Skip to main content

Magnetite Nanocomposites Thin Coatings Prepared by MAPLE to Prevent Microbial Colonization of Medical Surfaces

  • Chapter
  • First Online:
Book cover Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 74))

Abstract

MAPLE (matrix-assisted pulsed laser evaporation) technique revealed a significant relevance in the deposition of bioactive nanostructures on different surfaces for the prevention and/or treatment of microbial infections associated with medical devices. Recent research progress highlights the development of two new directions for biomedical applications of magnetite nanoparticles: the antimicrobial therapy and microbial virulence and biofilm modulation. The aim of this chapter is to highlight the usefulness of functionalized magnetite nanoparticles as efficient anti-infective agents. In this respect, different type of nanocomposites based on hydrophilic/hydrophobic polymers and iron oxide nanostructures combined with natural and synthetic therapeutic agents are discussed. We offer a wide perspective regarding their synthesis, characterization, biocompatibility, and the ability to modulate the microbial attachment and biofilms development on different type of prosthetic devices or metal implants. All reported data demonstrate that magnetite-based bioactive coatings significantly inhibit the microbial colonization on the coated medical surfaces, features that together with their high in vivo viability recommend these type of thin coatings for the development of anti-infective surfaces for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al Faraj A, Lacroix G, Alsaid H, Elgrabi D, Stupar V, Robidel F, Gaillard S, Canet-Soulas E, Crémillieux Y (2008) Longitudinal 3He and proton imaging of magnetite biodistribution in a rat model of instilled nanoparticles. Magn Reson Med 59:1298–1303

    Google Scholar 

  2. Alp E, Voss A (2006) Ventilator associated pneumonia and infection control. Ann Clin Microbiol Antimicrobials 5:7

    Google Scholar 

  3. An H, Friedman J (2000) Handbook of bacterial adhesion: principles, methods, and applications. Humana Press Inc, Totowa

    Google Scholar 

  4. Anghel AG, Grumezescu AM, Chirea M, Grumezescu V, Socol G, Iordache F, Oprea AE, Anghel I, Holban AM (2014) MAPLE fabricated Fe3O4@Cinnamomum verun antimicrobial surface for improved gastrostomy tubes. Molecules 19:8981–8994

    CAS  Google Scholar 

  5. Atlas RM, Bartha R (1999) Microbial ecology: fundamentals and applications. Benjamin/Cummings Publ. Comp., Inc, Calif

    Google Scholar 

  6. Azeredo J, Visser J, Oliveira R (1999) Exopolymers in bacterial adhesion: interpretation in terms of DLVO and XDLVO theories. Colloids Surf B 14:141–148

    CAS  Google Scholar 

  7. Beloin C, Roux A, Ghigo JM (2008) Escherichia coli biofilms. Curr Top Microbiol Immunol 322:249–289

    CAS  Google Scholar 

  8. Bigi A, Boanini E, Capuccini C, Fini M, Mihailescu IN, Ristoscu C, Sima F, Torricelli P (2009) Biofunctional alendronate–hydroxyapatite thin films deposited by matrix assisted pulsed laser evaporation. Biomaterials 30:6168–6177

    CAS  Google Scholar 

  9. Boanini E, Torricelli P, Fini M, Sima F, Serban N, Mihailescu IN, Bigi A (2012) Magnesium and strontium doped octacalcium phosphate thin films by matrix assisted pulsed laser evaporation. J Inorg Biochem 107:65–72

    CAS  Google Scholar 

  10. Canulescu S, Schou J, Fæster S, Hansen KV, Conseil H (2013) Deposition of matrix-free fullerene films with improved morphology by matrix-assisted pulsed laser evaporation (MAPLE). Chem Phys Lett 588:119–123

    CAS  Google Scholar 

  11. Chifiriuc MC, Pircalabioru G, Lazăr V, Gîlea B, Dascălu L, Enache G, Bleotu C (2011) Immunogenicity of different cellular fractions of Vibrio parahaemolyticus strains grown under sub-lethal heat and osmotic stress. Afr J Microbiol Res 5:65–72

    CAS  Google Scholar 

  12. Chifiriuc CM, Grumezescu AM, Saviuc C, Croitoru C, Mihaiescu DE, Lazar V (2012) Improved antibacterial activity of cephalosporins loaded in magnetic chitosan microspheres. Int J Pharm 436:201–205

    CAS  Google Scholar 

  13. Ciobanu CS, Iconaru SL, Gyorgy E, Radu M, Costache M, Dinischiotu A, Le Coustumer P, Lafdi K, Predoi D (2012) Biomedical properties and preparation of iron oxide-dextran nanostructures by MAPLE technique. Chem Cent J 6:17

    CAS  Google Scholar 

  14. Constantinescu C, Palla-Papavlu A, Rotaru A, Florian P, Chelu F, Icriverzi M, Nedelcea A, Dinca V, Roseanu A, Dinescu M (2009) Multifunctional thin films of lactoferrin for biochemical use deposited by MAPLE technique. Appl Surf Sci 255:5491–5495

    CAS  Google Scholar 

  15. Cristescu R, Dorcioman G, Ristoscu C, Axente E, Grigorescu S, Moldovan A, Mihailescu IN, Kocourek T, Jelinek M, Albulescu M, Buruiana T, Mihaiescu D, Stamatin I, Chrisey DB (2006) Matrix assisted pulsed laser evaporation processing of triacetate-pullulan polysaccharide thin films for drug delivery systems. Appl Surf Sci 252:4647–4651

    CAS  Google Scholar 

  16. Cristescu R, Kocourek T, Moldovan A, Stamatin L, Mihaiescu D, Jelinek M, Stamatin I, Mihailescu IN, Chrisey DB (2006) Laser deposition of cryoglobulin blood proteins thin films by matrix assisted pulsed laser evaporation. Appl Surf Sci 252:4652–4655

    CAS  Google Scholar 

  17. Cristescu R, Doraiswamy A, Socol G, Grigorescu S, Axente E, Mihaiescu D, Moldovan A, Narayan RJ, Stamatin I, Mihailescu IN, Chisholm BJ, Chrisey DB (2007) Polycaprolactone biopolymer thin films obtained by matrix assisted pulsed laser evaporation. Appl Surf Sci 253:6476–6479

    CAS  Google Scholar 

  18. Cristescu R, Doraiswamy A, Patz T, Socol G, Grigorescu S, Axente E, Sima F, Narayan RJ, Mihaiescu D, Moldovan A, Stamatin I, Mihailescu IN, Chisholm B, Chrisey DB (2007) Matrix assisted pulsed laser evaporation of poly(d, l-lactide) thin films for controlled-release drug systems. Appl Surf Sci 253:7702–7706

    CAS  Google Scholar 

  19. Cristescu R, Cojanu C, Popescu A, Grigorescu S, Nastase C, Nastase F, Doraiswamy A, Narayan RJ, Stamatin I, Mihailescu IN, Chrisey DB (2007) Processing of poly(1,3-bis-(p-carboxyphenoxy propane)-co-(sebacic anhydride)) 20:80 (P(CPP:SA)20:80) by matrix-assisted pulsed laser evaporation for drug delivery systems. Appl Surf Sci 254:1169–1173

    CAS  Google Scholar 

  20. Cristescu R, Popescu C, Popescu AC, Grigorescu S, Duta L, Mihailescu IN, Caraene G, Albulescu R, Albulescu L, Andronie A, Stamatin I, Ionescu A, Mihaiescu D, Buruiana T, Chrisey DB (2009) Functionalized polyvinyl alcohol derivatives thin films for controlled drug release and targeting systems: MAPLE deposition and morphological, chemical and in vitro characterization. Appl Surf Sci 255:5600–5604

    CAS  Google Scholar 

  21. Cristescu R, Mihailescu IN, Stamatin I, Doraiswamy A, Narayan RJ, Westwood G, Wilker JJ, Stafslien S, Chisholm B, Chrisey DB (2009) Thin films of polymer mimics of cross-linking mussel adhesive proteins deposited by matrix assisted pulsed laser evaporation. Appl Surf Sci 255:5496–5498

    CAS  Google Scholar 

  22. Cristescu R, Popescu C, Popescu AC, Grigorescu S, Mihailescu IN, Ciucu AA, Iordache S, Andronie A, Stamatin I, Fagadar-Cosma E, Chrisey DB (2011) MAPLE deposition of Mn(III) metalloporphyrin thin films: structural, topographical and electrochemical investigations. Appl Surf Sci 257:5293–5297

    CAS  Google Scholar 

  23. Cristescu R, Popescu C, Socol G, Iordache I, Mihailescu IN, Mihaiescu DE, Grumezescu AM, Balan A, Stamatin I, Chifiriuc C, Bleotu C, Saviuc C, Popa M, Chrisey DB (2012) Magnetic core/shell nanoparticle thin films deposited by MAPLE: investigation by chemical, morphological and in vitro biological assays. Appl Surf Sci 258:9250–9255

    CAS  Google Scholar 

  24. Cristescu R, Popescu C, Dorcioman G, Miroiu FM, Socol G, Mihailescu IN, Gittard SD, Miller PR, Narayan RJ, Enculescu M, Chrisey DB (2013) Antimicrobial activity of biopolymer–antibiotic thin films fabricated by advanced pulsed laser methods. Appl Surf Sci 278:211–213

    CAS  Google Scholar 

  25. de Avila ED, de Molon RS, Vergani CE, de Assis Mollo F, Salih V (2014) The relationship between biofilm and physical-chemical properties of implant abutment materials for successful dental implants. Materials 7:3651–3662

    Google Scholar 

  26. del Pino ÁP, György E, Cabana L, Ballesteros B, Tobias G (2012) Deposition of functionalized single wall carbon nanotubes through matrix assisted pulsed laser evaporation. Carbon 50:4450–4458

    Google Scholar 

  27. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    CAS  Google Scholar 

  28. Esteban J, Gomez-Barrena E, Cordero J, Martín-de-Hijas NZ, Kinnari TJ, Fernandez-Roblas R (2008) Evaluation of quantitative analysis of cultures from sonicated retrieved orthopedic implants in diagnosis of orthopedic infection. J Clin Microbiol 46:488–492

    Google Scholar 

  29. Fayas APA, Vinod EM, Joseph J, Ganesan R, Pandey RK (2010) Dependence of pH and surfactant effect in the synthesis of magneite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater. doi:10.1016/j.jmmm.2009.09.064

    Google Scholar 

  30. Fitl P, Vrnata M, Kopecky D, Vlcek J, Skodova J, Bulir J, Novotny M, Pokorny P (2014) Laser deposition of sulfonated phthalocyanines for gas sensors. Appl Surf Sci 302:37–41

    CAS  Google Scholar 

  31. Floroian L, Sima F, Florescu M, Badea M, Popescu AC, Serban N, Mihailescu IN (2010) Double layered nanostructured composite coatings with bioactive silicate glass and polymethylmetacrylate for biomimetic implant applications. J Electroanal Chem 648:111–118

    CAS  Google Scholar 

  32. Floroian L, Florescu M, Sima F, Popescu-Pelin G, Ristoscu C, Mihailescu IN (2012) Synthesis of biomaterial thin films by pulsed laser technologies: Electrochemical evaluation of bioactive glass-based nanocomposite coatings for biomedical applications. Mater Sci Eng C 32:1152–1157

    CAS  Google Scholar 

  33. Frank KL, Del Pozo JL, Patel R (2008) From clinical microbiology to infection pathogenesis: how daring to be different works for Staphylococcus lugdunensis. Clin Microbiol Rev 21:111–133

    CAS  Google Scholar 

  34. Gilbert P, Maira-Litran T, McBain A, Rickard A, Whyte F (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:203–256

    CAS  Google Scholar 

  35. Gohl O, Friedrich A, Hoppert M, Averhoff B (2006) The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol 72:1394–1401

    CAS  Google Scholar 

  36. Grumezescu V, Socol G, Grumezescu AM, Holban AM, Ficai A, Truşcǎ R, Bleotu C, Balaure PC, Cristescu R, Chifiriuc MC (2014) Functionalized antibiofilm thin coatings based on PLA–PVA microspheres loaded with usnic acid natural compounds fabricated by MAPLE. Appl Surf Sci 302:262–267

    CAS  Google Scholar 

  37. Grumezescu V, Holban AM, Iordache F, Socol G, Mogoşanu GD, Grumezescu AM, Ficai A, Vasile BŞ, Truşcă R, Chifiriuc MC, Maniu H (2014) MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)–polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Appl Surf Sci 306:16–22

    CAS  Google Scholar 

  38. Grumezescu V, Holban AM, Grumezescu AM, Socol G, Ficai A, Vasile BS, Trusca R, Bleotu C, Lazar V, Chifiriuc CM, Mogosanu GD (2014) Usnic acid loaded biocompatible magnetic PLGA-PVA microspheres thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication 6:035002

    CAS  Google Scholar 

  39. Grumezescu AM, Gestal Cartelle M, Holban AM, Grumezescu V, Vasile BS, Mogoantă L, Iordache F, Bleotu C, Mogosanu GD (2014) Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against Gram-positive and Gram-negative bacteria. Molecules 19:5013–5027

    Google Scholar 

  40. Grumezescu V, Holban AM, Iordache F, Socol G, Mogosanu GD, Grumezescu AM, Ficai A, Vasile BS, Trușcă R, Chifiriuc MC, Maniu H (2014) MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)—polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Appl Surf Sci 306:16–22

    CAS  Google Scholar 

  41. György E, Sima F, Mihailescu IN, Smausz T, Hopp B, Predoi D, Sima LE, Petrescu SM (2010) Biomolecular urease thin films grown by laser techniques for blood diagnostic applications. Mater Sci Eng: C 30:537–541

    Google Scholar 

  42. Holban AM, Grumezescu V, Grumezescu AM, Vasile BS, Truscă R, Cristescu R, Socol G, Iordache F (2014) Anti-microbial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein J Nanotechnol 5:872–880

    CAS  Google Scholar 

  43. Holban AM, Grumezescu V, Grumezescu AM, Vasile BS, Trușcă R, Cristescu R, Socol G, Iordache F (2014) Anti-microbial nanospheres thin coatings prepared by advanced pulsed laser technique. Beilstein J Nanotechnol 5:872–880

    CAS  Google Scholar 

  44. Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434

    CAS  Google Scholar 

  45. Houser EJ, Chrisey DB, Bercu M, Scarisoreanu ND, Purice A, Colceag D, Constantinescu C, Moldovan A, Dinescu M (2006) Functionalized polysiloxane thin films deposited by matrix-assisted pulsed laser evaporation for advanced chemical sensor applications. Appl Surf Sci 252:4871–4876

    CAS  Google Scholar 

  46. Hunter JD (2006) Ventilator associated pneumonia. Postgrad Med J 82:172–178

    CAS  Google Scholar 

  47. Iordache S, Cristescu R, Popescu AC, Popescu CE, Dorcioman G, Mihailescu IN, Ciucu AA, Balan A, Stamatin I, Fagadar-Cosma E, Chrisey DB (2013) Functionalized porphyrin conjugate thin films deposited by matrix assisted pulsed laser evaporation. Appl Surf Sci 278:207–210

    CAS  Google Scholar 

  48. Israil AM, Balotescu-Chifiriuc MC (2009) Fenomenul de comunicare interbacteriana - noi concepte in terapia antiinfectioasa, Ed. Asclepius, Bucureşti

    Google Scholar 

  49. Jacobsen SM, Stickler DJ, Mobley HL, Shirtliff ME (2008) Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin Microbiol Rev 21:26–59

    CAS  Google Scholar 

  50. Jelinek M, Cristescu R, Axente E, Kocourek T, Dybal J, Remsa J, Plestil J, Mihaiescu D, Albulescu M, Buruiana T, Stamatin I, Mihailescu IN, Chrisey DB (2007) Matrix assisted pulsed laser evaporation of cinnamate-pullulan and tosylate-pullulan polysaccharide derivative thin films for pharmaceutical applications. Appl Surf Sci 253:7755–7760

    CAS  Google Scholar 

  51. Jelinek M, Remsa J, Brynda E, Houska M, Kocourek T (2007) Thin layers of bovine serum albumin by matrix assisted pulsed laser evaporation. Appl Surf Sci 254:1240–1243

    CAS  Google Scholar 

  52. Katsikogianni M, Missirlis YF (2004) Concise review of mechanisms of bacterial adhesion to biomaterials and of techniques used in estimating bacteriamaterial interactions. Eur cells Mater 8:37–57

    CAS  Google Scholar 

  53. Kempe M, Kempe H, Snowball I, Wallén R, Arza CR, Götberg M, Olsson T (2010) The use of magnetite nanoparticles for implant-assisted magnetic drug targeting in thrombolytic therapy. Biomaterials 31:9499–9510

    CAS  Google Scholar 

  54. Kim JJ, Singh RK, Seo SJ, Kim TH, Kim JH, Leeab EJ, Kim HW (2014) Magnetic scaffolds of polycaprolactone with functionalized magnetite nanoparticles: physicochemical, mechanical, and biological properties effective for bone regeneration. RSC Adv 4:17325–17336

    CAS  Google Scholar 

  55. Koenig SM, Truwit JD (2006) Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev 19:637–657

    Google Scholar 

  56. Lazar V (2011) Quorum sensing in biofilms–how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17280–17285

    Google Scholar 

  57. Lazăr V (2003) Aderenţa microbiană, Bucureşti, Edit. Acad. Rom 88–146

    Google Scholar 

  58. Lazăr V (2011) Quorum sensing in biofilms-how to destroy the bacterial citadels or their cohesion/power? Anaerobe 17:280–285

    Google Scholar 

  59. Lazar V, Balotescu MC, Cernat R, Bulai D, Niţu G, Ilina L (2003) Phenotypic antibioticresistance of some enterobacterial strains adhered to an inert substratum. In vitro models for biofilm formation in liquid and solid media. Clin Microbiol Infect 9:227

    Google Scholar 

  60. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    CAS  Google Scholar 

  61. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    CAS  Google Scholar 

  62. Lodhia J, Mandarano G, Ferris NJ, Eu P, Cowell SF (2010) Development and use of iron oxide nanoparticles (Part 1): synthesis of iron oxide nanoparticles for MRI. Biomed Imaging Interv J 6(2):e12. http://www.biij.org/2010/2/e12/

  63. Massart R (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248

    Google Scholar 

  64. Mbeh DA, França R, Merhi Y, Zhang XF, Veres T, Sacher E, Yahia L (2012) In vitro biocompatibility assessment of functionalized magnetite nanoparticles: biological and cytotoxicological effects. J Biomed Mater Res A. 100:1637–1646

    CAS  Google Scholar 

  65. Meng H, Zhang Z, Zhao F, Qiu T, Yang J (2013) Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation. Appl Surf Sci 280:679–685

    CAS  Google Scholar 

  66. Mihaiescu DE, Cristescu R, Dorcioman G, Popescu C, Nita C, Socol G, Mihailescu I, Grumezescu AM, Tamas D, Enculescu M, Negrea RF, Ghica C, Chifiriuc C, Bleotu C, Chrisey DB (2013) Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties. Biofabrication 5:015007

    CAS  Google Scholar 

  67. Miroiu FM, Socol G, Visan A, Stefan N, Craciun D, Craciun V, Dorcioman G, Mihailescu IN, Sima LE, Petrescu SM, Andronie A, Stamatin I, Moga S, Ducu C (2010) Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation. Mater Sci Eng B 169:151–158

    CAS  Google Scholar 

  68. Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonasaeruginosa biofilms. PLoS Pathog 4:11

    Google Scholar 

  69. Muthiah M, Park I-K, Cho C-S (2013) Surface modification of iron oxide nanoparticles by biocompatible polymers for tissue imaging and targeting. Biotechnol Adv 31:1224–1236

    CAS  Google Scholar 

  70. Paju S, Scannapieco FA (2007) Oral biofilms, periodontitis, and pulmonary infections. Oral Dis 13:508–512

    CAS  Google Scholar 

  71. Palla-Papavlu A, Rusen L, Dinca V, Filipescu M, Lippert T, Dinescu M (2014) Characterization of ethylcellulose and hydroxypropyl methylcellulose thin films deposited by matrix-assisted pulsed laser evaporation. Appl Surf Sci 302:87–91

    CAS  Google Scholar 

  72. Pate R, Stiff-Roberts AD (2009) The impact of laser-target absorption depth on the surface and internal morphology of matrix-assisted pulsed laser evaporated conjugated polymer thin films. Chem Phys Lett 477:406–410

    CAS  Google Scholar 

  73. Paun IA, Ion V, Moldovan A, Dinescu M (2011) Thin films of polymer blends deposited by matrix-assisted pulsed laser evaporation: effects of blending ratios. Appl Surf Sci 257:5259–5264

    CAS  Google Scholar 

  74. Paun IA, Moldovan A, Luculescu CR, Dinescu M (2011) Biocompatible polymeric implants for controlled drug delivery produced by MAPLE. Appl Surf Sci 257:10780–10788

    CAS  Google Scholar 

  75. Paun IA, Mihailescu M, Calenic B, Luculescu CR, Greabu M, Dinescu M (2013) MAPLE deposition of 3D micropatterned polymeric substrates for cell culture. Appl Surf Sci 278:166–172

    CAS  Google Scholar 

  76. Pérez-Artacho B, Gallardo V, Ruiz MA, Arias JL (2012) Maghemite/poly(d, l-lactide-co-glycolyde) composite nanoplatform for therapeutic applications. J Nanopart Res. doi:10.1007/s11051-012-0768-x

    Google Scholar 

  77. Pique A, Auyeung RCY, Stepnowski JL, Weir DW, Arnold CB, McGill RA, Chrisey DB (2003) Laser processing of polymer thin films for chemical sensor applications. Surf Coat Technol 163–164:293–299

    Google Scholar 

  78. Predoi D, Ciobanu CS, Radu M, Costache M, Dinischiotu A, Popescu C, Axente E, Mihailescu IN, Gyorgy E (2012) Hybrid dextran-iron oxide thin films deposited by laser techniques for biomedical applications. Mater Sci Eng: C 32:296–302

    Google Scholar 

  79. Purice A, Schou J, Kingshott P, Dinescu M (2007) Production of active lysozyme films by matrix assisted pulsed laser evaporation at 355 nm. Chem Phys Lett 435:350–353

    CAS  Google Scholar 

  80. Raghavendran K, Mylotte JM (2000) Scannapieco FA (2007) Nursing home-associated pneumonia, hospital-acquired pneumonia and ventilator-associated pneumonia: the contribution of dental biofilms and periodontal inflammation. Periodontol 44:164–177

    Google Scholar 

  81. Ratner BD (1993) New ideas in biomaterials science—a path to engineered biomaterials. J Biomed Mater Res 27:837–850

    CAS  Google Scholar 

  82. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE (2004) Biomaterials science introduction to materials in medicine. Elsevier Academic Press, San Diego

    Google Scholar 

  83. Rodrigo K, Czuba P, Toftmann B, Schou J, Pedrys R (2006) Surface morphology of polyethylene glycol films produced by matrix-assisted pulsed laser evaporation (MAPLE): dependence on substrate temperature. Appl Surf Sci 252:4824–4828

    CAS  Google Scholar 

  84. Rusen L, Mustaciosu C, Mitu B, Filipescu M, Dinescu M, Dinca V (2013) Protein-resistant polymer coatings obtained by matrix assisted pulsed laser evaporation. Appl Surf Sci 278:198–202

    CAS  Google Scholar 

  85. Rusen L, Dinca V, Mitu B, Mustaciosu C, Dinescu M (2014) Temperature responsive functional polymeric thin films obtained by matrix assisted pulsed laser evaporation for cells attachment–detachment study. Appl Surf Sci 302:134–140

    CAS  Google Scholar 

  86. Saviuc C, Grumezescu AM, Chifiriuc MC, Bleotu C, Stanciu G, Hristu R, Mihaiescu DE, Lazar V (2011) In vitro methods for the study of microbial biofilms. Biointerface Res Appl Chem 1:31

    CAS  Google Scholar 

  87. Shen J, Burgess DJ (2012) Accelerated in vitro release testing of implantable PLGAmicrosphere/PVA hydrogel composite coatings. Int J Pharm 422:341–348

    CAS  Google Scholar 

  88. Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J (2014) Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram Int Part B 40:1519–1524

    CAS  Google Scholar 

  89. Shirtliff M, Leid J (2009) The role of biofilms in device-related infections. Springer, Berlin

    Google Scholar 

  90. Sima F, Davidson P, Pauthe E, Sima LE, Gallet O, Mihailescu IN, Anselme K (2011) Fibronectin layers by matrix-assisted pulsed laser evaporation from saline buffer-based cryogenic targets. Acta Biomater 7:3780–3788

    CAS  Google Scholar 

  91. Sima F, Axente E, Iordache I, Luculescu C, Gallet O, Anselme K, Mihailescu IN (2014) Combinatorial matrix assisted pulsed laser evaporation of a biodegradable polymer and fibronectin for protein immobilization and controlled release. Appl Surf Sci 306:75–79

    CAS  Google Scholar 

  92. S-Layer Proteins, Sara M, Uwe BS (2000) Crystalline bacterial cell surface proteins. J Bacteriol 182:859–868

    Google Scholar 

  93. Stamatin L, Cristescu R, Socol G, Moldovan A, Mihaiescu D, Stamatin I, Mihailescu IN, Chrisey DB (2005) Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Appl Surf Sci 248:422–427

    CAS  Google Scholar 

  94. Thakur VK, Thakur MK (2014) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    CAS  Google Scholar 

  95. Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustainable Chem Eng 2:2637–2652

    CAS  Google Scholar 

  96. Thakur VK, Thakur MK (2014) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    CAS  Google Scholar 

  97. Thakur VK, Thakur MK, Gupta RK (2013) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828

    CAS  Google Scholar 

  98. Thakur VK, Thakur MK, Gupta RK (2013) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51

    CAS  Google Scholar 

  99. Thakur VK, Thakur MK, Gupta RK (2013) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126

    CAS  Google Scholar 

  100. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495–503

    CAS  Google Scholar 

  101. Thakur VK, Thakur MK, Gupta RK (2013) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25

    CAS  Google Scholar 

  102. Thakur VK, Thakur MK, Gupta RK (2014) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271

    CAS  Google Scholar 

  103. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem Eng 2:1072–1092

    CAS  Google Scholar 

  104. Trampuz A, Zimmerli W (2006) Antimicrobial agents in orthopaedic surgery: prophylaxis and treatment. Drugs 66:1089–1105

    CAS  Google Scholar 

  105. Tunno T, Caricato AP, Caruso ME, Luches A, Martino M, Romano F, Valerini D, Anni M (2007) Matrix-assisted pulsed laser evaporation of polyfluorene thin films. Appl Surf Sci 253:6461–6464

    CAS  Google Scholar 

  106. Vallet I, Diggle SP, Stacey RE, Cámara M, Ventre I, Lory S, Lazdunski A, Williams P, Filloux AJ (2004) Biofilm formation in Pseudomonas aeruginosa: fimbrial cup gene clusters are controlled by the transcriptional regulator MvaT. J Bacteriol 186:2880–2890

    CAS  Google Scholar 

  107. Visan A, Grossin D, Stefan N, Duta L, Miroiu FM, Stan GE, Sopronyi M, Luculescu C, Freche M, Marsan O, Charvilat C, Ciuca S, Mihailescu IN (2014) Biomimetic nanocrystalline apatite coatings synthesized by matrix assisted pulsed laser evaporation for medical applications. Mater Sci Eng, B 181:56–63

    CAS  Google Scholar 

  108. Wang L, Lansing B, Symons K, Flannery EL, Fisch J, Cherian K, McNamara SE, Mody L (2012) Infection rate and colonization with antibiotic-resistant organisms in skilled nursing facility residents with indwelling devices. Eur J Clin Microbiol Infect Dis 31:1797–1804

    CAS  Google Scholar 

  109. Wei QF, Gao WD, Hou DY, Wang XQ (2005) Surface modification of polymer nanofibers by plasma treatment. Appl Surf Sci 245:16–20

    CAS  Google Scholar 

  110. Wilson SK, Costerton JW (2012) Biofilm and penile prosthesis infections in the era of coated implants: a review. J Sex Med 9:44–53

    Google Scholar 

  111. Wu S, Sun A, Zhai F, Xu W, Yhang Q, Volinsky A (2011) Fe3O4 magnetic nanoparticles synthesis from tailings by ultrasonic chemical co-precipitation. Mater Lett. doi:10.1016/j.matlet.2011.03.065

    Google Scholar 

  112. Xie G, Chain PSG, Lo C, Liu KL, Gans J, Merritt J, Qi F (2010) Community and gene composition of a human dental plaque microbiota obtained by metagenomic sequencing. MolOral Microbiol 25:391–405

    CAS  Google Scholar 

  113. Yaseen MA, Yu J, Jung B, Wong MS, Anvari B (2009) Biodistribution of encapsulated indocyanine green in healthy mice. Mol Pharm 6:1321–1332

    CAS  Google Scholar 

  114. Zhao H, Cui Z, Wang X, Turng LS, Peng XF (2013) Processing and characterization of solid and microcellular poly(lactic acid)/polyhydroxybutyrate-valerate(PLA/PHBV) blends and PLA/PHBV/Clay nanocomposites. Compos Part B 5179–91

    Google Scholar 

Download references

Acknowledgments

The work has been funded by the Sectoral Operational Programme Human 687 Resources Development 2007–2013 of the Ministry of European Funds through the Financial 688 Agreement P

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Mihai Grumezescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Holban, A.M., Grumezescu, A.M., Saviuc, C.M. (2015). Magnetite Nanocomposites Thin Coatings Prepared by MAPLE to Prevent Microbial Colonization of Medical Surfaces. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 74. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2473-0_10

Download citation

Publish with us

Policies and ethics