Metallic Nanocomposites: Bacterial-Based Ecologically Benign Biofabrication and Optimization Studies

  • Kannan Badri Narayanan
  • Anil K. SureshEmail author
  • Natarajan SakthivelEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 75)


Metallic nanocomposites are gaining considerable attention and are widely being implemented in several biomedical and engineering applications due to their potent physicochemical properties. To ease wide application of nanoparticles, research is focused on novel and better synthesis strategies. This brief chapter details on the biofabrication of diverse forms of metallic nanoparticles using various bacterial systems, and the cellular impact, illustrated using suitable examples. Demonstration on the biosynthesis of silver nanoparticles using the cell-free extract of P. plecoglossicida is presented. This chapter will also describe the influence of various physicocultural parameters such as the growth medium, concentration of precursor salt; pH and temperature on the biotransformation, so as to attain desirable morphological and surface characteristics of nanoparticles. Overall, this chapter aims to discuss the recent progress in relation to bacterial-based biosynthesis so as to have a better understanding on their safe use for various biomedical and engineering applications.


Bacteria Nanoparticles Silver Biosynthesis Physicocultural parameters 



The authors thank the Department of Science and Technology (DST), Government of India for financial support through funds for improvement of science and technology infrastructure in various universities and higher educational institutions (FIST) Programme coordinated by Prof. N. Sakthivel


  1. Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234CrossRefGoogle Scholar
  2. Ahmad A, Senapati S, Kumar R, Khan MI, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14a:824–828Google Scholar
  3. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53CrossRefGoogle Scholar
  4. Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432CrossRefGoogle Scholar
  5. Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887Google Scholar
  6. Borm P, Berube D (2008) A tale of opportunities, uncertainties, and risks. NanoToday 3:56–59CrossRefGoogle Scholar
  7. Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108CrossRefGoogle Scholar
  8. Correa-Llanten DN, Munoz-Ibacache SA, Castro ME, Munoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception island, Antarctica. Microb Cell Fact 12:75CrossRefGoogle Scholar
  9. Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14Google Scholar
  10. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597CrossRefGoogle Scholar
  11. De Windt D, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325CrossRefGoogle Scholar
  12. Du L, Jiang H, Xiaohua H, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170CrossRefGoogle Scholar
  13. Feng Y, Yu Y, Wang Y, Lin X (2007) Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus. Curr Microbiol 55:402–408CrossRefGoogle Scholar
  14. Fu JK, Liu YY, Gu PY, Tang D, Lin Z, Yao BX, Weng SZ (2000) Spectroscopic characterization on the biosorption and bioreduction of Ag(I) by Lactobacillus sp. A09. Acta Phys Chim Sin 16:779–782Google Scholar
  15. Gericke M, Pinches A (2006a) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  16. Gericke M, Pinches A (2006b) Microbial production of gold nanoparticles. Gold Bull 39:22–28CrossRefGoogle Scholar
  17. Gerrard TL, Telford JN, Williams HH (1974) Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacteriol 119:1057–1060Google Scholar
  18. Gregorio SD, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241CrossRefGoogle Scholar
  19. Gupta A, Silver S (1998) Silver as a biocide: will resistance become a problem? Nat Biotechnol 16:888CrossRefGoogle Scholar
  20. Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306CrossRefGoogle Scholar
  21. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407–409CrossRefGoogle Scholar
  22. Karthikeyan B (2012) Optical studies on thermally surface plasmon tuned Au, Ag and Au: Ag nanocomposite polymer films. Spectrochim Acta A Mol Biomol Spectrosc 96:456–460CrossRefGoogle Scholar
  23. Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279CrossRefGoogle Scholar
  24. Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740Google Scholar
  25. Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Poll 158:2335–2349CrossRefGoogle Scholar
  26. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614CrossRefGoogle Scholar
  27. Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007a) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653CrossRefGoogle Scholar
  28. Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007b) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192CrossRefGoogle Scholar
  29. Kornig A, Dong J, Bennet M, Widdrat M, Andert J, Muller FD, Schuler D, Klumpp S, Faivre D (2014) Probing the mechanical properties of magnetosome chains in living magnetotactic bacteria. Nano Lett 14:4653–4659CrossRefGoogle Scholar
  30. Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588CrossRefGoogle Scholar
  31. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  32. Lengke M, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661CrossRefGoogle Scholar
  33. Lengke M, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006a) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309CrossRefGoogle Scholar
  34. Lengke M, Fleet ME, Southam G (2006b) Morophology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787CrossRefGoogle Scholar
  35. Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132Google Scholar
  36. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602CrossRefGoogle Scholar
  37. Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta Part A 61:761–765CrossRefGoogle Scholar
  38. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504CrossRefGoogle Scholar
  39. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578CrossRefGoogle Scholar
  40. Loganathan B, Karthikeyan B (2013) Au core Pd/Pt shell in trimetallic Au/Pd/Pt colloidal nanocomposites: physicochemical characterization study. Colloids Surf A Physicochem Eng Asp 436:944–952CrossRefGoogle Scholar
  41. Lortie L, Gould WD, Rajan S, McCready RGL, Cheng KJ (1992) Reduction of selenite and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044Google Scholar
  42. Losi ME, Frankenberger WT Jr (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084Google Scholar
  43. Mann S (1992) Bacteria and the midas touch. Nature 357:358–360CrossRefGoogle Scholar
  44. Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407CrossRefGoogle Scholar
  45. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001a) Bioreduction of AuCl4̅ ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588CrossRefGoogle Scholar
  46. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  47. Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172CrossRefGoogle Scholar
  48. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298CrossRefGoogle Scholar
  49. Narayanan KB, Sakthivel N (2011a) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189:519–525CrossRefGoogle Scholar
  50. Narayanan KB, Sakthivel N (2011b) Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum. Bioresour Technol 102:10737–10740CrossRefGoogle Scholar
  51. Pighi L, Pumpel T, Schinner F (1989) Selective accumulation of silver by fungi. Biotechnol Lett 11:275–280CrossRefGoogle Scholar
  52. Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815CrossRefGoogle Scholar
  53. Salvadori MR, Ando RA, Oller do Nascimento CA, Correa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9:e87968Google Scholar
  54. Sathiyadevi G, Loganathan B, Karthikeyan B (2014) Solvent-mediated eco-friendly synthesis and characterization of monodispersed bimetallic Ag/Pd nanocomposites for sensing and Raman scattering applications. J Nanosci 762453Google Scholar
  55. Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind J Phys 78A:101–105Google Scholar
  56. Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bull Mater Sci 35:1201–1205CrossRefGoogle Scholar
  57. Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142CrossRefGoogle Scholar
  58. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256CrossRefGoogle Scholar
  59. Silverberg RA, Wong PTS, Chau YK (1976) Localization of selenium in bacterial cells using TEM and energy dispersive X-ray analysis. Arch Microbiol 107:1–6CrossRefGoogle Scholar
  60. Singha AS, Thakur VK (2008a) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873Google Scholar
  61. Singha AS, Thakur VK (2008b) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791CrossRefGoogle Scholar
  62. Singha AS, Thakur VK (2010a) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Character 15:87–97CrossRefGoogle Scholar
  63. Singha AS, Thakur VK (2010b) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709CrossRefGoogle Scholar
  64. Singha AS, Thakur VK, Mehta IK, Sharma A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Character 14:695–711CrossRefGoogle Scholar
  65. Smith PR, Holmes JD, Richardson DJ, Russell DA, Sodeau JR (1998) Photophysical and photochemical characterisation of bacterial semiconductor cadmium sulfide particles. J Chem Soc Faraday Trans 94:1235–1241CrossRefGoogle Scholar
  66. Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58:4527–4530CrossRefGoogle Scholar
  67. Srivastava P, Braganca J, Ramanan S, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831CrossRefGoogle Scholar
  68. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Radionuclide contamination: nanometer-size products of uranium bioreduction. Nature 419:134CrossRefGoogle Scholar
  69. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  70. Thakur VK, Thakur MK (2014b) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRefGoogle Scholar
  71. Thakur VK, Thakur MK (2014c) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652CrossRefGoogle Scholar
  72. Thakur VK, Singha AS, Mehta IK (2010a) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Character 15:137–146CrossRefGoogle Scholar
  73. Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010b) Silane functionalization of Saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Character 15:397–414CrossRefGoogle Scholar
  74. Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544CrossRefGoogle Scholar
  75. Thakur VK, Yan J, Lin M-F et al (2012a) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969CrossRefGoogle Scholar
  76. Thakur VK, Singha AS, Thakur MK (2012b) In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Character 17:48–60CrossRefGoogle Scholar
  77. Thakur VK, Vennerberg D, Kessler MR (2014a) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. Acs Appl Mater Interfaces 6:9349–9356CrossRefGoogle Scholar
  78. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem Eng 2:1072–1092CrossRefGoogle Scholar
  79. Thakur VK, Thakur MK, Gupta RK (2014c) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271. doi: 10.1080/1023666X.2014.880016 CrossRefGoogle Scholar
  80. Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenite and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336CrossRefGoogle Scholar
  81. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418CrossRefGoogle Scholar
  82. Yadav V, Sharma N, Prakash R, Raina KK, Bharadwaj LM, Prakash NT (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnology 7:299–304CrossRefGoogle Scholar
  83. Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Department of Biotechnology, School of Life SciencesPondicherry UniversityKalapetIndia
  2. 2.School of Biotechnology, Graduate School of Biochemistry and Research Institute of Protein SensorYeungnam UniversityGyeongsanSouth Korea

Personalised recommendations