Advertisement

Chitosan Hydrogels for Regenerative Engineering

  • Aiswaria Padmanabhan
  • Lakshmi S. NairEmail author
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Research in the field of hydrogels has been actively growing for the past couple of decades. Hydrogels are crosslinked polymers with high water content. They can be prepared from natural, synthetic, and composite polymers using different chemical and physical crosslinking methods. Hydrogels have been widely explored for the delivery of bioactive molecules, drugs, and for other therapeutic applications. Chitosan-based hydrogels have unique advantages owing to their biocompatibility, biodegradability, antimicrobial activity, mucoadhesivity, and low toxicity. This chapter reviews the different methods used for preparing chitosan-based hydrogels and their applications as cell, protein, and drug delivery vehicles to support tissue regeneration.

Keywords

Chitosan Hydrogels Therapeutic applications Regenerative engineering 

References

  1. 1.
    Ravi Kumar MNV (2000) A review of chitin and chitosan applications. React Funct Polym 46:1–27CrossRefGoogle Scholar
  2. 2.
    Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  3. 3.
    Narayanan D, Jayakumar R, Chennazhi KP (2014) Versatile carboxymethyl chitin and chitosan nanomaterials: a review. WIREs Nanomed Nanobiotechnol 6:574–598CrossRefGoogle Scholar
  4. 4.
    Tokura S, Itoyama K, Nishi N, Nishimura S, Saiki I, Azuma I (1994) Selective sulfation of chitin derivatives for biomedical functions. J Macromol Sci A 31:1701–1718CrossRefGoogle Scholar
  5. 5.
    Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34:641–678CrossRefGoogle Scholar
  6. 6.
    Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014CrossRefGoogle Scholar
  7. 7.
    Croisier F, Jerome C (2013) Chitosan-based biomaterials for tissue engineering. Eur Polym J 49:780–792CrossRefGoogle Scholar
  8. 8.
    Yuan Y, Chesnutt BM, Haggard WO, Bumgardner JD (2011) Deacetylation of chitosan: material characterization and in vitro evaluation via albumin adsorption and pre-osteoblastic cell cultures. Materials 4:1399–1416CrossRefGoogle Scholar
  9. 9.
    Cartier N, Domard A, Chanzy H (1990) Single crystals of chitosan. Int J Biol Macromol 12:289–294CrossRefGoogle Scholar
  10. 10.
    Rinaudo M, Milas M, Dung PL (1993) Characterization of chitosan. Influence of ionic strength and degree of acetylation on chain expansion. Int J Biol Macromol 15(5):281–285CrossRefGoogle Scholar
  11. 11.
    Roberts GA, Domszy JG (1982) Determination of the viscometric constants for chitosan. Int J Biol Macromol 4:374–377CrossRefGoogle Scholar
  12. 12.
    Mourya VK, Inamdar NN (2008) Chitosan—modifications and applications: opportunities galore. React Funct Polym 68:1013–1051CrossRefGoogle Scholar
  13. 13.
    Mourya VK, Inamdar NN, Tiwari Ashutosh (2010) Carboxymethyl chitosan and its applications. Adv Mat Lett 1(1):11–33CrossRefGoogle Scholar
  14. 14.
    Upadhyay L, Singh J, Agarwal V, Tewari RP (2013) Biomedical applications of carboxymethyl chitosans. Carbohyd Polym 91:452–466CrossRefGoogle Scholar
  15. 15.
    Pereira P, Pedrosa SS, Correia A, Lima CF, Olmedo MP, Gonzalez-Fernandez A, Vilanova M, Gama FM (2015) Biocompatibility of a self-assembled glycol chitosan nanogel. Toxicol In Vitro 29:638–646CrossRefGoogle Scholar
  16. 16.
    Trapani A, Gioia SD, Ditaranto N, Cioffi N, Goycoolea FM, Carbone A, Garcia-Fuentes M, Conese M, Alonso MJ (2013) Systemic heparin delivery by the pulmonary route using chitosan and glycol chitosan nanoparticles. Int J Pharm 447:115–123CrossRefGoogle Scholar
  17. 17.
    Jiang G, Sun J, Ding F (2014) PEG-g-chitosan thermosensitive hydrogel for implant drug delivery: cytotoxicity, in vivo degradation and drug release. J Biomat Sci-Polym E 25(3):241–256CrossRefGoogle Scholar
  18. 18.
    Ding K, Wang Y, Wang H, Yuan L, Tan M, Shi X, Lyu Z, Liu Y, Chen H (2014) 6-O-sulfated chitosan promoting the neural differentiation of mouse embryonic stem cells. ACS Appl. Mater. Interfaces 6(22):20043–20050CrossRefGoogle Scholar
  19. 19.
    Vikhoreva G, Bannikova G, Stolbushkina P, Panov A, Drozd N, Makarov V, Varlamov V, Gal’braikh L (2005) Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohyd Polym 62:327–332CrossRefGoogle Scholar
  20. 20.
    Heras A, Rodriguez NM, Ramos VM, Agullo E (2001) N-methylene phosphonic chitosan: a novel soluble derivative. Carbohyd Polym 44:1–8CrossRefGoogle Scholar
  21. 21.
    Zhu D, Yao K, Bo J, Zhang H, Liu L, Dong X, Song L, Leng X (2010) Hydrophilic/lipophilic N-methylene phosphonic chitosan as a promising non-viral vector for gene delivery. J Mater Sci-Mater M 21(1):223–229CrossRefGoogle Scholar
  22. 22.
    Sajomsang W, Nuchuchua O, Saesoo S, Gonil P, Chaleawlert-umpon S, Pimpha N, Sramala I, Soottitantawat A, Puttipipatkhachorn S, Ruktanonchai UR (2013) A comparison of spacer on water-soluble cyclodextrin grafted chitosan inclusion complex as carrier of eugenol to mucosae. Carbohyd Polym 92:321–327CrossRefGoogle Scholar
  23. 23.
    Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: network design and mathematical modeling. Adv Drug Deliver Rev 58:1379–1408CrossRefGoogle Scholar
  24. 24.
    Patel A, Mequanint K (2011) Hydrogel biomaterials. In: Fazel-Rezai R (ed) Chapter 14 in Biomedical Engineering—Frontiers and Challenges, pp 275–296Google Scholar
  25. 25.
    Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1879CrossRefGoogle Scholar
  26. 26.
    Hunt JA, Chen R, van Veen T, Bryan N (2014) Hydrogels for tissue engineering and regenerative medicine. J Mater Chem B 2:5319–5338CrossRefGoogle Scholar
  27. 27.
    Ottenbrite RM, Park K, Okano T (eds) (2010) Biomedical applications of hydrogels handbook, p 204Google Scholar
  28. 28.
    Tan H, Marra KG (2010) Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3:1746–1767CrossRefGoogle Scholar
  29. 29.
    Miguel SP, Ribeiro MP, Branca H, Coutinho P, Correia IJ (2014) Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohyd Polym 111:366–373CrossRefGoogle Scholar
  30. 30.
    Zhu J, Marchant RE (2011) Design properties of hydrogel tissue-engineering scaffolds. Expert Rev Med Devices 8(5):607–626CrossRefGoogle Scholar
  31. 31.
    Gibas I, Janik H (2010) Review: synthetic polymer hydrogels for biomedical applications. Chem Chem Technol 4:297–304Google Scholar
  32. 32.
    Berger J, Reist M, Mayer JM, Felt O, Gurny R (2004) Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm 57:35–52CrossRefGoogle Scholar
  33. 33.
    Aziz MA, Cabral JD, Brooks HJL, Moratti SC, Hanton LR (2012) Antimicrobial properties of a chitosan dextran-based hydrogel for surgical use. Antimicrob Agents Ch 56(1):280–287CrossRefGoogle Scholar
  34. 34.
    He P, Davis SS, Illum L (1998) In vitro evaluation of the mucoadhesive properties of chitosan microspheres. Int J Pharm 166:75–88CrossRefGoogle Scholar
  35. 35.
    Lee YH, Chang JJ, Yang MC, Chien CT, Lai WF (2012) Acceleration of wound healing in diabetic rats by layered hydrogel dressing. Carbohyd Polym 88:809–819CrossRefGoogle Scholar
  36. 36.
    Han T, Nwe N, Furuike T, Tokura S, Tamura H (2012) Methods of N-acetylated chitosan scaffolds and its in vitro biodegradation by lysozyme. J. Biomed Sci Eng 5:15–23CrossRefGoogle Scholar
  37. 37.
    Verheul RJ, Amidi M, van Steenbergen MJ, van Riet E, Jiskoot W, Hennink WE (2009) Influence of the degree of acetylation on the enzymatic degradation and in vitro biological properties of trimethylated chitosans. Biomaterials 30(18):3129–3135CrossRefGoogle Scholar
  38. 38.
    Chung YC, Chen CY (2008) Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technol 99:2806–2814CrossRefGoogle Scholar
  39. 39.
    Kim SK (ed) (2013) Chitin and chitosan derivatives: advances in drug discovery and developments, p 246Google Scholar
  40. 40.
    Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliver Rev 62:83–99CrossRefGoogle Scholar
  41. 41.
    Schuetz YB, Gurny R, Jordan O (2008) A novel thermoresponsive hydrogel based on chitosan. Eur J Pharm Biopharm 68:19–25CrossRefGoogle Scholar
  42. 42.
    Sheridan WS, Grant OB, Duffy GP, Murphy BP (2014) The application of a thermoresponsive chitosan/β-GP gel to enhance cell repopulation of decellularized vascular scaffolds. J Biomed Mater Res B 102B:1700–1710CrossRefGoogle Scholar
  43. 43.
    Lu WN, Lu SH, Wang HB, Li DX, Duan CM, Liu ZQ, Hao T, He WJ, Xu B, Fu Q, Song YC, Xie XH, Wang CY (2009) Functional improvement of infarcted heart by co-injection of embryonic stem cells with temperature-responsive chitosan hydrogel. Tissue Eng Pt A 15(6):1437–1447CrossRefGoogle Scholar
  44. 44.
    Niranjan R, Koushik C, Saravanan S, Moorthi A, Vairamani M, Selvamurugan N (2013) A novel injectable temperature-sensitive zinc doped chitosan/β-glycerophosphate hydrogel for bone tissue engineering. Int J Biol Macromol 54(2013):24–29CrossRefGoogle Scholar
  45. 45.
    Nair LS, Starnes T, Ko JWK, Laurencin CT (2007) Development of injectable thermogelling chitosan-inorganic phosphate solutions for biomedical applications. Biomacromolecules 8:3779–3785CrossRefGoogle Scholar
  46. 46.
    Liu X, Chen Y, Huang Q, He W, Feng Q, Yu B (2014) A novel thermo-sensitive hydrogel based on thiolated chitosan/hydroxyapatite/beta-glycerophosphate. Carbohyd Polym 110:62–69CrossRefGoogle Scholar
  47. 47.
    Chenite A, Buschmann M, Wang D, Chaut C, Kandani N (2001) Rheological characterization of thermogelling chitosan/glycerol-phosphate solutions. Carbohyd Polym 46(1):39–47CrossRefGoogle Scholar
  48. 48.
    Han H, Nam D, Seo D, Kim T, Shin B, Choi H (2004) Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature. Macromol Res 12(5):507–511CrossRefGoogle Scholar
  49. 49.
    Kafedjiiski K, Krauland AH, Hoffer MH, Bernkop-Schnuech A (2005) Synthesis and in vitro evaluation of a novel thiolated chitosan. Biomaterials 26(7):819–826CrossRefGoogle Scholar
  50. 50.
    Khodaverdi E, Tafaghodi M, Ganji F, Abnoos K, Naghizadeh H (2012) In vitro insulin release from thermosensitive chitosan hydrogel. AAPS PharmSciTech 13(2):460–466CrossRefGoogle Scholar
  51. 51.
    Jeong B, Kim SW, Bae YH (2012) Thermosensitive sol-gel reversible hydrogels. Adv Drug Deliver Rev 64:154–162CrossRefGoogle Scholar
  52. 52.
    Kim JH, Lee SB, Kim SJ, Lee YM (2002) Rapid temperature/pH response of porous alginate-g-poly(Nisopropylacrylamide) hydrogels. Polymer 43:7549–7558CrossRefGoogle Scholar
  53. 53.
    Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliver Rev 53:321–339CrossRefGoogle Scholar
  54. 54.
    Chen JP, Cheng TH (2006) Thermo-responsive chitosan-graft-poly(N-isopropylacrylamide) injectable hydrogel for cultivation of chondrocytes and meniscus cells. Macromol Biosci 6:1026–1039CrossRefGoogle Scholar
  55. 55.
    Mao J, Kondu S, Ji HF, McShane MJ (2006) Study of the near-neutral pH-sensitivity of chitosan/gelatin hydrogels by turbidimetry and microcantilever deflection. Biotechnol Bioeng 95(3):333–341CrossRefGoogle Scholar
  56. 56.
    Bostan MS, Senol M, Cig T, Peker I, Goren AC, Ozturk T, Eroglu MS (2003) Controlled release of 5-aminosalicylicacid from chitosan based pH and temperature sensitive hydrogels. Int J Biol Macromol 52:177–183CrossRefGoogle Scholar
  57. 57.
    Chiu YL, Chen SC, Su CJ, Hsiao CW, Chen YM, Chen HL, Sung HW (2009) pH-triggered injectable hydrogels prepared from aqueous N-palmitoyl chitosan: in vitro characteristics and in vivo biocompatibility. Biomaterials 30:4877–4888CrossRefGoogle Scholar
  58. 58.
    Li QL, Chen ZQ, Darvell BW, Liu LK, Jiang HB, Zen Q, Peng Q, Ou GM (2007) Chitosan-phosphorylated chitosan polyelectrolyte complex hydrogel as an osteoblast carrier. J Biomed Mater Res 82(2):481–486CrossRefGoogle Scholar
  59. 59.
    Lankalapalli S, Kolapalli VRM (2009) Polyelectrolyte complexes: a review of their applicability in drug delivery technology. Indian J Pharm Sci 71(5):481–487CrossRefGoogle Scholar
  60. 60.
    Coutinho DF, Sant S, Shakiba M, Wang B, Gomes ME, Neves NM, Reis RL, Khademhosseini A (2012) Microfabricated photocrosslinkable polyelectrolyte-complex of chitosan and methacrylated gellan gum. J Mater Chem 22(33):17262–17271CrossRefGoogle Scholar
  61. 61.
    Ji DY, Kuo TF, Wu HD, Yang JC, Lee SY (2012) A novel injectable chitosan/polyglutamate polyelectrolyte complex hydrogel with hydroxyapatite for soft-tissue augmentation. Carbohyd Polym 89:1123–1130CrossRefGoogle Scholar
  62. 62.
    Chang HH, Wang YL, Chiang YC, Chen YL, Chuang YH, Tsai SJ, Heish KH, Lin FH, Lin CP (2014) A novel chitosan-γPGA polyelectrolyte complex hydrogel promotes early new bone formation in the alveolar socket following tooth extraction. PLoS ONE 9(3):e92362CrossRefGoogle Scholar
  63. 63.
    Azab AK, Orkin B, Doviner V, Nissan A, Klein M, Srebnik M, Rubinstein A (2006) Crosslinked chitosan implants as potential degradable devices for brachytherapy: in vitro and in vivo analysis. J Control Release 111:281–289Google Scholar
  64. 64.
    de Abreu FR, Campana-Filho SP (2009) Characteristics and properties of carboxymethylchitosan. Carbohyd Polym 75:214–221CrossRefGoogle Scholar
  65. 65.
    Vaghani SS, Patel MM, Satish CS (2012) Synthesis and characterization of pH-sensitive hydrogel composed of carboxymethyl chitosan for colon targeted delivery of ornidazole. Carbohyd Res 347:76–82CrossRefGoogle Scholar
  66. 66.
    Lin Y, Chen Q, Luo H (2007) Preparation and characterization of N-(2-carboxybenzyl) chitosan as a potential pH-sensitive hydrogel for drug delivery. Carbohyd Res 342:87–95CrossRefGoogle Scholar
  67. 67.
    Gomez-Mascaraque LG, Mendez JA, Fernandez-Gutierrez M, Vazquez B, Roman JS (2014) Oxidized dextrins as alternative crosslinking agents for polysaccharides: application to hydrogels of agarose-chitosan. Acta Biomater 10:798–811CrossRefGoogle Scholar
  68. 68.
    Ranjha NM, Ayub G, Naseem S (2010) Ansari MT (2010) Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil. J Mater Sci-Mater M 21:2805–2816CrossRefGoogle Scholar
  69. 69.
    Wang L, Stegemann JP (2011) Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater 7:2410–2417CrossRefGoogle Scholar
  70. 70.
    Silva SS, Motta A, Rodrigues MT, Pinheiro AFM, Gomes ME, Mano JF, Reis RL, Migliaresi C (2008) Novel genipin-cross-linked chitosan/silk fibroin sponges for cartilage engineering strategies. Biomacromolecules 9:2764–2774CrossRefGoogle Scholar
  71. 71.
    Bhattarai N, Ramay HR, Gunn J, Matsen FA, Zhang M (2005) PEG-grafted chitosan as an injectable thermosensitive hydrogel for sustained protein release. J Control Release 103:609–624CrossRefGoogle Scholar
  72. 72.
    Giri TK, Thakur A, Alexander A, Ajazuddin Badwaik H, Tripathi DK (2012) Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharmaceutica Sinica B 2(5):439–449CrossRefGoogle Scholar
  73. 73.
    Fiejdasz S, Szczubialka K, Lewandowska-Lancucka J, Osyczka AM, Nowakowska M (2013) Biopolymer-based hydrogels as injectable materials for tissue repair scaffolds. Biomed Mater 8:035013CrossRefGoogle Scholar
  74. 74.
    Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 24:3437–3444CrossRefGoogle Scholar
  75. 75.
    Ishihara M, Obara K, Ishizuka T, Fujita M, Sato M, Masuoka K, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A (2003) Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J Biomed Mater Res Pt A 64A(3):551–559CrossRefGoogle Scholar
  76. 76.
    Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T (2001) Experimental evaluation of photocrosslinkable chitosan as a biologic adhesive with surgical applications. Surgery 130(5):844–850CrossRefGoogle Scholar
  77. 77.
    Hayashi T, Matsuyama T, Hanada K, Nakanishi K, Uenoyama M, Fujita M, Ishihara M, Kikuchi M, Ikeda T, Tajiri H (2004) Usefulness of photocrosslinkable chitosan for endoscopic cancer treatment in alimentary tract. J Biomed Mater Res B 71(2):367–372CrossRefGoogle Scholar
  78. 78.
    Zhou Y, Ma G, Shi S, Yang D, Nie J (2011) Photopolymerized water-soluble chitosan-based hydrogel as potential use in tissue engineering. Int J Biol Macromol 48:408–413CrossRefGoogle Scholar
  79. 79.
    Tsuda Y, Hattori H, Tanaka Y, Ishihara M, Kishimoto S, Amako M, Arino H, Nemoto K (2013) Ultraviolet light-irradiated photocrosslinkable chitosan hydrogel to prevent bone formation in both rat skull and fibula bone defects. J Tissue Eng Regen M 7:720–728CrossRefGoogle Scholar
  80. 80.
    Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M (2000) Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 49(2):289–295CrossRefGoogle Scholar
  81. 81.
    Arakawa C, Ng R, Tan S, Kim S, Wu B, Lee M (2014) Photopolymerizable chitosan-collagen hydrogels for bone tissue engineering. J Tissue Eng Regen Med (in press)Google Scholar
  82. 82.
    Teixeira LSM, Feijen J, van Blitterswijk CA, Dijkstra PJ, Karperien M (2012) Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering. Biomaterials 33:1281–1290CrossRefGoogle Scholar
  83. 83.
    Sakai S, Yamada Y, Zenke T, Kawakami K (2009) Novel chitosan derivative soluble at neutral pH and in-situ gellable via peroxidase-catalyzed enzymatic reaction. J Mater Chem 19:230–235CrossRefGoogle Scholar
  84. 84.
    da Silva MA, Bode F, Drake AF, Goldoni S, Stevens MM, Dreiss CA (2014) Enzymatically cross-linked gelatin/chitosan hydrogels: tuning gel properties and cellular response. Macromol Biosci 14:817–830CrossRefGoogle Scholar
  85. 85.
    Kang GD, Lee KH, Ki CS, Nahm JH, Park YH (2004) Silk fibroin/chitosan conjugate crosslinked by tyrosinase. Macromol Res 12(5):534–539CrossRefGoogle Scholar
  86. 86.
    Jin R, Teixeira LSM, Dijkstra PJ, Karperien M, van Blitterswijk CA, Zhong ZY, Feijen J (2009) Injectable chitosan-based hydrogels for cartilage tissue engineering. Biomaterials 30:2544–2551CrossRefGoogle Scholar
  87. 87.
    Brittain SB (2013) Development and characterization of a bioactive injectable chitosan hydrogel for bone repair. University of Connecticut, Master’s ThesisGoogle Scholar
  88. 88.
    Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T (2006) Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 133(2):185–192CrossRefGoogle Scholar
  89. 89.
    Mansouri S, Lavigne P, Corsi K, Benderdour M, Beaumont E, Fernandes JC (2004) Chitosan-DNA nanoparticles as non-viral vectors in gene therapy: strategies to improve transfection efficacy. Eur J Pharm Biopharm 57(1):1–8CrossRefGoogle Scholar
  90. 90.
    Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio L, Calabro D, Avallone B, Balsamo G (1994) Chitosan-mediated stimulation of macrophage function. Biomaterials 15(15):1215–1220CrossRefGoogle Scholar
  91. 91.
    Chakavala SR, Patel NG, Pate NV, Thakkar VT, Patel KV, Gandhi TR (2012) Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns. J Pharm Bioallied Sci 4(Supplement 1):S54–S56CrossRefGoogle Scholar
  92. 92.
    Ivkovic A, Marijanovic I, Hudetz D, Porter RM, Pecina M, Evans CH (2011) Regenerative medicine and tissue engineering in orthopaedic surgery. Front Biosci (Elite Edition) 3:923–944Google Scholar
  93. 93.
    Amini AT, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40(5):363–408CrossRefGoogle Scholar
  94. 94.
    Li J, Yang B, Qian Y, Wang Q, Han R, Hao T, Shu Y, Zhang Y, Yao F, Wang C (2014) Iota-carrageenan/chitosan/gelatin scaffold for the osteogenic differentiation of adipose-derived MSCs in vitro. J Biomed Mater Res B (in press) Google Scholar
  95. 95.
    Beskardes IG, Demirtas TT, Durukan MD, Gumusderelioglu M (2012) Microwave-assisted fabrication of chitosan–hydroxyapatite superporous hydrogel composites as bone scaffolds. J Tissue Eng Regen Med (in press)Google Scholar
  96. 96.
    Dessi M, Borzacchiello A, Mohamed THA, Abdel-Fattah WI, Ambrosio L (2013) Novel biomimetic thermosensitive β-tricalcium phosphate/chitosan-based hydrogels for bone tissue engineering. J Biomed Mater Res A 101(10):2984–2993CrossRefGoogle Scholar
  97. 97.
    Dimitriou R, Jones E, McGonagle D, Peter V, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66CrossRefGoogle Scholar
  98. 98.
    Vo TN, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliver Rev 64(12):1292–1309CrossRefGoogle Scholar
  99. 99.
    Dong L, Huang Z, Cai X, Xiang J, Zhu YA, Wang R, Chen J, Zhang J (2011) Localized delivery of antisense oligonucleotides by cationic hydrogel suppresses TNF-α expression and endotoxin-induced osteolysis. Pharm Res 28:1349–1356CrossRefGoogle Scholar
  100. 100.
    Kim S, Bedigrew K, Guda T, Maloney WJ, Park S, Wenke JC, Yang YP (2014) Novel osteoinductive photo-cross-linkable chitosan-lactide-fibrinogen hydrogels enhance bone regeneration in critical size segmental bone defects. Acta Biomater 10(12):5021–5033CrossRefGoogle Scholar
  101. 101.
    Kim S, Kang Y, Mercado-Pagan AE, Maloney WJ, Yang Y (2014) In vitro evaluation of photo-crosslinkable chitosan-lactide hydrogels for bone tissue engineering. J Biomed Mater Res, Part B 102B:1393–1406CrossRefGoogle Scholar
  102. 102.
    Bhattacharjee M, Coburn J, Centola M, Murab S, Barbero A, Kaplan DL, Martin I, Ghosh S (2014) Tissue engineering strategies to study cartilage development, degeneration and regeneration. Adv Drug Deliver Rev pp. 107−122Google Scholar
  103. 103.
    Ryan JM, Flanigan DC (2013) Emerging technologies: what is the future of cartilage restoration? Hard Tissue 2(2):12Google Scholar
  104. 104.
    Musumeci G, Castrogiovanni P, Leonardi R, Trovato FM, Szychlinska MA, Di Giunta A, Loreto C, Castorina S (2014) New perspectives for articular cartilage repair treatment through tissue engineering: a contemporary review. World J Orthop 5(2):80–88CrossRefGoogle Scholar
  105. 105.
    Park KM, Lee SY, Joung YK, Na JS, Lee MC, Park KD (2009) Thermosensitive chitosan-pluronic hydrogel as an injectable cell delivery carrier for cartilage regeneration. Acta Biomater 5:1956–1965CrossRefGoogle Scholar
  106. 106.
    Tan H, Chu CR, Payne KA, Marra KG (2009) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 30:2499–2506CrossRefGoogle Scholar
  107. 107.
    Ngoenkam J, Faikrua A, Yasothornsrikul S, Viyoch J (2010) Potential of an injectable chitosan/starch/β-glycerol phosphate hydrogel for sustaining normal chondrocyte function. Int J Pharm 391:115–124CrossRefGoogle Scholar
  108. 108.
    Marsich E, Borgogna M, Donati I, Mozetic P, Strand BL, Salvador SG, Vittur F, Paoletti S, Alginate/lactose-modified chitosan hydrogels: a bioactive biomaterial for chondrocyte encapsulation. J Biomed Mater Res A 84(2):364–376Google Scholar
  109. 109.
    Zhao P, Deng C, Xu H, Tang X, He H, Lin C, Su J (2014) Fabrication of photo-crosslinked chitosan-gelatin scaffold in sodium alginate hydrogel for chondrocyte culture. Bio-Med Mater Eng 24:633–641Google Scholar
  110. 110.
    Hong Y, Song H, Gong Y, Mao Z, Gao C, Shen J (2007) Covalently crosslinked chitosan hydrogel: properties of in vitro degradation and chondrocyte encapsulation. Acta Biomater 3:23–31CrossRefGoogle Scholar
  111. 111.
    Lam J, Lu S, Kasper FK, Mikos AG (2014) Strategies for controlled delivery of biologics for cartilage repair, Adv Drug Deliv Rev pp. 123−134Google Scholar
  112. 112.
    Faikrua A, Wittaya-areekul S, Oonkhanond B, Viyoch J (2013) In vivo chondrocyte and transforming growth factor-β1 delivery using the thermosensitive chitosan/starch/β-glycerol phosphate hydrogel. J Biomater Appl 28(2):175–186CrossRefGoogle Scholar
  113. 113.
    Choi B, Kim S, Lin B, Wu BM, Lee M (2014) Cartilaginous extracellular matrix-modified chitosan hydrogels for cartilage tissue engineering. ACS Appl Mater Interfaces 6:20110–20121CrossRefGoogle Scholar
  114. 114.
    Sukarto A, Yu C, Flynn LE, Amsden BG (2012) Co-delivery of adipose-derived stem cells and growth factor-loaded microspheres in RGD-grafted N-methacrylate glycol chitosan gels for focal chondral repair. Biomacromolecules 13:2490–2502CrossRefGoogle Scholar
  115. 115.
    Subramanian A, Krishnan UM, Sethuraman S (2009) Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J Biomed Sci 16:108–118CrossRefGoogle Scholar
  116. 116.
    Pfister LA, Papaloizos M, Merkle HP, Gander B (2007) Hydrogel nerve conduits produced from alginate/chitosan complexes. J Biomed Mater Res A 80(4):932–937CrossRefGoogle Scholar
  117. 117.
    Zuidema JM, Pap MM, Jaroch DB, Morrison FA, Gilbert RJ (2011) Fabrication and characterization of tunable polysaccharide hydrogel blends for neural repair. Acta Biomater 7:1634–1643CrossRefGoogle Scholar
  118. 118.
    Kwon JS, Kim GH, Kim DY, Yoon SM, Seo HW, Kim JH, Min BH, Kim MS (2012) Chitosan-based hydrogels to induce neuronal differentiation of rat muscle-derived stem cells. Int J Biol Macromol 51:974–979CrossRefGoogle Scholar
  119. 119.
    Crompton KE, Goud JD, Bellamkonda RV, Gengenbach TR, Finkelstein DI, Horne MK, Forsythe JS (2007) Polylysine-functionalised thermoresponsive chitosan hydrogel for neural tissue engineering. Biomaterials 28:441–449CrossRefGoogle Scholar
  120. 120.
    Valmikinathan CM, Mukhatyar VJ, Jain A, Karumbaiah L, Dasari M, Bellamkonda RV (2012) Photocrosslinkable chitosan based hydrogels for neural tissue engineering. Soft Matter 8:1964–1976CrossRefGoogle Scholar
  121. 121.
    Rickett TA, Amoozgar Z, Tuchek CA, Park J, Yeo Y, Shi R (2011) Rapidly photo-cross-linkable chitosan hydrogel for peripheral neurosurgeries. Biomacromolecules 12:57–65CrossRefGoogle Scholar
  122. 122.
    McMahon SS, Nikolskaya N, Choileain SN, Hennessy N, O’Brien T, Strappe PM, Gorelov A, Rochev Y (2011) 0 Thermosensitive hydrogel for prolonged delivery of lentiviral vector expressing neurotrophin-3 in vitro. J Gene Med 13:591–601CrossRefGoogle Scholar
  123. 123.
    Leipzig ND, Wylie RG, Kim H, Shoichet MS (2011) Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32:57–64CrossRefGoogle Scholar
  124. 124.
    Li H, Koenig AM, Sloan P, Leipzig ND (2014) In vivo assessment of guided neural stem cell differentiation in growth factor immobilized chitosan-based hydrogel scaffolds. Biomaterials 35:9049–9057CrossRefGoogle Scholar
  125. 125.
    Grolik M, Szczubialka K, Wowra B, Dobrowolski D, Orzechowska-Wylegala B, Wylegala E, Nowakowska M (2012) Hydrogel membranes based on genipin-cross-linked chitosan blends for corneal epithelium tissue engineering. J Mater Sci-Mater Med 23:1991–2000CrossRefGoogle Scholar
  126. 126.
    Ozcelik B, Brown KD, Blencowe A, Daniell M, Stevens GW, Qiao GG (2013) Ultrathin chitosan-poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomater 9:6594–6605CrossRefGoogle Scholar
  127. 127.
    Liang Y, Liu W, Han B, Yang C, Ma Q, Song F, Bi Q (2011) An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium. Colloid Surface B 82:1–7CrossRefGoogle Scholar
  128. 128.
    Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M (2008) PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials 29:3960–3972CrossRefGoogle Scholar
  129. 129.
    Chien Y, Liao YW, Liu DM, Lin HL, Chen SJ, Chen HL, Peng CH, Liang CM, Mou CY, Chiou SH (2012) Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel. Biomaterials 33:8003–8016CrossRefGoogle Scholar
  130. 130.
    Alonso MJ, Sanchez A (2003) The potential of chitosan in ocular drug delivery. J Pharm Pharmacol 55(11):1451–1463CrossRefGoogle Scholar
  131. 131.
    Hosny KM (2009) Preparation and evaluation of thermosensitive liposomal hydrogel for enhanced transcorneal permeation of ofloxacin. AAPS PharmSciTech 10(4):1336–1342CrossRefGoogle Scholar
  132. 132.
    Bitar KN, Raghavan S (2012) Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroent Motil 24(1):7–19CrossRefGoogle Scholar
  133. 133.
    Bitar KN, Zakhem E (2013) Tissue engineering and regenerative medicine as applied to the gastrointestinal tract. Curr Opin Biotechnol 24(5):909–915CrossRefGoogle Scholar
  134. 134.
    Rabbani S, Rabbani A, Mohagheghi MA, Mirzadeh H, Amanpour S, Alibakhshi A, Anvari MS, Ghazizadeh Y (2010) Novel approach for repairing of intestinal fistula using chitosan hydrogel. J Biomater Appl 24(6):545–553CrossRefGoogle Scholar
  135. 135.
    Falabella CA, Melendez MM, Weng L, Chen W (2010) Novel macromolecular crosslinking hydrogel to reduce intra-abdominal adhesions. J Surg Res 159:772–778CrossRefGoogle Scholar
  136. 136.
    Lauder CI, Strickland A, Maddern GJ (2012) Use of a modified chitosan-dextran gel to prevent peritoneal adhesions in a porcine hemicolectomy model. J Surg Res 176:448–454CrossRefGoogle Scholar
  137. 137.
    Xu J, Soliman GM, Barralet J, Cerruti M (2012) Mollusk glue inspired mucoadhesives for biomedical applications. Langmuir 28:14010–14017CrossRefGoogle Scholar
  138. 138.
    Chavda H, Modhia I, Mehta A, Patel R, Patel C (2013) Development of bioadhesive chitosan superporous hydrogel composite particles based intestinal drug delivery system. BioMed Res Int 2013:Article ID 563651Google Scholar
  139. 139.
    Kumar Singh Yadav H, Shivakumar HG (2012) In vitro and in vivo evaluation of pH-sensitive hydrogels of carboxymethyl chitosan for intestinal delivery of theophylline. ISRN Pharm. 2012:Article ID 763127Google Scholar
  140. 140.
    Maeng JH, Bang BW, Lee E, Kim J, Kim HG, Lee DH, Yang SG (2014) Endoscopic application of EGF-chitosan hydrogel for precipitated healing of GI peptic ulcers and mucosectomy-induced ulcers. J Mater Sci-Mater M 25:573–582CrossRefGoogle Scholar
  141. 141.
    Choi JH, Gimble JM, Lee K, Marra KG, Rubin JP, Yoo JJ, Vunjak-Novakovic G, Kaplan DL (2010) Adipose tissue engineering for soft tissue regeneration. Tissue Eng Pt B-Rev 16(4):413–426CrossRefGoogle Scholar
  142. 142.
    Cheung HK, Han TT, Marecak DM, Watkins JF, Amsden BG, Flynn LE (2014) Composite hydrogel scaffolds incorporating decellularized adipose tissue for soft tissue engineering with adipose-derived stem cells. Biomaterials 35:1914–1923CrossRefGoogle Scholar
  143. 143.
    Wu X, Black L, Santacana-Laffitte G, Patrick CW (2007) Preparation and assessment of glutaraldehyde crosslinked collagen-chitosan hydrogels for adipose tissue engineering. J Biomed Mater Res A 81(1):59–65CrossRefGoogle Scholar
  144. 144.
    Zotarelli Filho IJ, Frascino LF, Greco OT, de Araujo JD, Bilaqui A, Kassis EN, Ardito RV, Bonilla-Rodriguez GO (2013) Chitosan-collagen scaffolds can regulate the biological activities of adipose mesenchymal stem cells for tissue engineering. J Regen Med Tissue Eng 2:12CrossRefGoogle Scholar
  145. 145.
    Jaikumar D, Sajesh KM, Soumya S, Nimal TR, Chennazhi KP, Nair SV, Jayakumar R (2014) Injectable alginate-O-carboxymethyl chitosan/nano fibrin compositehydrogels for adipose tissue engineering. Int J Biol Macromol 74:318–326CrossRefGoogle Scholar
  146. 146.
    Tan H, Rubin JP, Marra KG (2010) Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration. Organogenesis 6(3):173–180CrossRefGoogle Scholar
  147. 147.
    Palakkan AA, Hay DC, Anil Kumar PR, Kumary TV, Ross JA (2013) Liver tissue engineering and cell sources: issues and challenges. Liver Int 33:666–676CrossRefGoogle Scholar
  148. 148.
    Sj Seo, Choi YJ, Akaike T, Higuchi A, Cho CS (2006) Alginate/galactosylated chitosan/heparin scaffold as a new synthetic extracellular matrix for hepatocytes. Tissue Eng 12(1):33–44CrossRefGoogle Scholar
  149. 149.
    Horio T, Ishihara M, Fujita M, Kishimoto S, Kanatani Y, Ishizuka T, Nogami Y, Nakamura S, Tanaka Y, Morimoto Y, Maehara T (2010) Effect of photocrosslinkable chitosan hydrogel and its sponges to stop bleeding in a rat liver injury model. Artif Organs 34:342–347CrossRefGoogle Scholar
  150. 150.
    Zhang D, Xie D, Wei X, Zhang D, Chen M, Yu X, Liang P (2014) Microwave ablation of the liver abutting the stomach: insulating effect of a chitosan-based thermosensitive hydrogel. Int J Hyperther 3(2):126–133CrossRefGoogle Scholar
  151. 151.
    Jiang HL, Kim YK, Lee SM, Park MR, Kim EM, Jin YM, Arote R, Jeong HJ, Song SC, Cho MH, Cho CS (2010) Galactosylated chitosan-g-PEI/DNA complexes-loaded poly(organophosphazene) hydrogel as a hepatocyte targeting gene delivery system. Arch Pharm Res 33(4):551–556CrossRefGoogle Scholar
  152. 152.
    Urban JPG, Roberts S, Ralphs JR (2000) The nucleus of the intervertebral disc from development to degeneration. Am Zool 40(1):53–61Google Scholar
  153. 153.
    Richardson SM, Mobasheri A, Freemont AJ, Hoyland JA (2007) Intervertebral disc biology, degeneration and novel tissue engineering and regenerative medicine therapies. Histol Histopathol 22:1033–1041Google Scholar
  154. 154.
    Sasson A, Patchornik S, Eliasy R, Robinson D, Haj-Ali R (2012) Hyperelastic mechanical behavior of chitosan hydrogels for nucleus pulposus replacement-experimental testing and constitutive modeling. J Mech Behav Biomed 8:143–153CrossRefGoogle Scholar
  155. 155.
    Mwale F, Iordanova M, Demers CN, Steffen T, Roughley P, Antoniou J (2005) Biological evaluation of chitosan salts cross-linked to genipin as a cell scaffold for disk tissue engineering. Tissue Eng 11(1–2):130–140CrossRefGoogle Scholar
  156. 156.
    Smith LJ, Gorth DJ, Showalter BL, Chiaro JA, Beattie EE, Elliott DM, Mauck RL, Chen W, Malhotra NR (2014) In vitro characterization of a stem-cell-seeded triple-interpenetrating-network hydrogel for functional regeneration of the nucleus pulposus. Tissue Eng Pt A 20(13–14):1841–1849Google Scholar
  157. 157.
    Richardson SM, Hughes N, Hunt JA, Freemont AJ, Hoyland JA (2008) Human mesenchymal stem cell differentiation to NP-like cells in chitosan-glycerophosphate hydrogels. Biomaterials 29(1):85–93CrossRefGoogle Scholar
  158. 158.
    Cheng YH, Yang SH, Lin FH (2011) Thermosensitive chitosan-gelatin-glycerol phosphate hydrogel as a controlled release system of ferulic acid for nucleus pulposus regeneration. Biomaterials 32:6953–6961CrossRefGoogle Scholar
  159. 159.
    Wang H, Shi J, Wang Y, Yin Y, Wang L, Liu J, Liu Z, Duan C, Zhu P, Wang C (2014) Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction. Biomaterials 35:3986–3998CrossRefGoogle Scholar
  160. 160.
    Reis LA, Chiu LL, Liang Y, Hyunh K, Momen A, Radisic M (2012) A peptide-modified chitosan–collagen hydrogel for cardiac cell culture and delivery. Acta Biomater 8:1022–1036CrossRefGoogle Scholar
  161. 161.
    Chiu LL, Janic K, Radisic M (2012) Engineering of oriented myocardium on threedimensional micropatterned collagen-chitosan hydrogel. Int J Artif Organs 35(4):237–250CrossRefGoogle Scholar
  162. 162.
    Pok S, Myers JD, Madihally SV, Jacot JG (2013) A multi-layered scaffold of a chitosan and gelatin hydrogel supported by a PCL core for cardiac tissue engineering. Acta Biomater 9(3):5630–5642CrossRefGoogle Scholar
  163. 163.
    Beohar N, Rapp J, Pandya S, Losordo DW (2010) Rebuilding the damaged heart: the potential of cytokines and growth factors in the treatment of ischemic heart disease. J Am Coll Cardiol 56(16):1287–1297CrossRefGoogle Scholar
  164. 164.
    Fujita M, Ishihara M, Morimoto Y, Simizu M, Saito Y, Yura H, Matsui T, Takase B, Hattori H, Kanatani Y, Kikuchi M, Maehara T (2005) Efficacy of photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 in a rabbit model of chronic myocardial infarction. J Surg Res 126:27–33CrossRefGoogle Scholar
  165. 165.
    Chiu LL, Reis LA, Radisic M (2012) Controlled delivery of thymosin β4 for tissue engineering and cardiac regenerative medicine. Ann NY Acad Sci 1269:16–25CrossRefGoogle Scholar
  166. 166.
    Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng Pt B-Rev 14(1):105–118CrossRefGoogle Scholar
  167. 167.
    Wijekoon A, Fountas-Davis N, Leipzig ND (2013) Fluorinated methacrylamide chitosan hydrogel systems as adaptable oxygen carriers for wound healing. Acta Biomater 9:5653–5664CrossRefGoogle Scholar
  168. 168.
    Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28:3478–3488CrossRefGoogle Scholar
  169. 169.
    Kiyozumi T, Kanatani Y, Ishihara M, Saitoh D, Shimizu J, Yura H, Suzuki S, Okada Y, Kikuchi M (2007) The effect of chitosan hydrogel containing DMEM/F12 medium on full-thickness skin defects after deep dermal burn. Burns 33(5):642–648CrossRefGoogle Scholar
  170. 170.
    Cui F, Li G, Huang J, Zhang J, Lu M, Lu W, Huan J, Huang Q (2011) Development of chitosan-collagen hydrogel incorporated with lysostaphin (CCHL) burn dressing with anti-methicillin-resistant staphylococcus aureus and promotion wound healing properties. Drug Deliv 18(3):173–180CrossRefGoogle Scholar
  171. 171.
    Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M (2015) Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine (in press)Google Scholar
  172. 172.
    Fujita M, Ishihara M, Shimizu M, Obara K, Nakamura S, Kanatani Y, Morimoto Y, Takase B, Matsui T, Kikuchi M, Maehara T (2007) Therapeutic angiogenesis induced by controlled release of fibroblast growth factor-2 from injectable chitosan/ non-anticoagulant heparin hydrogel in a rat hindlimb ischemia model. Wound Repair Regen 15(1):58–65CrossRefGoogle Scholar
  173. 173.
    Choi JS, Yoo HS (2013) Chitosan/pluronic hydrogel containing bFGF/heparin for encapsulation of human dermal fibroblasts. J Biomat Sci-Polym E 24(2):210–223Google Scholar
  174. 174.
    Pulat M, Kahraman AS, Tan N, Gumusderelioglu M (2013) Sequential antibiotic and growth factor releasing chitosan-PAAm semi-IPN hydrogel as a novel wound dressing. J Biomat Sci-Polym E 24(7):807–819CrossRefGoogle Scholar
  175. 175.
    Yilgor C, Huri PY, Huri G (2012) Tissue engineering strategies in ligament regeneration. Stem Cells Int 2012:Article ID 374676Google Scholar
  176. 176.
    Hayami JW, Surrao DC, Waldman SD, Amsden BG (2010) Design and characterization of a biodegradable composite scaffold for ligament tissue engineering. J Biomed Mater Res A 92(4):1407–1420Google Scholar
  177. 177.
    Deepthi S, Jeevitha K, Sundaram MN, Chennazhi KP, Jayakumar R (2015) Chitosan-hyaluronic acid hydrogel coated poly(caprolactone) multiscale bilayer scaffold for ligament regeneration. Chem Eng J 260:478–485CrossRefGoogle Scholar

Copyright information

© Springer India 2016

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of ConnecticutStorrsUSA
  2. 2.Department of Biomedical EngineeringUniversity of ConnecticutStorrsUSA
  3. 3.Department of Orthopaedic Surgery, Institute for Regenerative Engineering, Raymond and Beverly Sackler Center for Biomedical, Biological, Physical and Engineering SciencesUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations