Skip to main content

Synthesis, Chemistry, and Medical Application of Bacterial Cellulose Nanocomposites

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 74))

Abstract

Bacterial cellulose (BC), an environmental friendly polymeric material, has recently received immense attention in the human society. Herein, we have focused on the biosynthesis, chemical structure, and physiological behavior of BC along with synthetic routes and medical applications of its nanocomposites. The structure of BC consists of nanofibrils made up of (1 → 4) β-glycosidic linked glucose units interconnected through intra- and intermolecular hydrogen bonds. The interconnected 3D network structure of BC nanofibers with a high degree of nanoporosity makes BC an ideal candidate for the incorporation of nanomaterials to form reinforced composites . BC nanocomposites have been synthesized through a number of routes that have not only improved the existing properties of BC, but also enhanced it with novel features. Among nanomaterials, metal, metal oxides, and organic nanomaterials have been effectively used to engender antimicrobial, biocompatible, conductive, and magnetic properties in BC. BC nanocomposites have been successfully employed in the medical field and have shown a high clinical value for wound healing and skin tissue repair. Recent interest has been focused on designing ideal biomedical devices like artificial skin and artificial blood vessels from BC. This study will provide an extensive background about the primary features of BC and discuss the synthetic routes and chemical feasibility of BC nanocomposites along with their current and future application in the medical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092

    CAS  Google Scholar 

  2. Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    CAS  Google Scholar 

  3. Thakur VK, Lin M-F, Tan EJ, Lee PS (2012) Green aqueous modification of fluoropolymers for energy storage applications. J Mater Chem 22:5951–5959

    CAS  Google Scholar 

  4. Thakur VK, Ding G, Ma J et al (2012) Hybrid materials and polymer electrolytes for electrochromic device applications. Adv Mater 24:4071–4096

    CAS  Google Scholar 

  5. Thakur VK, Singha AS, Thakur MK (2012) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421

    CAS  Google Scholar 

  6. Thakur VK, Singha AS, Thakur MK (2012) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555

    CAS  Google Scholar 

  7. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  Google Scholar 

  8. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    CAS  Google Scholar 

  9. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    CAS  Google Scholar 

  10. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Inter J Polym Anal Charact 19:256–271

    CAS  Google Scholar 

  11. Thakur VK, Vennerberg D, Kessler MR (2014) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356

    CAS  Google Scholar 

  12. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    CAS  Google Scholar 

  13. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249

    CAS  Google Scholar 

  14. Thakur VK, Grewell D, Thunga M, Kessler MR (2014) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958

    CAS  Google Scholar 

  15. Singha AS, Thakur VK, Mehta IK et al (2009) Surface-modified hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711

    CAS  Google Scholar 

  16. Singha AS, Thakur VK, Mishra BN (2009) Study of grewia optiva fiber reinforced urea-formaldehyde composites. J Polym Mater 26:81–90

    CAS  Google Scholar 

  17. Keshk SMAS (2014) Bacterial cellulose production and its industrial applications. J Bioproces Biotechniques 4:1–10

    Google Scholar 

  18. Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Bioc 61:101–110

    CAS  Google Scholar 

  19. Ul-Islam M, Khan T, Park JK (2012) Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr Polym 88:596–603

    CAS  Google Scholar 

  20. Ul-Islam M, Khan T, Park JK (2012) Nanoreinforced bacterialcellulose–montmorillonite composites for biomedical applications. Carbohydr Polym 89:1189–1197

    CAS  Google Scholar 

  21. Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598

    CAS  Google Scholar 

  22. Singha AS, Thakur VK (2008) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873

    CAS  Google Scholar 

  23. Singha AS, Thakur VK (2008) Saccaharum cilliare fiber reinforced polymer composites. E J Chem 5:782–791

    CAS  Google Scholar 

  24. Singha AS, Thakur VK (2008) Synthesis and characterization of pine needles reinforced RF matrix based biocomposites. E J Chem 5:1055–1062

    CAS  Google Scholar 

  25. Fiayyaz M, Zia KM, Zuber M, Jamil T, Khosa MK, Jama MA (2014) Synthesis and characterization of polyurethane/bentonite nanoclay based nanocomposites using toluene diisocyanate. Korean J Chem Eng 31:644–649

    Google Scholar 

  26. Zhou T, Chen D, Jiu J, Nge TT, Sugahara T, Nagao S, Koga H, Nogi M, Suganuma K, Wang X, Liu X, Cheng P, Wang T, Xiong D (2013) Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes. Express Polym Lett 7:756–766

    CAS  Google Scholar 

  27. Kim J, Cai Z, Lee HS, Choi GS, Lee DH, Jo C (2011) Preparation and characterization of a bacterial cellulose/chitosan composite for potential biomedical application. J Polym Res 18:739–744

    CAS  Google Scholar 

  28. Saibuatong O, Philsalaphong M (2010) Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr Polym 79:455–460

    CAS  Google Scholar 

  29. Shi Z, Zang S, Jiang F, Huang L, Lu D, Ma Y, Yang G (2012) In situ nano-assembly of bacterial cellulose–polyaniline composites. RSC Adv 2:1040–1046

    CAS  Google Scholar 

  30. Ciechanska D (2004) Multifunctional bacterial cellulose/chitosan composite mate-rials for medical applications. Fibres Text East Eur 12:69–72

    CAS  Google Scholar 

  31. Ul-Islam M, Shah N, Ha JH, Park JK (2011) Effect of chitosan penetrationon physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng 28:1736–1743

    CAS  Google Scholar 

  32. Feng Y, Zhang X, Shen Y, Yoshino K, Feng W (2012) A mechanically strong, flexible and conductive film based on bacterial cellulose/graphene nanocom-posite. Carbohydr Polym 87:644–649

    CAS  Google Scholar 

  33. Bae E, Park HJ, Yoon J, Kim Y, Choi K, Yi J (2011) Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3, Korean. J Chem Eng 28:267–271

    CAS  Google Scholar 

  34. Rouabhia M, Asselin JM, Tazi N, Messaddeq Y, Levinson D, Zhang Z (2014) Production of biocompatible and antimicrobial bacterial cellulose polymers functionalized by RGDC grafting groups and gentamicin. ACS Appl Mater Interfaces 6:1439–1446

    CAS  Google Scholar 

  35. Wang J, Zhu Y, Du J (2011) Bacterial cellulose: a natural nanomaterial for biomedical applications. J Mech Med Biol 11:285

    Google Scholar 

  36. Brown AJ (1886) J Chem Soc 49, 51:172, 432, 643

    Google Scholar 

  37. Browne CA (1906) J Chem Soc 28:453

    CAS  Google Scholar 

  38. Tarr HLA, Hibbery H (1931) Can J Res 4:372

    Google Scholar 

  39. Hestrin S, Aschner M, Mager J (1947) Synthesis of cellulose by resting cells of Acetobacter xylinum. Nature Lond 159:64

    CAS  Google Scholar 

  40. Steinbuhel A (2001) Bacterial cellulose. Biopolymers. Wiley, Weinheim

    Google Scholar 

  41. Amano Y, Ito F, Kanda T (2005) Novel cellulose producing system by microorganisms such as Acetobacter sp. J Biol Macromol 5:3–10

    CAS  Google Scholar 

  42. Brown RM Jr, Montezinos D (1976) Cellulose microfibrils: visualization of biosynthetic and orienting complexes in association with plasma membrane. Proc Natl Acad Sci 73:143–147

    CAS  Google Scholar 

  43. Evans BR, O‘Neill HM, Malyvanh VP, Lee I, Woodward J (2003) Palladium-bacterial cellulose membranes for fuel cells. Biosens Bioelectron 18:917–923

    CAS  Google Scholar 

  44. Touzel JP, Chabbert B, Monties B, Debeire P, Cathala B (2003) Synthesis and characterization of dehydrogenation polymers in gluconacetobacter xylinus cellulose and Cellulose/Pectin composite. J Agric Food Chem 51:981–986

    CAS  Google Scholar 

  45. Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506

    CAS  Google Scholar 

  46. Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C 29:1098–1104

    CAS  Google Scholar 

  47. Ha JH, Park JK (2012) Improvement of bacterial cellulose production in Acetobacter xylinum using byproduct produced by Gluconacetobacter hansenii, Korean. J Chem Eng 29:563–566

    CAS  Google Scholar 

  48. Kralisch D, Hessler N, Klemm D, Erdmann R, Schmidt W (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105(4):740–747

    CAS  Google Scholar 

  49. Shezad O, Khan S, Khan T, Park JK (2010) Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym 82(1):173–180

    CAS  Google Scholar 

  50. Yan Z, Chen S, Wang H, Wang B, Jiang J (2008) Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym 74(3):659–665

    CAS  Google Scholar 

  51. Tse ML, Chung KM, Dong L, Thomas BK, Fu LB, Cheng KC, Lu C, Tam HY (2010) Observation of symmetrical reflection sidebands in a silica suspended-core fiber Bragg grating. Opt Express 18(16):17373–17381

    Google Scholar 

  52. Song H-J, Li H, Seo J-H, Kim M-J, Kim S-J (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26(1):141–146

    Google Scholar 

  53. Okiyama A, Shirae H, Kano H, Yamanaka S (1992) Bacterial cellulose I. Two-stage fermentation process for cellulose production by Acetobacter aceti. Food Hydrocolloids 6(5):471–477

    Google Scholar 

  54. Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129

    CAS  Google Scholar 

  55. Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34(7):483–489

    CAS  Google Scholar 

  56. Hu Y, Catchmark JM (2010) Formation and characterization of spherelike bacterial cellulose particles produced by Acetobacter xylinum JCM 9730 strain. Biomacromolecules 11(7):1727–1734

    CAS  Google Scholar 

  57. Park JK, Jung JY, Park YH (2003) Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol. Biotechnol Lett 25(24):2055–2059

    CAS  Google Scholar 

  58. Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F (1995) Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotech Bioch 59(8):1498–1502

    CAS  Google Scholar 

  59. Naritomi T, Kouda T, Yano H, Yoshinaga F, Shigematsu T, Moriumura S, Kida K (2002) Influence of broth exchange ratio on bacterial cellulose production by repeated-batch culture. Process Biochem 38(1):41–47

    CAS  Google Scholar 

  60. Kim JY, Kim JN, Wee YJ, Park DH, Ryu HW (2007) Bacterial cellulose production by Gluconacetobacter sp. RKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537

    Google Scholar 

  61. Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Mioekiewicz M, Turkiewicz M, Bielecki S (2002) Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol 29:189–195

    CAS  Google Scholar 

  62. Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271

    CAS  Google Scholar 

  63. Yoshino T, Asakura T, Toda K (1996) Cellulose production by Acetobacter pasteurianus on silicone membrane. J Ferment Bioeng 81:32–36

    CAS  Google Scholar 

  64. Chao YP, Sugano Y, Kouda T, Yoshinaga F, Shoda M (1997) Production of bacterial cellulose by Acetobacter xylinum with an air-lift reactor. Biotechnol Tech 11(11):829–832

    CAS  Google Scholar 

  65. Chao YP, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68(3):345–352

    CAS  Google Scholar 

  66. Cheng HP, Wang PM, Chen JW, Wu WT (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35(Pt 2):125–132

    CAS  Google Scholar 

  67. Chao Y, Sugano Y, Shoda M (2001) Bacterial cellulose production under oxygen-enriched air at different fructose concentrations in a 50-L, internal-loop airlift reactor. Appl Microbiol Biotechnol 55(6):673–679

    CAS  Google Scholar 

  68. Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58(6):756–760

    CAS  Google Scholar 

  69. Lin SP, Cheng KC (2012) Bacterial cellulose production by Gluconacetobacter xylinum in the rotating PCS semicontinuous bioreactor and its materials property analysis. In: Paper presented at the 2012 mini symposium frontiers in biotechnology, National Taiwan University, Taipei

    Google Scholar 

  70. Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J Biol Eng 3:12

    Google Scholar 

  71. Bielecki S, Krystynowicz A, Turkiewicz M, Kalinowska H (2005) Bacterial cellulose. In: Steinbüchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry. Wiley, Hoboken

    Google Scholar 

  72. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Rev 55:35–58

    CAS  Google Scholar 

  73. Tonouchi N, Tsuchida T, Yoshinaga F, Beppu T, Horinouchi S (1996) Characterization of the biosynthetic pathway of cellulose from glucose and fructose in Acetobacter xylinum. Biosci Biotechnol Biochem 60:1377–1379

    CAS  Google Scholar 

  74. Valla S, Coucheron DH, Fjaervik E, Kjosbakken J, Weinhouse H, Ross P, Amikam D, Benziman M (1989) Cloning of a gene involved in cellulose biosynthesis in Acetobacter xylinum: Complementation of cellulose-negative mutant by the UDPG pyrophosphorylase structural gene. Mol Gen Genet 217:26–30

    CAS  Google Scholar 

  75. Brown RM, Saxena IM (2000) Cellulose biosynthesis: a model for understanding the assembly of biopolymers. Plant Physiol Biochem 38:57–67

    CAS  Google Scholar 

  76. Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    CAS  Google Scholar 

  77. Brown RM, Willison JHM, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569

    CAS  Google Scholar 

  78. Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777

    CAS  Google Scholar 

  79. Benziman M, Haigler CH, Brown RM, White AR, Cooper KM (1980) Cellulose biogenesis: Polymerization and crystallization are coupled processes in Acetobacter xylinum. Proc Natl Acad Sci USA 77:6678–6682

    CAS  Google Scholar 

  80. Delmer DP (1987) Cellulose biosynthesis. Ann Rev Plant Physiol 38:259–290

    CAS  Google Scholar 

  81. Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146

    CAS  Google Scholar 

  82. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106

    CAS  Google Scholar 

  83. Tokoh C, Takabe K, Fujita M, Saiki H (1998) Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5:249–261

    CAS  Google Scholar 

  84. Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    CAS  Google Scholar 

  85. Kuga S, Takagi S, Brown RM (1993) Native folded chain cellulose II. Polymer 34:3293–3297

    CAS  Google Scholar 

  86. Thompson NS, Carlson JA, Kaustinen HM, Uhlin KI (1988) Tunnel structures in Acetobacter xylinum. Int J Biol Macromol 10:126–127

    CAS  Google Scholar 

  87. Yamamoto H, Horii F, Hirai A (2006) Structural studies of bacterial cellulose through the solid-phase nitration and acetylation by CP/MAS 13C NMR spectroscopy. Cellulose 13:327–342

    CAS  Google Scholar 

  88. Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447

    CAS  Google Scholar 

  89. Czaja W, Krystynowicz A, Bielecki S, Brown RJ (2006) Microbial cellulose-the natural power to heal wounds. Biomaterials 27:145–151

    CAS  Google Scholar 

  90. Czaja W, Krystynowicz A, Kawecki M, Wysota K, Sakiel S, Wroblewski P, Glik J, Nowak P, Bielecki S (2007) In Cellulose: Molecular and Structural Biology; Brown RM, Saxena IM, Eds, Springer Dordrecht: The Netherlands

    Google Scholar 

  91. Czaja W, Young DJ, Kawechi M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12

    CAS  Google Scholar 

  92. Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    CAS  Google Scholar 

  93. Jeon JH, Oh IK, Kee CD, Kim SJ (2010) Bacterial cellulose actuator with electrically driven bending deformation in hydrated condition. Sensor Actuat B Chem 146:307–313

    CAS  Google Scholar 

  94. Maria LCS, Santos ALC, Oliveira PC, Valle ASS (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polímeros Ciência e Tecnologia 20:72–77

    Google Scholar 

  95. Stroescu M, Stoica-Guzun A, Jinga SI, Dobre T, Mihaela JI, Dobre LM (2012) Influence of sodium dodecyl sulfate and cetyl trimethylammonium bromide upon calcium carbonate precipitation on bacterial cellulose Korean. J Chem Eng 29:1216–1223

    CAS  Google Scholar 

  96. Ul-Islam M, Ha Jung Hwan, Khan Taous, Park JK (2013) Effects of glucuronic acid oligomers on the production, structure and properties of bacterial cellulose. Carbohydr Polym 92:360–366

    CAS  Google Scholar 

  97. Ul-Islam M, Khattak WA, Ullah MW, Khan S, Park JK (2014) Synthesis of regenerated bacterial cellulose-zinc oxide nanocomposite films for biomedical applications. Cellulose 21:433–447

    CAS  Google Scholar 

  98. Ul-Islam M, Khan T, Khattak WA, Park JK (2013) Bacterial cellulose-MMTs nanoreinforced composite films: novel wound dressing material with antibacterial properties. Cellulose 20:589–596

    CAS  Google Scholar 

  99. Tang W, Jia S, Jia Y, Yang H (2010) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microb Biotechnol 26:125–131

    CAS  Google Scholar 

  100. Lin WC, Lien CC, Yeh HJ, Yub CM, Hsu S (2013) Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydr Polym 94:603–611

    CAS  Google Scholar 

  101. Ruka DR, Simon GP, Dean KM (2013) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92:1717–1723

    CAS  Google Scholar 

  102. Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacterxylinus. Cellulose 18(1573L):1583

    Google Scholar 

  103. Yano S, Maeda H, Nakajima M, Hagiwara T, Sawaguchi T (2008) Preparation and mechanical properties of bacterial cellulose nanocomposites loaded with silica nanoparticles. Cellulose 15:111–120

    CAS  Google Scholar 

  104. Cheng KC, Catchmark JM, Demirci A (2009) Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J BIOL Eng 3:12

    Google Scholar 

  105. Maneerung T, Tokura S, Rujiravanit R (2007) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Google Scholar 

  106. Hong F, Guo X, Zhang S, Han SF, Yang G, Jönsson LJ (2012) Bacterial cellulose production from cotton-based waste textiles: Enzymatic saccharification enhanced by ionic liquid pretreatment. Bioresource Technol 104:503–508

    CAS  Google Scholar 

  107. Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60:1710–1713

    CAS  Google Scholar 

  108. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double network hydrogel with bacterial cellulose. Adv Funct Mater 14:1124–1128

    CAS  Google Scholar 

  109. Lacerda PSS, Barros-Timmons AMMV, Freire CSR, Silvestre AJD, Neto CP (2013) Nanostructured composites obtained by ATRP sleeving of bacterialcellulose nanofibers with acrylate polymer. Biomacromols 14:2063–2073

    CAS  Google Scholar 

  110. Yang G, Xie J, Deng Y, Bian Y, Hong F (2012) Hydrothermal synthesis of bacterial cellulose/AgNPs composite: a green route for antibacterial application. Carbohyd Polym 87:2482–2487

    CAS  Google Scholar 

  111. Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284

    CAS  Google Scholar 

  112. Lindman B, Karlström G, Stigsson L (2010) On the mechanism of dissolution of cellulose. J Mol Liq 156:76–81

    CAS  Google Scholar 

  113. Lu X, Shen X (2011) Solubility of bacteria cellulose in zinc chloride aqueous solutions. Carbohydr Polym 86:239–244

    CAS  Google Scholar 

  114. Łaszkiewicz B (1998) Solubility of bacterial cellulose and its structural properties. J Appl Polym Sci 67:1871–1876

    Google Scholar 

  115. Zhang S, Luo J (2011) Preparation and properties of bacterial cellulose/alginate, blend bio-fibers. J Eng Fiber Fabr 6:69–72

    CAS  Google Scholar 

  116. Gao Q, Shen X, Lu X (2011) Regenerated bacterial cellulose fibers prepared by the NMMO·H2O process. Carbohydr Polym 83:1253–1256

    CAS  Google Scholar 

  117. Gao F (2004) Clay/polymer composites: the story. Mater Today 7:50–55

    Google Scholar 

  118. Dahman Y (2009) Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechno 9:5105–5122

    CAS  Google Scholar 

  119. Kino Y, Sawa M, Kasai S, Mito M (1998) Multiporous cellulose microcarrier for the development of a hybrid artificial liver using isolated hepatocytes. J Surg Res 79:71–76

    CAS  Google Scholar 

  120. Kołodziejczyk M, Pomorski L (1999) Final report on the realization of the grant no. 7 S20400407 from the Polish State Committee for Scientific Research (in Polish)

    Google Scholar 

  121. Oster GA, Lantz K, Koehler K, Hoon R, Serafica G, Mormino R (2003) Solvent dehydrated microbially derived cellulose for in vivo implantation. U.S. Patent 6:599–518

    Google Scholar 

  122. Hornung M, Biener R, Schmauder HP (2009) Dynamic modelling of bacterial cellulose formation. Eng Life Sci 9:342–347

    CAS  Google Scholar 

  123. Fernandes SCM, Oliveira L, Freire CSR, Silvestre AJD, Neto CP, Gandini A, Desbriéres J (2009) Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem 11:2023–2029

    Google Scholar 

  124. Cai ZJ, Yang G (2011) Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci 1205:2938–2944

    Google Scholar 

  125. Wiegand C, Elsner P, Hipler UC, Klemm D (2006) Protease and ROS activities influenced by a composite of bacterial cellulose and collagen type I in vitro. Cellulose 13:689–696

    CAS  Google Scholar 

  126. Cai ZJ, Hou CW, Yang G (2011) Poly (3-hydroxubutyrate-co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: preparation, characterization and biocompatibility evaluation. Carbohydr Polym 872:1073–1080

    Google Scholar 

  127. Eming SA, Smola H, Krieg T (2002) The treatment of chronic wounds: current concepts and future aspects. Cells Tissues Organs 172:105–117

    CAS  Google Scholar 

  128. Balasubramani M, Kumar TR, Babu M (2001) Skin substitutes: a review. Burns 27:534–544

    CAS  Google Scholar 

  129. Slêzak A, Kucharzewski M, Franek A, Twardokês W (2004) Evaluation of the efficiency of venous ulcer treatment with a membrane dressing. Med Eng Phys 26:53–60

    Google Scholar 

  130. Fontana JD, de Sousa AM, Fontana CK, Torriani IL, Moreschi JC, Gallotti BJ, de Sousa SJ, Narcisco GP, Bichara JA, Farah LF (1990) Acetobacter cellulose pellicle as a temporary skin substitute. Appl Biochem Biotechnol 24(25):253–264

    Google Scholar 

  131. Mayall RC, Mayall AC, Mayall LC, Rocha HC, Marques LC (1990) Tratamento das ulceras troficas dos membros com um novo substitute da pele. Rev Bras Cir 80:4

    Google Scholar 

  132. Alvarez O, Patel M, Booker J, Markowitz L (2004) Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: results of a single center randomized study involving 24 patients. Wounds 16:224–233

    Google Scholar 

  133. Frankel VH, Serafica GC, Damien CJ (2004) Development and testing of a novel biosynthesized XCell for treating chronic wounds. Surg Technol Int 12:27–33

    Google Scholar 

  134. Watanabe K, Eto Y, Takano S, Nakamori S, Shibai H, Yamanaka S (1993) A new bacterial cellulose substrate for mammalian cell culture: a new bacterial cellulose substrate Cytotechnology 13:107–114

    CAS  Google Scholar 

  135. Deng HW, Liu YZ (2005) Current topics in bone biology. World Scientific, Hackensack, pp 125–128

    Google Scholar 

  136. Zimmermann KA, LeBlanc JM, Sheets KT, Robert W, Gatenholm FP (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31:43–49

    CAS  Google Scholar 

  137. Bäckdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27:2141–2149

    Google Scholar 

  138. Bäckdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regenerative Med 2:320–330

    Google Scholar 

  139. Entcheva E, Bien H, Yin L, Chun CY, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762

    CAS  Google Scholar 

  140. Cho S, Almeida N (2012) Dietary fiber and health. CRC Press, Boca Raton

    Google Scholar 

  141. Shi Z, Zhang Y, Phillips GO, Yang G (2014) Utilization of bacterial cellulose in food. Food Hydrocolloids 35:539–545

    CAS  Google Scholar 

  142. Phisalaphong M, Chiaoprakobkij N (2012) Applications and products-dNata de coco. Bacterial nanocellulose: a sophisticated multifunctional material. CRC Press, Boca Raton 9:143

    Google Scholar 

  143. Lin KW, Lin HY (2004) Quality characteristics of Chinese-style meatball containing bacterial cellulose (Nata). J Food Sci 69:107–111

    Google Scholar 

  144. Xiao L, Mai Y, He F, Yu L, Zhang L, Tang H, Yang G (2012) Bio-based green composites with high performance from poly (lactic acid) and surface modified microcrystalline cellulose. J Mater Chem 22:15732–15739

    CAS  Google Scholar 

  145. Choi YJ, Ahn Y, Kang MS, Jun HK, Kim IS, Moon SH (2004) Preparation and characterization of acrylic acid-treated bacterial cellulose cation-exchange membrane. J Chem Technol Biot 79:79–84

    CAS  Google Scholar 

  146. Jantarat C, Tangthong N, Songkro S, Martin GP, Suedee R (2008) S-Propranolol imprinted polymer nanoparticle-on-microsphere compositeporous cellulose membrane for the enantioselectively controlled delivery of racemic propranolol. Int J Pharm 349:212–225

    CAS  Google Scholar 

  147. Bodhibukkana C, Srichana T, Kaewnopparat S, Tangthong N, Bouking P, Martin GP, Suedee R (2006) Composite membrane of bacterially-derived cellulose and molecularly imprinted polymer for use as a transdermal enantio selective controlled-release system of racemic propranolol. J Control Release 113:43–56

    CAS  Google Scholar 

  148. Okahisa Y, Yoshida A, Miyagushi S, Yano H (2009) Optically transparent wood cellulose nanocomposite as a base substrate for flexible organic light emitting displays. Compos Sci Technol 69:1958–1961

    CAS  Google Scholar 

  149. Shah J, Brown RM Jr (2005) Towards electronic displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355

    Google Scholar 

  150. Legnini C, Vilani C, Calil VL, Barud HS, Quirino WG, Achete CA, Ribeiro SJL, Cremona M (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016–1020

    Google Scholar 

  151. Hu W, Chen S, Yang Z, Liu L, Wang H (2011) Flexible electrically conductive nanocomposite membrane based on bacterial cellulose and polyaniline. J Phys Chem B 115:8453–8845

    CAS  Google Scholar 

  152. Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107

    CAS  Google Scholar 

  153. Nogi M, Handa K, Nakagaito AN, Yano H (2005) Optically transparent bionanofiber composites with low sensitivity to refractive index of the polymermatrix. Appl Phy Lett 87:243110. doi:10.1063/1.2146056

    Google Scholar 

  154. Cai Z, Kim J (2010) Bacterial cellulose/poly (ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17:83–91

    CAS  Google Scholar 

  155. Luo H, Xiong G, Huang Y, He F, Wang Y, Wan Y (2008) Preparation and characterization of a novel COL/BC composite for potential tissue engineering scaffolds. Mater Chem Phys 110:193–196

    CAS  Google Scholar 

  156. Pinto RJB, Marques PA, Martins MA, Neto CP, Trindade T (2007) Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J Colloid Interface Sci 312:506–512

    CAS  Google Scholar 

  157. Zhang T, Wang W, Zhang D, Zhang X, Ma Y, Zhou Y et al (2010) Biotemplatedsynthesis of gold nanoparticle–bacteria cellulose nanofiber nanocomposites and their application in biosensing. Adv Funct Mater 20:1152–1160

    CAS  Google Scholar 

  158. Wan YZ, Huang Y, Yuan CD, Raman S, Zhu Y, Jiang HJ, He F, Gao C (2007) Biomimetic synthesis of hydroxyapatite/bacterial cellulose nanocomposites for biomedical applications. Mater Sci Eng, C 27(4):855–864

    CAS  Google Scholar 

  159. Perotti GF, Barud HS, Messaddeq Y, Ribeiro SJL, Constantino VRL (2011) Bacterial cellulose-laponite clay nanocomposites. Polymer 52(1):157–163

    CAS  Google Scholar 

  160. Mathew AP, Oksman K, Pierron D, Harmand M-F (2012) Fibrous cellulose nanocomposite scaffolds prepared by partial dissolution for potential use as ligament or tendon substitutes. Carbohydr Polym 87(3):2291–2298

    CAS  Google Scholar 

  161. Pooyan P, Tannenbaum R, Garmestani H (2012) Mechanical behavior of a cellulose-reinforced scaffold in vascular tissue engineering. J Mech Behav Biomed Mater 7:50–59

    CAS  Google Scholar 

  162. Wang Y Chen L (2011) Impacts of nanowhisker on formation kinetics and properties of all-cellulose composite gels. Carbohydr Polym 83:1937–1946

    Google Scholar 

  163. Son WK, Youk JH, Park WH (2006) Antimicrobial cellulose acetate nanofibers containing silver nanoparticles. Carbohydr Polym 65:430–434

    CAS  Google Scholar 

  164. Charpentier PA, Maguire A, Wan WK (2006) Surface modification of polyester to produce a bacterial cellulose-based vascular prosthetic device. Appl Surf Sci 252(18):6360–6367

    CAS  Google Scholar 

Download references

Acknowledgment

The research is supported by the BK21 plus (2014-2019) Korea, (21A.2013-1800001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong Kon Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Ul-Islam, M., Khan, S., Khattak, W.A., Ullah, M.W., Park, J.K. (2015). Synthesis, Chemistry, and Medical Application of Bacterial Cellulose Nanocomposites. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 74. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2473-0_13

Download citation

Publish with us

Policies and ethics