Skip to main content

Hydrogels Nanocomposites Based on Crystals, Whiskers and Fibrils Derived from Biopolymers

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 74))

Abstract

The advent of nanotechnology has provided new insights of applications of well-known materials due to the exceptional properties owing to the nanoscale. As an example, nanocomposites based on polymer matrix and nanoscale fillers have appeared as good candidates in a broad range of applications. Such scenery can be credited to the use of new and multifunctional fillers that provide distinct and substantial features to the nanocomposites. Recent trends on the nanocomposites field show that crystalline biopolymers , such as cellulose, chitin, and starch, are an excellent source of fillers, especially nanocrystals like fibrils , whiskers , and platelets. The incorporation of such fillers in different matrices (e.g., crosslinked polymeric network) has demonstrated outstanding improvement of several properties, such as mechanical, water uptake capacity, thermal, optical, etc. Furthermore, crystals , fibrils and whiskers can induce desirable properties in the final materials (e.g., solute retention or release, crystallinity, biodegradability, biocompatibility, antibacterial activity, etc.). This chapter condenses the relevant works regarding the preparation of polysaccharide-based crystals, whiskers, and fibrils, their application in the development of hydrogel nanocomposites as well as the future trends of this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmad EEM, Luyt AS (2012) Morphology, thermal, and dynamic mechanical properties of poly(lactic acid)/sisal whisker nanocomposites. Polym Compo 33(6):1025–1032

    CAS  Google Scholar 

  2. Alarcon CDLH, Pennadam S, Alexander C (2005) Stimuli responsive polymers for biomedical applications. Chem Soc Rev 34(3):276–285

    CAS  Google Scholar 

  3. Angellier H, Choisnard L, Molina-Boisseau S, Ozil P, Dufresne A (2004) Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5(4):1545–1551

    CAS  Google Scholar 

  4. Anglès MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33(22):8344–8353

    Google Scholar 

  5. Angulakhsmi N, Thomas S, Nair JR, Bongiovanni R, Gerbaldi C, Stephan AM (2013) Cycling profile of innovative nanochitin-incorporated poly (ethylene oxide) based electrolytes for lithium batteries. J Power Source 228:294–299

    CAS  Google Scholar 

  6. Araki J (2013) Electrostatic or steric?—preparations and characterizations of well-dispersed systems containing rod-like nanowhiskers of crystalline polysaccharides. Soft Matter 9(16):4125–4141

    CAS  Google Scholar 

  7. Araki J, Yamanaka Y, Ohkawa K (2012) Chitin-chitosan nanocomposite gels: reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym J 44(7):713–717

    CAS  Google Scholar 

  8. Araujo MA, Cunha AM, Mota M (2004) Enzymatic degradation of starch-based thermoplastic compounds used in protheses: Identification of the degradation products in solution. Biomaterials 25(13):2687–2693

    Google Scholar 

  9. Arora A, Padua GW (2010) Review: Nanocomposites in food packaging. J Food Sci 75(1):R43–R49

    CAS  Google Scholar 

  10. Azizi S, Ahmad MB, Hussein MZ, Ibrahim NA, Namvar F (2014) Preparartion and properties of poly(vinyl alcohol)/chitosan blend bionanocomposites reinforced with cellulose nanocrustais/ZnO-Ag. Int J Nanomed 9:1909–1917

    Google Scholar 

  11. Barbosa IVM, Merquior DA, Peixoto FC (2006) Estimation of kinetic and mass-transfer parameters for cellulose nitration. AIChE J 52(10):3549–3554

    CAS  Google Scholar 

  12. Bensadoun F, Kchit N, Billotte C, Bickerton S, Trochu F, Ruiz E (2011) A study of nanoclay reinforcement of biocomposites made by liquid composite molding. Int J Polym Sci

    Google Scholar 

  13. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R (2004) Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm 57(1):19–34

    CAS  Google Scholar 

  14. Bhardwaj R, Mohanty AK (2007) Advances in the properties of polylactides based materials: a review. J Biobased Mater Bio 1(2):191–209

    Google Scholar 

  15. Branch TA, Abubaker EMN, Mkango S, Butterworth DS (2007) Separating southern blue whale subspecies based on length frequencies of sexually mature females. Mar Mammal Sci 23(4):803–833

    Google Scholar 

  16. Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: Structure and biosynthesis. Int J Biol Macromol 23(2):85–112

    Google Scholar 

  17. Burdock GA (2007) Safety assessment of hydroxypropyl methylcellulose as a food ingredient. Food Chem Toxicol 45(12):2341–2351

    CAS  Google Scholar 

  18. Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2(4):MR17–MR71

    Google Scholar 

  19. Campbell IM (2003) Introduction to synthetic polymers. London, Oxford

    Google Scholar 

  20. Cartier N, Mazeau K, Domard A, Chanzy H (1992) Single-crystals of chitosan. Adv Chitin Chitosan, 155–164

    Google Scholar 

  21. Charreau H, Foresti ML, Vázquez A (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrystals, microfibrillated and bacterial cellulose. Recent Pat Nanotec 7(1):56–80

    CAS  Google Scholar 

  22. Chatrabhuti S, Chirachanchai S (2013) Single step coupling for multi-responsive water-based chitin/chitosan magnetic nanoparticles. Carbohydr Polym 97(2):441–450

    CAS  Google Scholar 

  23. Chawla P, Ranjan A, Pandey P, Chawla V (2014) Hydrogels: A journey from diapers to gene delivery. Mini-Rev Med Chem 14(2):160–173

    Google Scholar 

  24. Chen Y, Dong B, Qin W, Xiao D (2010) Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol. Bioresour Technol 101(18):6994–6999

    CAS  Google Scholar 

  25. De Campos A, Correa A, Cannella D, De M Teixeira E, Marconcini J, Dufresne A, Mattoso LC, Cassland P, Sanadi A (2013) Obtaining nanofibers from curauá and sugarcane bagasse fibers using enzymatic hydrolysis followed by sonication. Cellulose, 20(3): 1491-1500

    Google Scholar 

  26. Dean J, Dixon B (1992) Advances in Chitin and Chitosan. Elsevier, London

    Google Scholar 

  27. Diez-Pascual AM, Naffakh M, Marco C, Ellis G, Gomez-Fatou MA (2012) High-performance nanocomposites based on polyetherketones. Prog Mater Sci 57(7):1106–1190

    CAS  Google Scholar 

  28. Ding P, Huang KL, Li GY, Zeng WW (2007) Mechanisms and kinetics of chelating reaction between novel chitosan derivatives and Zn(II). J Hazard Mater 146(1–2):58–64

    CAS  Google Scholar 

  29. Dufresne A (2008) Polysaccharide nano crystal reinforced nanocomposites. Canad J Chem 86(6):484–494

    CAS  Google Scholar 

  30. Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15(6):4111–4128

    CAS  Google Scholar 

  31. Dufresne A (2012) Processing of polymer nanocomposites reinforced with cellulose nanocrystals: a challenge. Int Polym Proc 27(5):557–564

    CAS  Google Scholar 

  32. Dugan JM, Gough JE, Eichhorn SJ (2013) Bacterial cellulose scaffolds and cellulose nanowhiskers for tissue engineering. Nanomedicine 8(2):287–298

    CAS  Google Scholar 

  33. Durán N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28

    Google Scholar 

  34. Eichhorn SJ (2011) Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter 7(2):303–315

    CAS  Google Scholar 

  35. Fajardo AR, Lopes LC, Rubira AF, Muniz EC (2012) Development and application of chitosan/poly(vinyl alcohol) films for removal and recovery of Pb(II). Chem Eng J 183:253–260

    CAS  Google Scholar 

  36. Fajardo AR, Piai JF, Rubira AF, Muniz EC (2010) Time- and pH-dependent self-rearrangement of a swollen polymer network based on polyelectrolytes complexes of chitosan/chondroitin sulfate. Carbohydr Polym 80(3):934–943

    CAS  Google Scholar 

  37. Fan J-S, Li Y-H (2012) Maximizing the yield of nanocrystalline cellulose from cotton pulp fiber. Carbohydr Polym 88(4):1184–1188

    CAS  Google Scholar 

  38. Fan Y, Fukuzumi H, Saito T, Isogai A (2012) Comparative characterization of aqueous dispersions and cast films of different chitin nanowhiskers/nanofibers. Int J Biol Macromol 50(1):69–76

    CAS  Google Scholar 

  39. Fan Y, Saito T, Isogai A (2007) Chitin nanocrystals prepared by TEMPO-mediated oxidation of α-chitin. Biomacromolecules 9(1):192–198

    Google Scholar 

  40. Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr Polym 79(4):1046–1051

    CAS  Google Scholar 

  41. Faramarzi MA, Sadighi A (2013) Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Adv Colloid Interface Sci 189:1–20

    Google Scholar 

  42. Felse PA, Panda T (1999) Studies on applications of chitin and its derivatives. Bioprocess Eng 20(6):505–512

    CAS  Google Scholar 

  43. Gao YJS, Zhao S, Liao SQ, Fang L, Wang ZF, Li LF (2014) Reinforcement of natural rubber latex film by starch nanocrystal. Appl Mech Mater 543–547:3886–3891

    Google Scholar 

  44. Garcia De Rodriguez NL, Thielemans W, Dufresne A (2006) Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose 13(3):261–270

    CAS  Google Scholar 

  45. George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Int J Biol Macromol 48(1):50–57

    CAS  Google Scholar 

  46. Ghorbel-Bellaaj O, Jellouli K, Younes I, Manni L, Ouled Salem M, Nasri M (2011) A solvent-stable metalloprotease produced by pseudomonas aeruginosa grown on shrimp shell waste and its application in chitin extraction. Appl Biochem Biotechnol 164(4):410–425

    CAS  Google Scholar 

  47. Gonzalez-Renteria SM, Soto-Cruz NO, Rutiaga-Quinones OM, Medrano-Roldan H, Rutiaga-Quinones JG, Lopez-Miranda J (2011) Optimization of the enzymatic hydrolysis process of four straw bean varieties. Rev Mex Ing Quim 10(1):17–28

    CAS  Google Scholar 

  48. Gopalan Nair K, Dufresne A (2003) Crab shell chitin whisker reinforced natural rubber nanocomposites. 1 process swelling behavior. Biomacromol 4(3):657–665

    Google Scholar 

  49. Guan Y, Zhang B, Bian J, Peng F, Sun R-C (2014) Nanoreinforced hemicellulose-based hydrogels prepared by freeze–thaw treatment. Cellulose 21(3):1709–1721

    CAS  Google Scholar 

  50. Haaj SB, Thielemans W, Magnin A, Boufi S (2014) Starch nanocrystal stabilized pickering emulsion polymerization for nanocomposites with improved performance. ACS Appl Mater Interface 6(11):8263–8273

    CAS  Google Scholar 

  51. Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500

    CAS  Google Scholar 

  52. Han J, Lei T, Wu Q (2013) Facile preparation of mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: physical, viscoelastic and mechanical properties. Cellulose 20(6):2947–2958

    CAS  Google Scholar 

  53. Han J, Lei T, Wu Q (2014) High-water-content mouldable polyvinyl alcohol-borax hydrogels reinforced by well-dispersed cellulose nanoparticles: dynamic rheological properties and hydrogel formation mechanism. Carbohydr Polym 102:306–316

    CAS  Google Scholar 

  54. Hanemann T, Szabo DV (2010) Polymer-nanoparticle composites: from synthesis to modern applications. Materials 3(6):3468–3517

    CAS  Google Scholar 

  55. Hariraksapitak P, Supaphol P (2010) Preparation and properties of α-chitin-whisker-reinforced hyaluronan–gelatin nanocomposite scaffolds. J Appl Polym Sci 117(6):3406–3418

    CAS  Google Scholar 

  56. Heinz TE (2005) Polysaccharides I. Springer, New York

    Google Scholar 

  57. Hon DNS (1994) Cellulose—a random-walk along its historical path. Cellulose 1(1):1–25

    CAS  Google Scholar 

  58. Hovgaard L, Brondsted H (1996) Current applications of polysaccharides in colon targeting. Crit Rev Ther Drug 13(3–4):185–223

    CAS  Google Scholar 

  59. Hua K, Carlsson DO, Alander E, Lindstrom T, Stromme M, Mihranyan A, Ferraz N (2014) Translational study between structure and biological response of nanocellulose from wood and green alga. RSC Adv 4(6):2892–2903

    CAS  Google Scholar 

  60. Huang Y, Zhang L, Yang J, Zhang X, Xu M (2013) Structure and properties of cellulose films reinforced by chitin whiskers. Macromol Mater Eng 298(3):303–310

    CAS  Google Scholar 

  61. Hutchinson JR, Bates KT, Molnar J, Allen V, Makovicky PJ (2011) A computational analysis of limb and body dimensions in tyrannosaurus rex with implications for locomotion, ontogeny, and growth. PLoS One 6(10):E26037

    CAS  Google Scholar 

  62. Ifuku S, Saimoto H (2012) Chitin nanofibers: preparations, modifications, and applications. Nanoscale 4(11):3308–3318

    CAS  Google Scholar 

  63. Isogai A (2013) Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J Wood Sci 59(6):449–459

    CAS  Google Scholar 

  64. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    CAS  Google Scholar 

  65. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials-a short review. Carbohydr Polym 82(2):227–232

    CAS  Google Scholar 

  66. Jin L, Wei Y, Xu Q, Yao W, Cheng Z (2014) Cellulose nanofibers prepared from TEMPO-oxidation of kraft pulp and its flocculation effect on kaolin clay. J Appl Polym Sci 131(12):2345–2353

    Google Scholar 

  67. Kabiri K, Omidian H, Zohuriaan-Mehr MJ, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Composite 32(2):277–289

    CAS  Google Scholar 

  68. Kalia S, Dufresne A, Cherian BM, Kaith BS, Averous L, Njuguna J, Nassiopoulos E (2011) Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci, ID 837875

    Google Scholar 

  69. Karimi S, Dufresne A, Tahir PM, Karimi A, Abdulkhani A (2014) Biodegradable starch-based composites: effect of micro and nanoreinforcements on composite properties. J Mater Sci 49(13):4513–4521

    CAS  Google Scholar 

  70. Karmazsin E (1987) Thermal-analysis in the cellulose, paper and textile-industry. Thermochim Acta 110:471–475

    CAS  Google Scholar 

  71. Kaushik A, Kumra J (2014) Morphology, thermal and barrier properties of green nanocomposites based on tps and cellulose nanocrystals. J Elastom Plast 46(3):284–299

    CAS  Google Scholar 

  72. Kelly JA, Shukaliak AM, Cheung CCY, Shopsowitz KE, Hamad WY, Maclachlan MJ (2013) Responsive photonic hydrogels based on nanocrystalline cellulose. Ang Chem Int Ed 52(34):8912–8916

    CAS  Google Scholar 

  73. Kerstens S, Decraemer WF, Verbelen J-P (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127(2):381–385

    CAS  Google Scholar 

  74. Khalil H, Bhat AH, Yusra AFI (2012) Green composites from sustainable cellulose nanofibrils: a review. Carbohydr Polym 87(2):963–979

    Google Scholar 

  75. Khan TA, Peh KK, Chíng HS (2002) Reporting degree of deacetylation values of chitosan: The influence of analytical methods. J Pharm Pharm Sci 5(3):205–212

    CAS  Google Scholar 

  76. Khoushab F, Yamabhai M (2010) Chitin research revisited. Mar Drug 8(7):1988–2012

    CAS  Google Scholar 

  77. Kjartansson GT, Zivanovic S, Kristbergsson K, Weiss J (2006) Sonication-assisted extraction of chitin from north atlantic shrimps (pandalus borealis). J Agr Food Chem 54(16):5894–5902

    CAS  Google Scholar 

  78. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393

    CAS  Google Scholar 

  79. Klemm DE (2006) Polysaccharides II. Springer, New York

    Google Scholar 

  80. Kobayashi S, Kashiwa K, Shimada J, Kawasaki T, Shoda S (1992) Enzymatic polymerization—the 1st invitro synthesis of cellulose via nonbiosynthetic path catalyzed by cellulase. Macromol Symp 54–5:509–518

    Google Scholar 

  81. Kono H, Otaka F, Ozaki M (2014) Preparation and characterization of guar gum hydrogels as carrier materials for controlled protein drug delivery. Carbohydr Polym 111:830–840

    CAS  Google Scholar 

  82. Kuilla T, Bhadra S, Yao DH, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polym composite. Prog Polym Sci 35(11):1350–1375

    CAS  Google Scholar 

  83. Kurita K (2006) Chitin and chitosan: Functional biopolymers from marine crustaceans. Mar Biotechnol 8(3):203–226

    CAS  Google Scholar 

  84. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer hydrogels: a review. Polym Plast Technol 50(14):1475–1486

    CAS  Google Scholar 

  85. Lagerwall JPF, Schutz C, Salajkova M, Noh J, Hyun Park J, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6:E80

    CAS  Google Scholar 

  86. Lam E, Male KB, Chong JH, Leung ACW, Luong JHT (2012) Applications of functionalized and nanoparticle-modified nanocrystalline cellulose. Trend Biotechnol 30(5):283–290

    CAS  Google Scholar 

  87. LeCorre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11(5):1139–1153

    CAS  Google Scholar 

  88. LeCorre D, Bras J, Dufresne A (2011) Influence of botanic origin and amylose content on the morphology of starch nanocrystals. J Nanopart Res 13(12):7193–7208

    CAS  Google Scholar 

  89. LeCorre D, Vahanian E, Dufresne A, Bras J (2011) Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules 13(1):132–137

    Google Scholar 

  90. LeCorre D, Bras J, Dufresne A (2012) Influence of native starch’s properties on starch nanocrystals thermal properties. Carbohydr Polym 87(1):658–666

    CAS  Google Scholar 

  91. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101(7):1869–1880

    CAS  Google Scholar 

  92. Li C, Li Y, Sun P, Yang C (2014) Starch nanocrystals as particle stabilisers of oil-in-water emulsions. J Sci Food Agr 94(9):1802–1807

    CAS  Google Scholar 

  93. Li C, Sun P, Yang C (2012) Emulsion stabilized by starch nanocrystals. Starch Stärke 64(6):497–502

    CAS  Google Scholar 

  94. Li J, Revol JF, Naranjo E, Marchessault RH (1996) Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. Int J Biol Macromol 18(3):177–187

    CAS  Google Scholar 

  95. Li Y, Yang C, Khan M, Liu S, Hedrick JL, Yang Y-Y, Ee P-LR (2012) Nanostructured PEG-based hydrogels with tunable physical properties for gene delivery to human mesenchymal stem cells. Biomaterials 33(27):6533–6541

    CAS  Google Scholar 

  96. Lin N, Huang J, Chang PR, Anderson DP, Yu JH (2011) Preparation, modification, and application of starch nanocrystals in nanomaterials. a review. J Nanomater

    Google Scholar 

  97. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    CAS  Google Scholar 

  98. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    CAS  Google Scholar 

  99. Lin N, Huang J, Chang PR, Feng L, Yu J (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloid Surf B 85(2):270–279

    CAS  Google Scholar 

  100. Ling SJ, Li CX, Adamcik J, Wang SH, Shao ZZ, Chen X, Mezzenga R (2014) Directed growth of silk nanofibrils on graphene and their hybrid nanocomposites. Acs Macro Lett 3(2):146–152

    CAS  Google Scholar 

  101. Liu D, Zhang Y, Sun X, Chang PR (2014) Recent advances in bio-sourced polymeric carbohydrate/nanotube composites. J Appl Polym Sci 131(12)

    Google Scholar 

  102. Lu P, Hsieh Y-L (2012) Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr Polym 87(4):2546–2553

    CAS  Google Scholar 

  103. Lu Y, Weng L, Zhang L (2004) Morphology and properties of soy protein isolate thermoplastics reinforced with chitin whiskers. Biomacromolecules 5(3):1046–1051

    CAS  Google Scholar 

  104. Ly B, Thielemans W, Dufresne A, Chaussy D, Belgacem MN (2008) Functionalization of cellulose fiber and their incorporation in renewable polymeric matrices. Compos Sci Technol 68:3193–3201

    CAS  Google Scholar 

  105. Magdy EE (2011) Biotechnology of biopolymers. Intechem, Rjeka, Croatia

    Google Scholar 

  106. Majeed K, Jawaid M, Hassan A, Abu Bakar A, Khalil H, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410

    CAS  Google Scholar 

  107. Malafaya PB, Elvira C, Gallardo A, San Roman J, Reis RL (2001) Porous starch-based drug delivery systems processed by a microwave route. J Biomater Sci Polym Ed 12(11):1227–1241

    CAS  Google Scholar 

  108. Mano E (1989) Introdução à polímeros. Edgar Blucher, São Paulo

    Google Scholar 

  109. Mariano M, El Kissi N, Dufresne A (2014) Cellulose nanocrystals and related nanocomposites: review of some properties and challenges. J Polym Sci B Polym Phys 52(12):791–806

    CAS  Google Scholar 

  110. Mckee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O (2014) Healable, stable and stiff hydrogels: Combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv Funct Mater 24(18):2706–2713

    CAS  Google Scholar 

  111. Mckee JR, Hietala S, Seitsonen J, Laine J, Kontturi E, Ikkala O (2014) Thermoresponsive nanocellulose hydrogels with tunable mechanical properties. ACS Macro Lett 3(3):266–270

    CAS  Google Scholar 

  112. MéLé P, Angellier-Coussy HLN, Molina-Boisseau S, Dufresne A (2011) Reinforcing mechanisms of starch nanocrystals in a nonvulcanized natural rubber matrix. Biomacromolecules 12(5):1487–1493

    Google Scholar 

  113. Miguel SP, Ribeiro MP, Brancal H, Coutinho P, Correia IJ (2014) Thermoresponsive chitosan–agarose hydrogel for skin regeneration. Carbohydr Polym 111:366–373

    CAS  Google Scholar 

  114. Mincea M, Negrulescu A, Ostafe V (2012) Preparation, modification, and applications of chitin nanowhiskers: a review. Rev Adv Mater Sci 30(3):225–242

    CAS  Google Scholar 

  115. Morais JPS, Rosa MDF, De Souza Filho MDSM, Nascimento LD, Do Nascimento DM, Cassales AR (2013) Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr Polym 91(1):229–235

    CAS  Google Scholar 

  116. Mueller S, Weder C, Foster EJ (2014) Isolation of cellulose nanocrystals from pseudostems of banana plants. RSC Adv 4(2):907–915

    CAS  Google Scholar 

  117. Murphy P, Mitchell JR, Starch (2000) Handbook of Hydrocolloids. Woodhead Publishing, UK

    Google Scholar 

  118. Muzzarelli RAA (2011) Biomedical exploitation of chitin and chitosan via mechano-chemical disassembly, electrospinning, dissolution in imidazolium ionic liquids, and supercritical drying. Mar Drug 9(9):1510–1533

    CAS  Google Scholar 

  119. Naffakh M, Diez-Pascual AM, Marco C, Ellis GJ, Gomez-Fatou MA (2013) Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites. Prog Polym Sci 38(8):1163–1231

    CAS  Google Scholar 

  120. Narjary B, Aggarwal P (2014) Evaluation of soil physical quality under amendments and hydrogel applications in a soybean–wheat cropping system. Commun Soil Sci Plan 45(9):1167–1180

    CAS  Google Scholar 

  121. Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron x-ray and neutron fiber diffraction. J Amer Chem Soc 124(31):9074–9082

    CAS  Google Scholar 

  122. Nishiyama Y, Sugiyama J, Chanzy H, Langan P (2003) Crystal structure and hydrogen bonding system in cellulose 1(alpha), from synchrotron x-ray and neutron fiber diffraction. J Amer Chem Soc 125(47):14300–14306

    CAS  Google Scholar 

  123. Nizam El-Din HM (2012) Surface coating on cotton fabrics of new multilayer formulations based on superabsorbent hydrogels synthesized by gamma radiation designed for diapers. J Appl Polym Sci 125(S2):E180–E186

    CAS  Google Scholar 

  124. Northcote DH (1972) Chemistry of the plant cell wall. Annu Rev Plant Physiol 23(1):113–132

    CAS  Google Scholar 

  125. Oates CG (1997) Towards an understanding of starch granule structure and hydrolysis. Trend Food Sci Technol 8(11):375–382

    CAS  Google Scholar 

  126. Okamoto M, John B (2013) Synthetic biopolymer nanocomposites for tissue engineering scaffolds. Prog Polym Sci 38(10–11):1487–1503

    CAS  Google Scholar 

  127. Oksman K, Etang JA, Mathew AP, Jonoobi M (2011) Cellulose nanowhiskers separated from a bio-residue from wood bioethanol production. Biomass Bioenergy 35(1):146–152

    CAS  Google Scholar 

  128. Omidian H, Rocca JG, Park K (2005) Advances in superporous hydrogels. J Control Release 102(1):3–12

    CAS  Google Scholar 

  129. Osorio-Madrazo A, Eder M, Rueggeberg M, Pandey JK, Harrington MJ, Nishiyama Y, Putaux J-L, Rochas C, Burgert I (2012) Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules 13(3):850–856

    CAS  Google Scholar 

  130. Paillet M, Dufresne A (2001) Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34(19):6527–6530

    CAS  Google Scholar 

  131. Park S, Baker JO, Himmel ME, Parilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuel 3

    Google Scholar 

  132. Peng BL, Dhar N, Liu HL, Tam KC (2011) Chemistry and application of nanocrystalline cellulose and its derivates: a nanotechnology perspective. Can J Chem Eng 9999:1–16

    Google Scholar 

  133. Peppas NA, Bures P, Leobandung W, Ichikawa H (2000) Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm 50(1):27–46

    CAS  Google Scholar 

  134. Pereira AGB, Muniz EC, Hsieh Y-L (2014) Chitosan-sheath and chitin-core nanowhiskers. Carbohydr Polym 107:158–166

    CAS  Google Scholar 

  135. Perez S, Samain D (2010) Structure and engineering of celluloses. Adv Carbohydr Chem Biochem 64(64):25–116

    CAS  Google Scholar 

  136. Phua YJ, Lau NS, Sudesh K, Chow WS, Ishak ZAM (2012) Biodegradability studies of poly(butylene succinate)/organo-montmorillonite nanocomposites under controlled compost soil conditions: Effects of clay loading and compatibiliser. Polym Degrad Stabil 97(8):1345–1354

    CAS  Google Scholar 

  137. Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678

    CAS  Google Scholar 

  138. Raabe D, Sachs C, Romano P (2005) The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Mater 53(15):4281–4292

    CAS  Google Scholar 

  139. Rahman MM, Afrin S, Haque P, Islam MM, Islam MS, Gafur MA (2014) Preparation and characterization of jute cellulose crystals-reinforced poly(l-lactic acid) biocomposite for biomedical applications. Int J Chem Eng 7

    Google Scholar 

  140. Rajisha KR, Maria HJ, Pothan LA, Ahmad Z, Thomas S (2014) Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int J Biol Macromol 67:147–153

    CAS  Google Scholar 

  141. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38(10–11):1653–1689

    CAS  Google Scholar 

  142. Rehman N, De Miranda M, Rosa SL, Pimentel D, Nachtigall SB, Bica CD (2014) Cellulose and nanocellulose from maize straw: an insight on the crystal properties. J Polym Environ 22(2):252–259

    CAS  Google Scholar 

  143. Revedin A, Aranguren B, Becattini R, Longo L, Marconi E, Lippi MM, Skakun N, Sinitsyn A, Spiridonova E, Svoboda J (2010) Thirty thousand-year-old evidence of plant food processing. P Natl Acda Sci USA 107(44):18815–18819

    CAS  Google Scholar 

  144. Revol JF, Marchessault RH (1993) In vitro chiral nematic ordering of chitin crystallites. Int J Biol Macromol 15(6):329–335

    CAS  Google Scholar 

  145. Rey C, Combes C, Drouet C, Glimcher MJ (2009) Bone mineral: update on chemical composition and structure. Osteoporosis Inter 20(6):1013–1021

    CAS  Google Scholar 

  146. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632

    CAS  Google Scholar 

  147. Rittmeyer EN, Allison A, Gründler MC, Thompson DK, Austin CC (2012) Ecological guild evolution and the discovery of the world’s smallest vertebrate. PLoS One 7(1):E29797

    CAS  Google Scholar 

  148. Rodrigues FHA, Spagnol C, Pereira AGB, Martins AF, Fajardo AR, Rubira AF, Muniz EC (2014) Superabsorbent hydrogel composites with a focus on hydrogels containing nanofibers or nanowhiskers of cellulose and chitin. J Appl Polym Sci 131(2):1323–1329

    Google Scholar 

  149. Rowell RM (2005) Handbook of wood chemistry and wood composites. CRC Press, Taylor and Francis, Boca Raton

    Google Scholar 

  150. Rudall KM, Kenching W (1973) Chitin system. Biol Rev Camb Philos Soc 48(4):597–605

    CAS  Google Scholar 

  151. Sagheer FAA, Al-Sughayer MA, Muslim S, Elsabee MZ (2009) Extraction and characterization of chitin and chitosan from marine sources in arabian gulf. Carbohydr Polym 77(2):410–419

    Google Scholar 

  152. Samir M, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626

    CAS  Google Scholar 

  153. Singha AS, Thakur VK (2008) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17(11):861–873

    CAS  Google Scholar 

  154. Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Ch 15(2):87–91

    CAS  Google Scholar 

  155. Singha AS, Thakur VK (2010) Synthesis, chacterization, and sutyd of pine needles reinforced polymer matrix based composites. J Rein Plast Comp 29(5):700–709

    CAS  Google Scholar 

  156. Sionkowska A (2011) Current research on the blends of natural and synthetic polymers as new biomaterials: review. Prog Polym Sci 36(9):1254–1276

    CAS  Google Scholar 

  157. Siqueira G, Bras J, Dufresne A (2008) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432

    Google Scholar 

  158. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765

    CAS  Google Scholar 

  159. Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61

    CAS  Google Scholar 

  160. Spagnol C, Rodrigues FHA, Neto AGVC, Pereira AGB, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48(3):454–463

    CAS  Google Scholar 

  161. Spagnol C, Rodrigues FA, Pereira AB, Fajardo A, Rubira A, Muniz E (2012) Superabsorbent hydrogel nanocomposites based on starch-g-poly(sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 19(4):1225–1237

    CAS  Google Scholar 

  162. Spagnol C, Rodrigues FHA, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC (2012) Superabsorbent hydrogel composite made of cellulose nanofibrils and chitosan-graft-poly(acrylic acid). Carbohydr Polym 87(3):2038–2045

    CAS  Google Scholar 

  163. Swift G (1994) Water-soluble polymers. Polym Degrad Stabil 45(2):215–231

    CAS  Google Scholar 

  164. Taylor NG (2008) Cellulose biosynthesis and deposition in higher plants. New Phytol 178(2):239–252

    CAS  Google Scholar 

  165. Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    CAS  Google Scholar 

  166. Thakur VK, Singha AS, Thakur MK (2012) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174

    CAS  Google Scholar 

  167. Thakur VK, Singha AS, Thakur MK (2012) Modification of Natural Biomass by Graft Copolymerization. Int J Polym Anal Charact 17:547–555

    CAS  Google Scholar 

  168. Thakur VK, Singha AS, Thakur MK (2012) Green composites from natural fibers: mechanical and chemical aging properties. Int J Polym Anal Charact 17:401–407

    CAS  Google Scholar 

  169. Thakur VK, Singha AS, Thakur MK (2012) In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Charact 17:48–60

    CAS  Google Scholar 

  170. Thakur VK, Singha AS, Thakur MK (2012) Surface modification of natural polymers to impart low water absorbency. Int J Polym Anal Charact 17:133–143

    CAS  Google Scholar 

  171. Teixeira EDM, Bondancia TJ, Teodoro KBR, Corrêa AC, Marconcini JM, Mattoso LHC (2011) Sugarcane bagasse whiskers: extraction and characterizations. Ind Crop Prod 33(1):63–66

    Google Scholar 

  172. Thakkar KN, Mhatre SS, Parik RY (2010) Biological synthesis of metallic nanoparticles. Nanomed Nanotech Biol Med 6:257–262

    CAS  Google Scholar 

  173. Thakur VK, Singha AS, Thakur MK (2013) Natural cellulosic polymers as potential reinforcement in composites: physicochemical and mechanical studies. Adv Polym Technol 32:E427–E435

    CAS  Google Scholar 

  174. Thakur VK, Singha AS, Thakur MK (2013) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater Polym Biomater 62:226–230

    CAS  Google Scholar 

  175. Thakur VK, Singha AS, Thakur MK (2013) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64–72

    CAS  Google Scholar 

  176. Thakur VK, Thakur MK, Gupta RK (2013) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126

    CAS  Google Scholar 

  177. Thakur VK, Thakur MK, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51

    CAS  Google Scholar 

  178. Thakur VK, Singha AS, Mehta JK (2014) Renewable resource based green polymer composite: analysis and characterization. Int J Anal Ch 15(3):137–146

    Google Scholar 

  179. Thakur VK, Thakur MK, Gupta RK (2014) Graft copolmers of natural fibers for green composite. Carbohydr Polym 104(1):87–93

    CAS  Google Scholar 

  180. Thakur VK, Thakur MK, Reghavan P, Kessler MR (2014) Progress in green polymer from lignin of multifunctional application. ACS Sustain Chem Eng 2(5):1072–1092

    CAS  Google Scholar 

  181. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    CAS  Google Scholar 

  182. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    CAS  Google Scholar 

  183. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  Google Scholar 

  184. Tou ZQ, Koh TW, Chan CC (2014) Poly(Vinyl Alcohol) hydrogel based fiber interferometer sensor for heavy metal cations. Sensor Actuat B Chem 202:185–193

    CAS  Google Scholar 

  185. Uddin AJ, Fujie M, Sembo S, Gotoh Y (2012) Outstanding reinforcing effect of highly oriented chitin whiskers in PVA nanocomposites. Carbohydr Polym 87(1):799–805

    CAS  Google Scholar 

  186. Van De Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21(4):433–442

    Google Scholar 

  187. Vincent JFV (2002) Arthropod cuticle: A natural composite shell system. Compos Part A Appl S 33(10):1311–1315

    Google Scholar 

  188. Visakh PM, Thomas S, Oksman K, Mathew AP (2012) Crosslinked natural rubber nanocomposites reinforced with cellulose whiskers isolated from bamboo waste: processing and mechanical/thermal properties. Compos Part-A Appl S 43(4):735–741

    CAS  Google Scholar 

  189. Wang DX, Yu J, Zhang JM, He JS, Zhang J (2013) Transparent bionanocomposites with improved properties from poly(propylene carbonate) (PPC) and cellulose nanowhiskers (Cnws). Compos Sci Technol 85:83–89

    CAS  Google Scholar 

  190. Wang H, Zhu E, Yang J, Zhou P, Sun D, Tang W (2012) Bacterial cellulose nanofiber-supported polyaniline nanocomposites with flake-shaped morphology as supercapacitor electrodes. J Phys Chem C 116(24):13013–13019

    CAS  Google Scholar 

  191. Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci Part B Polym Phys 49(20):1421–1429

    CAS  Google Scholar 

  192. Watthanaphanit A, Supaphol P, Tamura H, Tokura S, Rujiravanit R (2008) Fabrication, structure, and properties of chitin whisker-reinforced alginate nanocomposite fibers. J Appl Polym Sci 110(2):890–899

    CAS  Google Scholar 

  193. Wongpanit P, Sanchavanakit N, Pavasant P, Bunaprasert T, Tabata Y, Rujiravanit R (2007) Preparation and characterization of chitin whisker-reinforced silk fibroin nanocomposite sponges. Eur Polym J 43(10):4123–4135

    CAS  Google Scholar 

  194. Wu Q, Meng Y, Wang S, Li Y, Fu S, Ma L, Harper D (2014) Rheological behavior of cellulose nanocrystal suspension: influence of concentration and aspect ratio. J Appl Polym Sci 131(15):898–912

    Google Scholar 

  195. Xu X, Liu F, Jiang L, Zhu JY, Haagenson D, Wiesenborn DP (2013) Cellulose nanocrystals vs cellulose nanofibrils: a comparative study on their microstructures and effects as polymer reinforcing agents. ACS Appl Mater Interface s 5(8):2999–3009

    CAS  Google Scholar 

  196. Yamamoto Y, Nishimura T, Saito T, Kato T (2010) CaCO3/Chitin-whisker hybrids: formation of CaCO3 crystals in chitin-based liquid-crystalline Suspension. Polym J 42(7):583–586

    CAS  Google Scholar 

  197. Yang J, Han C-R, Duan J-F, Xu F, Sun R-C (2013) Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels. ACS Appl Mater Interface 5(8):3199–3207

    CAS  Google Scholar 

  198. Yang J, Zhao J-J, Xu F, Sun R-C (2013) Revealing strong nanocomposite hydrogels reinforced by cellulose nanocrystals: insight into morphologies and interactions. ACS Appl Mater Interface 5(24):12960–12967

    CAS  Google Scholar 

  199. Zanetti M, Lomakin S, Camino G (2000) Polymer layered silicate nanocomposites. Macromol Mater Eng 279(6):1–9

    CAS  Google Scholar 

  200. Zeng J-B, He Y-S, Li S-L, Wang Y-Z (2011) Chitin whiskers: an overview. Biomacromolecules 13(1):1–11

    Google Scholar 

  201. Zhang JF, Sun XZ (2004) Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride. Biomacromolecules 5(4):1446–1451

    CAS  Google Scholar 

  202. Zhang X, Huang J, Chang PR, Li J, Chen Y, Wang D, Yu J, Chen J (2010) Structure and properties of polysaccharide nanocrystal-doped supramolecular hydrogels based on cyclodextrin inclusion. Polymer 51(19):4398–4407

    CAS  Google Scholar 

  203. Zhao JQ, He X, Wang YR, Zhang W, Zhang XX, Zhang XD, Deng YL, Lu CH (2014) Reinforcement of all-cellulose nanocomposite films using native cellulose nanofibrils. Carbohydr Polym 104:143–150

    CAS  Google Scholar 

  204. Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43(9):3058–3071

    CAS  Google Scholar 

  205. Zheng S, Shin JY, Song SY, Yu SJ, Suh H, Kim I (2014) Hexafunctional poly(propylene glycol) based hydrogels for the removal of heavy metal ions. J Appl Polym Sci 131(16):1987–1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André R. Fajardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Fajardo, A.R., Pereira, A.G.B., Muniz, E.C. (2015). Hydrogels Nanocomposites Based on Crystals, Whiskers and Fibrils Derived from Biopolymers. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 74. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2473-0_2

Download citation

Publish with us

Policies and ethics