Scholar
  32. 32.
    Wu J, Tan H, Li L, Gao C (2009) Covalently immobilized gelatin gradients within three-dimensional porous scaffolds. Chin Sci Bull 54:3174–3180CrossRefGoogle Scholar
  33. 33.
    Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci 37:106–126CrossRefGoogle Scholar
  34. 34.
    Lee KY, Yuk SH (2007) Polymeric protein delivery systems. Progr Polym Sci 32:669–697CrossRefGoogle Scholar
  35. 35.
    Pawar SN, Edgar KJ (2012) Alginate derivatization: a review of chemistry, properties and applications. Biomaterials 33:3279–3305CrossRefGoogle Scholar
  36. 36.
    Tan H, Gong Y, Lao L, Mao Z, Gao C (2007) Gelatin/chitosan/hyaluronan ternary complex scaffold containing basic fibroblast growth factor for cartilage tissue engineering. J Mater Sci Mater Med 18:1961–1968CrossRefGoogle Scholar
  37. 37.
    Cuy JL, Beckstead BL, Brown CD, Hoffman AS, Giachelli CM (2003) Adhesive protein interactions with chitosan: Consequences for valve endothelial cell growth on tissue-engineering materials. J Biomed Mater Res A 67:538–547CrossRefGoogle Scholar
  38. 38.
    Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW (2006) Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 27:406–418CrossRefGoogle Scholar
  39. 39.
    Cho JH, Kim SH, Park KD, Jung MC, Yang WI, Han SW, Noh JY, Lee JW (2004) Chondrogenic differentiation of human mesenchymal stem cells using a thermo sensitive poly(N-isopropylacrylamide) and water-soluble chitosan copolymer. Biomaterials 25:5743–5751CrossRefGoogle Scholar
  40. 40.
    Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100:5–28CrossRefGoogle Scholar
  41. 41.
    Dutta P, Rinki K, Dutta J (2011) Chitosan: a promising biomaterial for tissue engineering scaffolds. Chitosan for biomaterials II. In: Jayakumar R, Prabaharan M, Muzzarelli RAA (eds) Advances in polymer science. Heidelberg: Springer Berlin, p 45–79Google Scholar
  42. 42.
    Jagur-Grodzinski J (2003) Biomedical applications of polymers 2001–2002. e-Polym Paper No 12Google Scholar
  43. 43.
    Ma Z, Lim LY (2003) Uptake of chitosan and associated insulin in Caco-2 cell monolayers: a comparison between chitosan molecules and chitosan nanoparticles. Pharm Res 20:1812–1819CrossRefGoogle Scholar
  44. 44.
    Tan H, Rubin JP, Marra KG (2010) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis 6:173–180CrossRefGoogle Scholar
  45. 45.
    Brannon-Peppas L (1990) Preparation and characterization of crosslinked hydrophilic networks. In: Brannon-Peppas L, Harland RS (eds) Absorbent Polymer Technology. Elsevier, Amsterdam, pp 45–66CrossRefGoogle Scholar
  46. 46.
    Peppas NA, Khare AR (1993) Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv Drug Del Rev 11:1–35CrossRefGoogle Scholar
  47. 47.
    Jyotsna CD, Rajendra DC (2010) Formulation and evaluation of chitosan based microparticulate nasal drug delivery system of rizatriptan benzoate. Int J Pharm Tech Res 2:2391–2402Google Scholar
  48. 48.
    Saha P, Goyal AK, Rath G (2010) Formulation and evaluation of chitosan-based ampicillin trihydrate nanoparticles. Trop J Pharm Res 9:483–488CrossRefGoogle Scholar
  49. 49.
    Loke WK, Lau SK, Yong LL, Khor E, Sum CK (2000) Wound dressing with sustained anti-microbial capability. J Biomed Mater Res 53:8–17CrossRefGoogle Scholar
  50. 50.
    Rodrigues LB, Leite HF, Yoshida MI, Saliba JB, Cunha AS Jr, Faraco AA (2009) In vitro release and characterization of chitosan films as dexamethasone carrier. Int J Pharm 368:1–6CrossRefGoogle Scholar
  51. 51.
    Remuñán-Lopez C, Bodmeier RJ (1997) Mechanical water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. Control J Control Release 44:215–225CrossRefGoogle Scholar
  52. 52.
    Yadollahia M, Farhoudiana S, Namazi H (2015) One-pot synthesis of antibacterial chitosan/silver bio-nanocomposite hydrogel beads as drug delivery systems. Int J Biol Macromol. doi: 10.1016/j.ijbiomac.2015.04.032 Google Scholar
  53. 53.
    Oyarzun-Ampuero F, Brea J, Loza M, Torres D, Alonso M (2009) Chitosan–hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm 381:122–129CrossRefGoogle Scholar
  54. 54.
    De Campos AM, Sanchez A, Alonso MJ (2001) Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. application to cyclosporin a. Int J Pharm 224:159–168CrossRefGoogle Scholar
  55. 55.
    Mo R, Jin X, Li N, Ju C, Sun M, Zhang C, Ping Q (2011) The mechanism of enhancement on oral absorption of paclitaxel by N-octyl-O-sulfate chitosan micelles. Biomaterials 32:4609–4620CrossRefGoogle Scholar
  56. 56.
    Jain SK, Jain NK, Gupta Y, Jain A, Jain D, Chaurasia M (2007) Mucoadhesive chitosan microspheres for non-invasive and improved nasal delivery of insulin. Indian J Pharm Sci 69:498–504CrossRefGoogle Scholar
  57. 57.
    Arya N, Chakraborty S, Dube N, Katti DS (2009) Electrospraying: a facile technique for synthesis of chitosan-based micro/nanospheres for drug delivery applications. J Biomed Mater Res Part B: Appl Biomater 88B:17–31CrossRefGoogle Scholar
  58. 58.
    Tang C, Guan YX, Yao SJ, Zhu ZQ (2014) Preparation of ibuprofen-loaded chitosan films for oral mucosal drug delivery using supercritical solution impregnation. Int J Pharm 473:434–441CrossRefGoogle Scholar
  59. 59.
    Changerath R, Nair PD, Mathew S, Nair CP (2009) Poly(methyl methacrylate) grafted chitosan microspheres for controlled release of ampicillin. J Biomed Mater Res B Appl Biomater 89:65–76CrossRefGoogle Scholar
  60. 60.
    Uskoković V, Desai TA (2014) In vitro analysis of nanoparticulate hydroxyapatite/chitosan composites as potential drug delivery platforms for the sustained release of antibiotics in the treatment of osteomyelitis. J Pharm Sci 103:567–579CrossRefGoogle Scholar
  61. 61.
    Cerchiara T, Abruzzo A, di Cagno M, Bigucci F, Bauer-Brandl A, Parolin C, Vitali B, Gallucci MC, Luppi B (2015) Chitosan based micro- and nanoparticles for colon-targeted delivery of vancomycin prepared by alternative processing methods. Eur J Pharm Biopharm 92:112–119CrossRefGoogle Scholar
  62. 62.
    Rajan M, Raj V (2013) Formation and characterization of chitosan-polylacticacid-polyethylene glycol-gelatin nanoparticles: a novel biosystem for controlled drug delivery. Carbohydr Polym 98:951–958CrossRefGoogle Scholar
  63. 63.
    Chen Z, Zhang L, Song Y, He J, Wu L, Zhao C, Xiao Y, Li W, Cai B, Cheng H, Li W (2015) Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery. Biomaterials 52:240–250CrossRefGoogle Scholar
  64. 64.
    Pandey S, Mishra A, Raval P, Patel H, Gupta A, Shah D (2013) Chitosan-pectin polyelectrolyte complex as a carrier for colon targeted drug delivery. J Young Pharm. 5:160–166CrossRefGoogle Scholar
  65. 65.
    Unsoy G, Khodadust R, Yalcin S, Mutlu P, Gunduz U (2014) Synthesis of Doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250CrossRefGoogle Scholar
  66. 66.
    Jana S, Maji N, Nayak AK, Sen KK, Basu SK (2013) Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydr Polym 98:870–876CrossRefGoogle Scholar
  67. 67.
    Feng C, Wang Z, Jiang C, Kong M, Zhou X, Li Y, Cheng X, Chen X (2013) Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: in vitro and in vivo evaluation. Int J Pharm 457:158–167CrossRefGoogle Scholar
  68. 68.
    Zhang XZ, Tian FJ, Hou YM, Ou ZH (2015) Preparation and in vitro in vivo characterization of polyelectrolyte alginate–chitosan complex based microspheres loaded with verapamil hydrochloride for improved oral drug delivery. J Incl Phenom Macrocycl Chem 81:429–440CrossRefGoogle Scholar
  69. 69.
    Parveen S, Long Sahoo SK (2011) circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur J Pharmacol 670:372–383CrossRefGoogle Scholar
  70. 70.
    Justin R (2014) Chen B Strong and conductive chitosan-Reduced graphene oxide nanocomposites for transdermal drug delivery. J Mater Chem B 2:3759–3770CrossRefGoogle Scholar
  71. 71.
    Niemirowicz K, Markiewicz KH, Wilczewska AZ, Car H (2012) Magnetic nanoparticles as new diagnostic tools in medicine. Adv Med Sci 57:196–207CrossRefGoogle Scholar
  72. 72.
    Lattuada M, Hatton TA (2007) Functionalization of monodisperse magnetic nanoparticles. Langmuir 23:2158–2168CrossRefGoogle Scholar
  73. 73.
    Shrifian-Esfahni A, Salehi MT, Nasr-esfahni M, Ekramian E (2015) Chitosan-modified superparamgnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. CHEMIK 69:19–32Google Scholar
  74. 74.
    Zeitoun A, Robinson D, Nevo Z, Ben-Shalom N, Patchornik S (2010) Chitosan-Hybrid hydrogel technology for innovative biocompatible implants and visco-supplements in painful orthopedic pathologies, Founded 2008, at OHV Incubator, IsraelGoogle Scholar
  75. 75.
    Shinde RN, Pandey AK, Acharya R, Guin R, Das SK, Rajurkarb NS, Pujari PK (2013) Chitosan-transition metal ions complexes for selective arsenic(V) preconcentration. Water Res 47:3497–3506CrossRefGoogle Scholar
  76. 76.
    Shanmugapriya A, Hemalatha M, Scholastica B, Prasad AAT (2013) Adsorption studies of lead (II) and nickel (II) ions on chitosan-G-polyacrylonitrile. Der Pharma Chemica 5:141–155Google Scholar
  77. 77.
    Manikandan A, Sathiyabama M (2015) Green synthesis of copper-chitosan nanoparticles and study of its antibacterial activity. J Nanomed Nanotechnol 6:157–7439Google Scholar
  78. 78.
    Tran HV, Tran LD, Ba CD, Vu HD, Nguyen TN, Phamc DG, Nguyen PX (2010) Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan-based silver nanoparticles. Colloids Surf A Physicochem Eng Asp 360:32–40CrossRefGoogle Scholar
  79. 79.
    Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent. Colloids Surf B Biointerfaces 62:136–142CrossRefGoogle Scholar
  80. 80.
    Shahidi F, Arachchi JKV, Jeon YJ (1999) Food applications of chitin and chitosans. Trends Food Sci Tech 10:37–51CrossRefGoogle Scholar
  81. 81.
    Semwal A, Singh R, Dutta PK (2013) Chitosan: a promising substrate for pharmaceuticals. J Chitin Chitosan Sci 1:1–16CrossRefGoogle Scholar
  82. 82.
    Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS (2002) Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm 249:165–174CrossRefGoogle Scholar
  83. 83.
    Sahu SK, Maiti S, Pramanik A, Ghosh SK, Pramanik P (2012) Controlling the thickness of polymeric shell on magnetic nanoparticles loaded with doxorubicin for targeted delivery and MRI contrast agent. Carbohydr Polym 87:2593–2604CrossRefGoogle Scholar
  84. 84.
    Sadighian S, Hosseini-Monfared H, Rostamizadeh K, Hamidi M (2015) pH-triggered magnetic-chitosan nanogels (MCNs) For doxorubicin delivery: physically vs. chemically cross linking approach. Adv Pharm Bull 5:115–120Google Scholar
  85. 85.
    Islam MA, Firdous J, Choi YJ, Yun CH, Cho CS (2011) Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review. Int J Nanomed 7:6077–6093Google Scholar
  86. 86.
    Nayeri H, Fattahi A, Iranpoor-mobarakeh M, Nori P (2015) Stabilization of lactoperoxidase by tragacanth-chitosan nano biopolymer. Int J Biosci 6:418–426CrossRefGoogle Scholar
  87. 87.
    Singh B, Sharma V (2014) Influence of polymer network parameters of tragacanth gum-based pH responsive hydrogels on drug delivery. Carbohydr Polym 101:928–940CrossRefGoogle Scholar
  88. 88.
    Jayakumar R, Chennazhi KP, Muzzarelli RAA, Tamura H, Nair SV, Selvamurugan N (2010) Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr Polym 79:1–8CrossRefGoogle Scholar
  89. 89.
    Mohanty DP, Biswal SK, Nayak L (2015) Preparation of starch-chitosan nanocomposites for control drug release of curcumin. Inter J Curr eng Technol 5:336–31Google Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  • Madhu Kashyap
    • 1
  • D. Archana
    • 2
  • Alok Semwal
    • 3
  • Joydeep Dutta
    • 4
  • Pradip Kumar Dutta
    • 2
    • 5
    Email author
  1. 1.Department of ChemistryNehru Gram Bharti UniversityAllahabadIndia
  2. 2.Department of ChemistryMN National Institute of TechnologyAllahabadIndia
  3. 3.Department of PharmacyHimachal Institute of PharmacyPaonta SahibIndia
  4. 4.Department of ChemistryAmity School of Applied Sciences, Amity University HaryanaManesarIndia
  5. 5.Member, Centre for Medical Diagnostic & Research, MN National Institute of TechnologyAllahabadIndia

Personalised recommendations