Water Soluble Polymer-Based Nanocomposites Containing Cellulose Nanocrystals

  • Johnsy GeorgeEmail author
  • S. N. Sabapathi
  • Siddaramaiah
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 75)


Among the eco-friendly polymers, water soluble polymers are increasingly gaining importance to industry and academia, as they are easy to process, low cost, easily available, and more environmentally friendly than any other polymers. Water soluble polymers are widely used as stabilizers, thickeners, drug delivery materials, protective colloids, dispersants, flocculants, materials for oil recovery, etc. However, replacing nondegradable and nonrenewable plastic materials with these water soluble polymers for several applications remains as a big challenge. Several water soluble polymers, like those derived from naturally occurring proteins, polysaccharides, etc., and those obtained from synthetic methods are not having sufficient properties to replace the existing non-degradable plastic materials for most of the applications. Incorporation of nanomaterials into polymer matrices enhances the mechanical properties like tensile strength, modulus, stiffness, and impact strength significantly. Also other physical properties like barrier, optical, thermal resistance, nonflammability, etc., can also be improved by the introduction of nanomaterials. It is believed that the advances in polymer nanocomposite field will revolutionize the design, development, and performance of water soluble polymer-based materials, which ultimately have negligible adverse impact on the environment. Nanotechnology could be able to play an important role in solving this problem with the development of water soluble nanocomposite materials, which holds the key to future advances in the field of eco-friendly packaging systems. Several nanomaterials have been investigated for reinforcing water soluble polymers; however, rod-shaped cellulose nanocrystals (CNs) having high aspect ratios are found to be a promising nanomaterial for these types of applications. This chapter deals with the development and characterization of water soluble polymer-based nanocomposites containing cellulose nanocrystals and their applications.


Water soluble polymers Polymer nanocomposites Cellulose nanocrystals 


  1. Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R (2013a) Reducing water sensitivity of alginate bio-nanocomposite film using cellulose nanoparticles. Intl J Biol Macromol 54:166–173CrossRefGoogle Scholar
  2. Abdollahi M, Alboofetileh M, Rezaei M, Behrooz R (2013b) Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloid 32(2):416–424CrossRefGoogle Scholar
  3. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng Rep 28:1–63CrossRefGoogle Scholar
  4. Araki J, Kuga S (2001) Effect of trace electrolyte on liquid crystal type of cellulose microcrystals. Langmuir 17:4493–4496CrossRefGoogle Scholar
  5. Araki J, Wada M, Kuga S, Okana T (1999) Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J Wood Sci 45:258–261CrossRefGoogle Scholar
  6. Ashogbon AO, Akintayo ET (2014) Recent trend in the physical and chemical modification of starches from different botanical sources: a review. Starch 66:41–57CrossRefGoogle Scholar
  7. Baker MI, Walsh SP, Schwartz Z, Boyan BD (2012) A review of polyvinyl alcohol and its uses in cartilage and orthopedic applications. J Biomed Mater Res, Part B 100B:1451–1457CrossRefGoogle Scholar
  8. Barbucci R, Magnani A, Consumi M (2000) Swelling behavior of carboxymethyl cellulose hydrogels in relation to cross-linking, pH and charge density. Macromolecules 33:7457–7480CrossRefGoogle Scholar
  9. Battista OA, Coppick S, Howsmon JA, Morehead FF, Sisson WA (1956) Level off degree of polymerization. Ind Eng Chem 48:333–335CrossRefGoogle Scholar
  10. Battista OA, Smith PA (1962) Microcrystalline cellulose. J Ind Eng Chem 54:20–29CrossRefGoogle Scholar
  11. Bilbao-Sainz C, Bras J, Williams T, Sénechal T, Orts W (2011) HPMC reinforced with different cellulose nano-particles. Carbohydr Polym 86(4):1549–1557CrossRefGoogle Scholar
  12. Choi Y, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6(3):633–639CrossRefGoogle Scholar
  13. Cohen SG, Haas HC, Farney L, Valle C Jr (1953) Preparation and properties of some ether and ester derivatives of hydroxyethylcellulose. Ind Eng Chem 45:200–203CrossRefGoogle Scholar
  14. Debeaufort F, Voilley A (1995) Methyl cellulose-based edible films and coatings I. Effect of plasticizer content on water and 1-octen-3-ol sorption and transport. Cellulose 2:205–213CrossRefGoogle Scholar
  15. Debeaufort F, Quezada-Gallo JA, Voilley A (1998) Edible films and coatings: tomorrow’s packagings: a review. Crit Rev Food Sci Nutr 38(4):299–313CrossRefGoogle Scholar
  16. de Souza Lima MM, Borsali R (2004) Rod like cellulose microcrystals: Structure, properties and applications. Macromol Rapid Comm 25:771–787CrossRefGoogle Scholar
  17. Eitan A, Fisher FT, Andrews R, Brinson LC, Schadler LS (2006) Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos Sci Technol 66:1159–1170Google Scholar
  18. George J, Bawa AS, Siddaramaiah (2010) Synthesis and characterization of bacterial cellulose nanocrystals and their PVA nanocomposites. Adv Mater Res 123:383–386CrossRefGoogle Scholar
  19. George J, Ramana KV, Bawa AS, Siddaramaiah (2011) Bacterial cellulose nanocrystals exhibiting high thermal stability and their polymer nanocomposites. Intl J Biol Macromol 48(1):50–57CrossRefGoogle Scholar
  20. George J, Ramana KV, Sabapathy SN, Bawa AS (2005a) Physico-mechanical properties of chemically treated bacterial (Acetobacter xylinum) cellulose membrane. World J Microbiol Biotechnol 21(8–9):1323–1327CrossRefGoogle Scholar
  21. George J, Ramana KV, Sabapathy SN, Jagannath JH, Bawa AS (2005b) Characterization of chemically treated bacterial (Acetobacter xylinum) biopolymer: some thermo-mechanical properties. Int J Biol Macromol 37(4):189–194CrossRefGoogle Scholar
  22. George J, Sajeevkumar VA, Ramana KV, Sabapathy SN, Siddaramaiah (2012a) Augmented properties of PVA hybrid nanocomposites containing cellulose nanocrystals and silver nanoparticles. J Mater Chem 22(42):22433–22439CrossRefGoogle Scholar
  23. George J, Siddaramaiah (2012b) High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr Polym 87(3):2031–2037CrossRefGoogle Scholar
  24. George J, Kumar R, Sajeevkumar VA, Ramana KV, Rajamanickam R, Abhishek V, Sabapathy SN, Siddaramaiah (2014) Hybrid HPMC nanocomposites containing bacterial cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 105:285–292Google Scholar
  25. Gomez-Guillen MC, Gimenez B, López-Caballero ME, Montero MP (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocolloids 25:1813–1827Google Scholar
  26. Gorga RE, Cohen RE (2004) Toughness enhancements in poly (methyl methacrylate) by addition of oriented multiwall carbon nanotube. J Polym Sci B Polym Phys 42(14):2690–2702CrossRefGoogle Scholar
  27. Gorgieva S, Kokol V (2011) Synthesis and application of new temperature responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr Polym 85:664–673CrossRefGoogle Scholar
  28. Hakansson H, Ahlgren P (2005) Acid hydrolysis of some industrial pulps: effect of hydrolysis conditions and raw material. Cellulose 12:177–183CrossRefGoogle Scholar
  29. Hassan CM, Peppas NA (2000a) Structure and applications of Poly (vinyl alcohol) hydrogels produced by conventional cross linking or by freezing/thawing methods. Adv Polym Sci 153:37–65Google Scholar
  30. Hassan CM, Peppas NA (2000b) Structure and applications of poly (vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods. Biopolymers. PVA hydrogels, anionic polymerisation nanocomposites. Springer, Heidelberg, pp 37–65Google Scholar
  31. Huq T, Salmieri S, Khan A, Khan RA, Le Tien C, Riedl B, Lacroix M (2012) Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr Polym 90(4):1757–1763CrossRefGoogle Scholar
  32. Hussain F, Hojjati M, Okamoto M, Gorga RE (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing and application: an overview. J Compos Mater 40:1511–1575CrossRefGoogle Scholar
  33. Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571–2576CrossRefGoogle Scholar
  34. Jalal Uddin A, Araki J, Gotoh Y (2011) Toward “strong” green nanocomposites: polyvinyl alcohol reinforced with extremely oriented cellulose whiskers. Biomacromolecules 12(3):617–624CrossRefGoogle Scholar
  35. Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRefGoogle Scholar
  36. Kalfus J, Jancar J (2008) Reinforcing mechanisms in amorphous polymer nano-composites. Compos Sci Technol 68(15):3444–3447CrossRefGoogle Scholar
  37. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82(2):337–345CrossRefGoogle Scholar
  38. Khan RA, Salmieri S, Dussault D, Uribe-Calderon J, Kamal MR, Safrany A, Lacroix M (2010) Production and properties of nanocellulose-reinforced methylcellulose based biodegradable films. J Agri Food Chem 58(13):7878–7885CrossRefGoogle Scholar
  39. Kolodziejska I, Kaczorowski K, Piotrowsia B, Sadowska M (2004) Modification of properties of gelatin from skins of baltic cod (Gadus morhua) with transglutaminase. Food Chem 86:203–209CrossRefGoogle Scholar
  40. Lagerwall JP, Schütz C, Salajkova M, Noh J, Park JH, Scalia G, Bergstrom L (2014) Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater 6(1):e80CrossRefGoogle Scholar
  41. Lahiji RR, Xu X, Reifenberger R, Raman A, Rudie A, Moon RJ (2010) Atomic force microscopy characterization of cellulose nanocrystals. Langmuir 26:4480–4488CrossRefGoogle Scholar
  42. Lu P, Hsieh YL (2009) Cellulose nanocrystal-filled poly (acrylic acid) nanocomposite fibrous membranes. Nanotechnology 20(41):415604CrossRefGoogle Scholar
  43. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578CrossRefGoogle Scholar
  44. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504CrossRefGoogle Scholar
  45. Maniar KK (2004) Polymeric nanocomposites: a review. Polym Plast Technol Eng 43:427–443CrossRefGoogle Scholar
  46. Matsumoto T, Kawai M, Masuda T (1992) Influence of concentration and mannuronate/guluronate ratio on steady flow properties of alginate aqueous systems. Biorheology 29:411–417Google Scholar
  47. Miao C, Hamad WY (2013) Cellulose reinforced polymer composites and nanocomposites: a critical review. Cellulose 20(5):2221–2262CrossRefGoogle Scholar
  48. Mischnick P, Momcilovic D (2010) Chemical structure analysis of starch and cellulose derivatives. Adv Carbohydr Chem Biochem 64:117–210Google Scholar
  49. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011a) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefGoogle Scholar
  50. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011b) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefGoogle Scholar
  51. Necas J, Bartosikova L (2013) Carrageenan: a review. Vet Med-Czech 58(4):187–205Google Scholar
  52. O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207CrossRefGoogle Scholar
  53. Pan J, Hamad W, Straus SK (2010) Parameters affecting the chiral nematic phase of nanocrystalline cellulose films. Macromolecules 43(8):3851–3858CrossRefGoogle Scholar
  54. Park C, Park O, Lim J, Kim H (2001) The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer 42:7465–7475CrossRefGoogle Scholar
  55. Perez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: a comprehensive review. Starch 62:389–420CrossRefGoogle Scholar
  56. Ranby BG (1951) The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRefGoogle Scholar
  57. Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A (2008) Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites. Eur Polym J 44(8):2489–2498CrossRefGoogle Scholar
  58. Sairam M, Babu VR, Vijaya B, Naidu K, Aminabhavi TM (2006) Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int J Pharm 320:131–136CrossRefGoogle Scholar
  59. Sanchez-Garcia MD, Hilliou L, Lagaron JM (2010a) Nanobiocomposites of carrageenan, zein, and mica of interest in food packaging and coating applications. J Agri Food Chem 58(11):6884–6894CrossRefGoogle Scholar
  60. Sanchez-Garcia MD, Hilliou L, Lagaron JM (2010b) Morphology and water barrier properties of nanobiocomposites of κ/ι-hybrid carrageenan and cellulose nanowhiskers. J Agri Food Chem 58(24):12847–12857CrossRefGoogle Scholar
  61. Sarker N, Walker LC (1995) Hydration-dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym 27:177–185CrossRefGoogle Scholar
  62. Schadler LS, Brinson LC, Sawyer WG (2007) Polymer nanocomposites: a small part of the story. JOM 59(3):53–60CrossRefGoogle Scholar
  63. Schagerlf H, Richardson S, Momcilovic D, Brinkmalm G, Wittgren B, Tjerneld F (2006) Characterization of chemical substitution of hydroxypropyl cellulose using enzymatic degradation. Biomacromolecules 7:80–85CrossRefGoogle Scholar
  64. Shanmuganathan K, Capadona JR, Rowan SJ, Weder C (2010) Bio-inspired mechanically-adaptive nanocomposites derived from cotton cellulose whiskers. J Mater Chem 20(1):180–186CrossRefGoogle Scholar
  65. Singha AS, Thakur VK (2009a) Chemical resistance, mechanical and physical properties of biofibers-based polymer composites. Polym Plast Technol Eng 48:736–744CrossRefGoogle Scholar
  66. Singha AS, Thakur VK (2009b) Grewia optiva Fiber Reinforced Novel, low cost polymer composites. J Chem 6:71–76Google Scholar
  67. Singha AS, Thakur VK (2009c) Synthesis, characterisation and analysis of hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194Google Scholar
  68. Singha AS, Thakur VK (2009d) Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58CrossRefGoogle Scholar
  69. Singha AS, Thakur VK (2009e) Physical, chemical and mechanical properties of hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58:217–228CrossRefGoogle Scholar
  70. Singha AS, Thakur VK (2009f) Fabrication and characterization of h. sabdariffa fiber-reinforced green polymer composites. Polym-Plast Technol Eng 48:482–487CrossRefGoogle Scholar
  71. Singha AS, Thakur VK (2010a) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):127–146Google Scholar
  72. Singha AS, Thakur VK (2010b) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97CrossRefGoogle Scholar
  73. Singha AS, Thakur VK (2010c) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709CrossRefGoogle Scholar
  74. Spagnol C, Rodrigues FH, Neto AG, Pereira AG, Fajardo AR, Radovanovic E, Rubira AF, Muniz EC (2012) Nanocomposites based on poly(acrylamide-co-acrylate) and cellulose nanowhiskers. Eur Polym J 48(3):454–463CrossRefGoogle Scholar
  75. Strucova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6:1055–1061CrossRefGoogle Scholar
  76. Tester RF, Karkalas J, Qi X (2004) Starch—composition, fine structure and architecture. J Cereal Sci 39(2):151–165CrossRefGoogle Scholar
  77. Thakur VK, Singha AS, Kaur I et al (2010a) Silane functionalization of saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414CrossRefGoogle Scholar
  78. Thakur VK, Singha AS, Mehta IK (2010b) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):137–146CrossRefGoogle Scholar
  79. Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969CrossRefGoogle Scholar
  80. Thakur VK, Thakur MK (2014a) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRefGoogle Scholar
  81. Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  82. Thakur VK, Thakur MK (2014c) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652CrossRefGoogle Scholar
  83. Thakur VK, Thakur MK, Gupta RK (2014a) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271CrossRefGoogle Scholar
  84. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092CrossRefGoogle Scholar
  85. Thakur VK, Vennerberg D, Kessler MR (2014c) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356CrossRefGoogle Scholar
  86. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014d) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684CrossRefGoogle Scholar
  87. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014e) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249CrossRefGoogle Scholar
  88. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65(3):491–516CrossRefGoogle Scholar
  89. Tripathy T, Singh RP (2000) High performance flocculating agent based on partially hydrolysed sodium alginate-g-polyacrylamide. Eur Polym J 36(7):1471–1476CrossRefGoogle Scholar
  90. Wautelet M (2001) Scaling laws in the macro-, micro- and nanoworlds. Euro J Phys 22(6):601–611CrossRefGoogle Scholar
  91. Yang JS, Xie YJ, He W (2011) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84:33–39CrossRefGoogle Scholar
  92. Yang TH (2008) Recent applications of polyacrylamide as biomaterials. Recent Pat Mater Sci 1:29–40CrossRefGoogle Scholar
  93. Yuan Q, Misra RDK (2006) Polymer nanocomposites: current understanding and issues. Mater Sci Technol 22(7):742–755CrossRefGoogle Scholar
  94. Zhou C, Wu Q, Yue Y, Zhang Q (2011) Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels. J Colloid Interf Sci 353(1):116–123CrossRefGoogle Scholar
  95. Zhou Q, Malm E, Nilsson H, Larsson PT, Iversen T, Berglund LA, Bulone V (2009) Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating. Soft Matter 5(21):4124–4130CrossRefGoogle Scholar
  96. Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6:754–761Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Food Engineering and Packaging DivisionDefence Food Research LaboratoryMysoreIndia
  2. 2.Department of Polymer Science and TechnologySri Jayachamarajendra College of EngineeringMysoreIndia

Personalised recommendations