Skip to main content

Physical Mechanism of BTI Degradation—Direct Estimation of Trap Generation and Trapping

  • Chapter
  • First Online:
Fundamentals of Bias Temperature Instability in MOS Transistors

Part of the book series: Springer Series in Advanced Microelectronics ((MICROELECTR.,volume 52))

Abstract

In this chapter, direct characterization techniques have been used to access the trap generation and trapping subcomponents of BTI degradation in HKMG MOSFETs having different gate stack processes. Generation of new traps is estimated using DCIV for NBTI stress and both DCIV and SILC for PBTI stress respectively in p- and n-channel MOSFETs. Flicker noise is used to estimate the density of process related pre-existing gate insulator traps responsible for hole and electron trapping respectively during NBTI and PBTI stress. The spatial and energetic locations of generated traps for NBTI and PBTI stress are identified. The time, bias, and temperature dependencies of trap generation obtained using the DCIV technique are compared between NBTI and PBTI stress, while these parameters obtained using DCIV and SILC techniques are compared for PBTI stress. The relative dominance of trap generation and trapping on NBTI and PBTI threshold voltage degradation is estimated for different gate insulator processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Kimizuka, K. Yamaguchi, K. Imai, T. Iizuka, C.T. Liu, R.C. Keller, T. Horiuchi, NBTI enhancement by nitrogen incorporation into ultrathin gate oxide for 0.10-/spl mu/m gate CMOS generation, in Symposium on VLSI Technology: Digest of Technical Papers (2000), p. 92

    Google Scholar 

  2. Y. Mitani, M. Nagamine, H. Satake, A. Toriumi, NBTI mechanism in ultra-thin gate dielectric-nitrogen-originated mechanism in SiON, in IEEE International Electron Devices Meeting Technical Digest (2002), p. 509

    Google Scholar 

  3. S. Ramey, A. Ashutosh, C. Auth, J. Clifford, M. Hattendorf, J. Hicks, R. James, A. Rahman, V. Sharma, A. St.Amour, C. Wiegand, Intrinsic transistor reliability improvements from 22 nm tri-gate technology, in IEEE International Reliability Physics Symposium Proceedings (2013), p. 4C.5.1

    Google Scholar 

  4. W. McMahon, C. Tian, S. Uppal, H. Kothari, M. Jin, G. LaRosa, T. Nigam, A. Kerber, B.P. Linder, E. Cartier, W.L. Lai, Y. Liu, R. Ramachandran, U. Kwon, B. Parameshwaran, S. Krishnan, V. Narayanan, Intrinsic dielectric stack reliability of a high performance bulk planar 20 nm replacement gate high-k metal gate technology and comparison to 28 nm gate first high-k metal gate process, in IEEE International Reliability Physics Symposium Proceedings (2013), p. 4C.4.1

    Google Scholar 

  5. S. Mahapatra, N. Goel, S. Desai, S. Gupta, B. Jose, S. Mukhopadhyay, K. Joshi, A. Jain, A.E. Islam, M.A. Alam, A comparative study of different physics-based NBTI models. IEEE Trans. Electr. Dev. 60 (2013), 901

    Article  Google Scholar 

  6. G. Groeseneken, H. Maes, N. Beltran, R. De Keersmaecker, A reliable approach to charge-pumping measurements in MOS transistors. IEEE Trans. Electr. Dev. 31 (1984), 42

    Article  Google Scholar 

  7. A. Neugroschel, G. Bersuker, R. Choi, Applications of DCIV method to NBTI characterization. Microelectron. Reliab. 47, 1366 (2007)

    Article  Google Scholar 

  8. J.H. Stathis, G. LaRosa, A. Chou, Broad energy distribution of NBTI-induced interface states in p-MOSFETs with ultra-thin nitrided oxide, in IEEE International Reliability Physics Symposium Proceedings (2004), p. 25

    Google Scholar 

  9. Y. Mitani, Influence of nitrogen in ultra-thin SiON on negative bias temperature instability under AC stress, in IEEE International Electron Devices Meeting Technical Digest (2004), p. 117

    Google Scholar 

  10. D. Varghese, D. Saha, S. Mahapatra, K. Ahmed, F. Nouri, M.A. Alam, On the dispersive versus Arrhenius temperature activation of NBTI time evolution in plasma nitrided gate oxides: measurements, theory, and implications, in IEEE International Electron Devices Meeting Technical Digest (2005), p. 684

    Google Scholar 

  11. A.T. Krishnan, C. Chancellor, S. Chakravarthi, P.E. Nicollian, V. Reddy, A. Varghese, R.B. Khamankar, S. Krishnan, Material dependence of hydrogen diffusion: implications for NBTI degradation, in IEEE International Electron Devices Meeting Technical Digest (2005), p. 688

    Google Scholar 

  12. J.P. Campbell, P.M. Lenahan, A.T. Krishnan, S. Krishnan, NBTI: an atomic-scale defect perspective, in IEEE International Reliability Physics Symposium Proceedings (2006), p. 442

    Google Scholar 

  13. V. Huard, Two independent components modeling for negative bias temperature instability, in IEEE International Reliability Physics Symposium Proceedings (2010), p. 33

    Google Scholar 

  14. S. Mahapatra, K. Ahmed, D. Varghese, A.E. Islam, G. Gupta, L. Madhav, D. Saha, M.A. Alam, On the physical mechanism of NBTI in silicon oxynitride p-MOSFETs: can differences in insulator processing conditions resolve the interface trap generation versus hole trapping controversy?, in IEEE International Reliability Physics Symposium Proceedings (2007), p. 1

    Google Scholar 

  15. S. Mahapatra, A. Islam, S. Deora, V. Maheta, K. Joshi, A. Jain, M. Alam, A critical re-evaluation of the usefulness of R-D framework in predicting NBTI stress and recovery, in IEEE International Reliability Physics Symposium Proceedings (2011), p. 6A.3.1

    Google Scholar 

  16. K. Joshi, S. Mukhopadhyay, N. Goel, S. Mahapatra, A consistent physical framework for N and P BTI in HKMG MOSFETs, in IEEE International Reliability Physics Symposium Proceedings (2012), p. 5A.3.1

    Google Scholar 

  17. S. Mukhopadhyay, K. Joshi, V. Chaudhary, N. Goel, S. De, R.K. Pandey, K.V. Murali, S. Mahapatra, Trap generation in IL and HK layers during BTI/TDDB stress in scaled HKMG N and P MOSFETs, in IEEE International Reliability Physics Symposium Proceedings (2014), p. GD.3.1

    Google Scholar 

  18. S. Mahapatra, V. Huard, A. Kerber, V. Reddy, S. Kalpat, A. Haggag, Universality of NBTI- from devices to circuits and products, in IEEE International Reliability Physics Symposium Proceedings (2014), p. 3B.1.1

    Google Scholar 

  19. D.S. Ang, S. Wang, Recovery of the NBTI-stressed ultrathin gate p-MOSFET: the role of deep-level hole traps. IEEE Electr. Dev. Lett. 27, 914 (2006)

    Article  Google Scholar 

  20. C. Shen, M.F. Li, C.E. Foo, T. Yang, D.M. Huang, A. Yap, G.S. Samudra, Y.C. Yeo, Characterization and physical origin of fast Vth transient in NBTI of pMOSFETs with SiON dielectric, in IEEE International Electron Devices Meeting Technical Digest (2006), p. 12.5.1

    Google Scholar 

  21. T. Grasser, B. Kaczer, W. Goes, An energy-level perspective of bias temperature instability, in IEEE International Reliability Physics Symposium Proceedings (2008), p. 28

    Google Scholar 

  22. D. Ielmini, M. Manigrasso, F. Gattel, G. Valentini, A unified model for permanent and recoverable NBTI based on hole trapping and structure relaxation, in IEEE International Reliability Physics Symposium Proceedings (2009), p. 26

    Google Scholar 

  23. H. Reisinger, T. Grasser, K. Ermisch, H. Nielen, W. Gustin, C. Schlunder, Understanding and modeling AC BTI, in IEEE International Reliability Physics Symposium Proceedings (2011), p. 6A.1.1

    Google Scholar 

  24. E.N. Kumar, V.D. Maheta, S. Purawat, A.E. Islam, C. Olsen, K. Ahmed, M. Alam, S. Mahapatra, Material dependence of NBTI physical mechanism in silicon oxynitride (SiON) p-MOSFETs: a comprehensive study by ultrafast on-the-fly (UF-OTF) IDLIN technique, in IEEE International Electron Devices Meeting Technical Digest (2007), p. 809

    Google Scholar 

  25. V.D. Maheta, C. Olsen, K. Ahmed, S. Mahapatra, The impact of nitrogen engineering in silicon oxynitride gate dielectric on negative-bias temperature instability of p-MOSFETs: a study by ultrafast on-the-fly technique. IEEE Trans. Electr. Dev. 55, 1630 (2008)

    Article  Google Scholar 

  26. T. Grasser, B. Kaczer, W. Goes, T. Aichinger, P. Hehenberger, M. Nelhiebel, A two stage model for negative bias temperature instability, in IEEE International Reliability Physics Symposium Proceedings (2009), p. 33

    Google Scholar 

  27. H. Reisinger, O. Blank, W. Heinrigs, A. Muhlhoff, W. Gustin, C. Schlunder, Analysis of NBTI degradation-and recovery-behavior based on ultra fast VT-measurements, in IEEE International Reliability Physics Symposium Proceedings (2006), p. 448

    Google Scholar 

  28. K. Sakuma, D. Matsushita, K. Muraoka, Y. Mitani, Investigation of nitrogen-originated NBTI mechanism in SiON with high-nitrogen concentration, in IEEE International Reliability Physics Symposium Proceedings (2006), p. 454

    Google Scholar 

  29. Y. Mitani, H. Satake, A. Toriumi, Influence of nitrogen on negative bias temperature instability in ultrathin SiON. IEEE Trans. Dev. Mater. Reliab. 8, 6 (2008)

    Article  Google Scholar 

  30. S. Mahapatra, V.D. Maheta, A.E. Islam, M.A. Alam, Isolation of NBTI stress generated interface trap and hole-trapping components in PNO p-MOSFETs. IEEE Trans. Electr. Dev. 56, 236 (2009)

    Article  Google Scholar 

  31. S. Desai, S. Mukhopadhyay, N. Goel, N. Nanaware, B. Jose, K. Joshi, S. Mahapatra, A comprehensive AC/DC NBTI model: stress, recovery, frequency, duty cycle and process dependence, in IEEE International Reliability Physics Symposium Proceedings (2013), p. XT.2.1

    Google Scholar 

  32. K. Joshi, S. Hung, S. Mukhopadhyay, V. Chaudhary, N. Nanaware, B. Rajamohanan, T. Sato, M. Bevan, A. Wei, A. Noori, B. McDougall, C. Ni, C. Lazik, G. Saheli, P. Liu, D. Chu, L. Date, S. Datta, A. Brand, J. Swenberg, S. Mahapatra, HKMG process impact on N, P BTI: role of thermal IL scaling, IL/HK integration and post HK nitridation, in IEEE International Reliability Physics Symposium Proceedings (2013), p. 4C.2.1

    Google Scholar 

  33. N. Goel, K. Joshi, S. Mukhopadhyay, N. Nanaware, S. Mahapatra, A comprehensive modeling framework for gate stack process dependence of DC and AC NBTI in SiON and HKMG p-MOSFETs. Microelectron. Reliab. 54, 491 (2014)

    Article  Google Scholar 

  34. N. Goel, S. Mukhopadhyay, N. Nanaware, S. De, R.K. Pandey, K.V.R.M. Murali, S. Mahapatra, A comprehensive DC/AC model for ultra-fast NBTI in deep EOT scaled HKMG p-MOSFETs, in IEEE International Reliability Physics Symposium Proceedings (2014), p. 6A.4.1

    Google Scholar 

  35. N. Goel, T. Naphade, S. Mahapatra, Combined trap generation and transient trap occupancy model for time evolution of NBTI during DC multi-cycle and AC stress, in IEEE International Reliability Physics Symposium Proceedings (2015)

    Google Scholar 

  36. A. Kerber, E. Cartier, Reliability challenges for CMOS Technology qualifications with hafnium oxide/titanium nitride gate stacks. IEEE Trans. Device Mater. Reliab. 9, 147 (2009)

    Article  Google Scholar 

  37. J. Mitard, X. Garros, L.P. Nguyen, C. Leroux, G. Ghibaudo, F. Martin, G. Reimbold, Large-scale time characterization and analysis of PBTI In HfO2/metal gate stacks, in IEEE International Reliability Physics Symposium Proceedings (2006), p. 174

    Google Scholar 

  38. D. Heh, C.D. Young, G. Bersuker, Experimental evidence of the fast and slow charge trapping/detrapping processes in high-k dielectrics subjected to PBTI stress. IEEE Electr. Dev. Lett. 29, 180 (2008)

    Article  Google Scholar 

  39. S. Pae, M. Agostinelli, M. Brazier, R. Chau, G. Dewey, T. Ghani, M. Hattendorf, J. Hicks, J. Kavalieros, K. Kuhn, M. Kuhn, J. Maiz, M. Metz, K. Mistry, C. Prasad, S. Ramey, A. Roskowski, J. Sandford, C. Thomas, J. Thomas, C. Wiegand, J. Wiedemer, BTI reliability of 45 nm high-K+ metal-gate process technology, in IEEE International Reliability Physics Symposium Proceedings (2008), p. 352

    Google Scholar 

  40. J. Yang, M. Masuduzzaman, K. Joshi, S. Mukhopadhyay, J. Kang, S. Mahapatra, M.A. Alam, Intrinsic correlation between PBTI and TDDB degradations in nMOS HK/MG dielectrics, in IEEE International Reliability Physics Symposium Proceedings (2012), p. 5D.4.1

    Google Scholar 

  41. E. Cartier, A. Kerber, Stress-induced leakage current and defect generation in nFETs with HfO2/TiN gate stacks during positive-bias temperature stress, in IEEE International Reliability Physics Symposium Proceedings (2009), p. 486

    Google Scholar 

  42. S. Zafar, A. Kerber, R. Muralidhar, Physics based PBTI model for accelerated estimation of 10 year lifetime. In Symposium on VLSI Technology: Digest of Technical Papers (2014). doi: 10.1109/VLSIT.2014.6894388

  43. W. Liu, G. La Rosa, G. Tian, S. Boffoli, F. Guarin, W.L. Lai, V. Narayanan, H. Kothari, M. Jin, S. Uppal, W. McMahon, Process dependence of AC/DC PBTI in HKMG n-MOSFETs, in IEEE International Reliability Physics Symposium Proceedings (2014), p. XT.6.1

    Google Scholar 

  44. D.P. Ioannou, E. Cartier, Y. Wang, S. Mittl, PBTI response to interfacial layer thickness variation in Hf-based HKMG nFETs, in IEEE International Reliability Physics Symposium Proceedings (2010), p. 1044

    Google Scholar 

  45. E. Cartier, A. Kerber, T. Ando, M.M. Frank, K. Choi, S. Krishnan, B. Linder, K. Zhao, F. Monsieur, J. Stathis, V. Narayanan, Fundamental aspects of HfO2-based high-k metal gate stack reliability and implications on tinv-scaling, in IEEE International Electron Devices Meeting Technical Digest (2011), p. 18.4.1

    Google Scholar 

  46. M.J. Bevan, R. Curtis, T. Guarini, W. Liu, S.C.H. Hung, H. Graoui, Ultrathin SiO2 interface layer growth, in International Conference on Advanced Thermal Processing of Semiconductors (RTP), (2010), p. 154

    Google Scholar 

  47. E.P. Gusev, C. Cabral Jr, M. Copel, C. D’Emic, M. Gribelyuk, Ultrathin HfO2 films grown on silicon by atomic layer deposition for advanced gate dielectrics applications. Microelectron. Eng. 69, 145 (2003)

    Article  Google Scholar 

  48. P.A. Kraus, K.Z. Ahmed, C.S. Olsen, F. Nouri, Physical models for predicting plasma nitrided Si-O-N gate dielectric properties from physical metrology. IEEE Electr. Dev. Lett. 24, 559 (2003)

    Article  Google Scholar 

  49. C. Olsen, Two-step post nitridation annealing for lower EOT plasma nitrided gate dielectrics. WO2004081984 A2, (2004)

    Google Scholar 

  50. G. Kapila, N. Goyal, V.D. Maheta, C. Olsen, K. Ahmed, S. Mahapatra, A comprehensive study of flicker noise in plasma nitride SiON p-MOSFETs: process dependence of pre-existing and NBTI stress generated trap distribution profiles. In IEEE International Electron Devices Meeting Technical Digest (2008). doi:10.1109/IEDM.2008.4796625

  51. S. Mahapatra, S. De, K. Joshi, S. Mukhopadhyay, R.K. Pandey, K.V.R.M. Murali, Understanding process impact of hole traps and NBTI in HKMG p-MOSFETs using measurements and atomistic simulations. IEEE Electr. Dev. Lett. 34, 963 (2013)

    Article  Google Scholar 

  52. S. Takagi, N. Yasuda, A. Toriumi, Experimental evidence of inelastic tunneling in stress-induced leakage current. IEEE Trans. Electr. Dev. 46, 335 (1999)

    Article  Google Scholar 

  53. S. Takagi, N. Yasuda, A. Toriumi, A new I–V model for stress-induced leakage current including inelastic tunneling. IEEE Trans. Electr. Dev. 46, 348 (1999)

    Article  Google Scholar 

  54. M.A. Alam, SILC as a measure of trap generation and predictor of TBD in ultrathin oxides. IEEE Trans. Electr. Dev. 49, 226 (2002)

    Article  Google Scholar 

  55. S. Mahapatra, P. Bharath Kumar, M.A. Alam, Investigation and modeling of interface and bulk trap generation during negative bias temperature instability of p-MOSFETs”. IEEE Trans. Electr. Dev. 51, 1371 (2004)

    Article  Google Scholar 

  56. M. Masuduzzaman, A.E. Islam, M.A. Alam, A multi-probe correlated bulk defect characterization scheme for ultra-thin high-Đş dielectric, in IEEE International Reliability Physics Symposium Proceedings (2010), p. 1069

    Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge Nilesh Goel for ultrafast NBTI measurements, Bijesh Rajamohanan for flicker noise measurements, Applied Materials for providing devices used for experiments and Ankush Chaudhary for editorial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Mahapatra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer India

About this chapter

Cite this chapter

Mukhopadhyay, S., Mahapatra, S. (2016). Physical Mechanism of BTI Degradation—Direct Estimation of Trap Generation and Trapping. In: Mahapatra, S. (eds) Fundamentals of Bias Temperature Instability in MOS Transistors. Springer Series in Advanced Microelectronics, vol 52. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2508-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2508-9_3

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2507-2

  • Online ISBN: 978-81-322-2508-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics