Skip to main content

Metallic Nanocomposites: Bacterial-Based Ecologically Benign Biofabrication and Optimization Studies

  • Chapter
  • First Online:

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Metallic nanocomposites are gaining considerable attention and are widely being implemented in several biomedical and engineering applications due to their potent physicochemical properties. To ease wide application of nanoparticles, research is focused on novel and better synthesis strategies. This brief chapter details on the biofabrication of diverse forms of metallic nanoparticles using various bacterial systems, and the cellular impact, illustrated using suitable examples. Demonstration on the biosynthesis of silver nanoparticles using the cell-free extract of P. plecoglossicida is presented. This chapter will also describe the influence of various physicocultural parameters such as the growth medium, concentration of precursor salt; pH and temperature on the biotransformation, so as to attain desirable morphological and surface characteristics of nanoparticles. Overall, this chapter aims to discuss the recent progress in relation to bacterial-based biosynthesis so as to have a better understanding on their safe use for various biomedical and engineering applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S (2009) Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63:1231–1234

    Article  CAS  Google Scholar 

  • Ahmad A, Senapati S, Kumar R, Khan MI, Ramani R, Srinivas V, Sastry M (2003) Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14a:824–828

    Google Scholar 

  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1:47–53

    Article  CAS  Google Scholar 

  • Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141:876–887

    CAS  Google Scholar 

  • Borm P, Berube D (2008) A tale of opportunities, uncertainties, and risks. NanoToday 3:56–59

    Article  CAS  Google Scholar 

  • Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–108

    Article  CAS  Google Scholar 

  • Correa-Llanten DN, Munoz-Ibacache SA, Castro ME, Munoz PA, Blamey JM (2013) Gold nanoparticles synthesized by Geobacillus sp. strain ID17 a thermophilic bacterium isolated from Deception island, Antarctica. Microb Cell Fact 12:75

    Article  CAS  Google Scholar 

  • Cunningham DP, Lundie LL (1993) Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59:7–14

    CAS  Google Scholar 

  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338:596–597

    Article  CAS  Google Scholar 

  • De Windt D, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325

    Article  Google Scholar 

  • Du L, Jiang H, Xiaohua H, Wang E (2007) Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5α and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9:1165–1170

    Article  CAS  Google Scholar 

  • Feng Y, Yu Y, Wang Y, Lin X (2007) Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus. Curr Microbiol 55:402–408

    Article  CAS  Google Scholar 

  • Fu JK, Liu YY, Gu PY, Tang D, Lin Z, Yao BX, Weng SZ (2000) Spectroscopic characterization on the biosorption and bioreduction of Ag(I) by Lactobacillus sp. A09. Acta Phys Chim Sin 16:779–782

    Google Scholar 

  • Gericke M, Pinches A (2006a) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140

    Article  CAS  Google Scholar 

  • Gericke M, Pinches A (2006b) Microbial production of gold nanoparticles. Gold Bull 39:22–28

    Article  CAS  Google Scholar 

  • Gerrard TL, Telford JN, Williams HH (1974) Detection of selenium deposits in Escherichia coli by electron microscopy. J Bacteriol 119:1057–1060

    CAS  Google Scholar 

  • Gregorio SD, Lampis S, Vallini G (2005) Selenite precipitation by a rhizospheric strain of Stenotrophomonas sp. isolated from the root system of Astragalus bisulcatus: a biotechnological perspective. Environ Int 31:233–241

    Article  Google Scholar 

  • Gupta A, Silver S (1998) Silver as a biocide: will resistance become a problem? Nat Biotechnol 16:888

    Article  CAS  Google Scholar 

  • Jha AK, Prasad K, Prasad K (2009) A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43:303–306

    Article  CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407–409

    Article  CAS  Google Scholar 

  • Karthikeyan B (2012) Optical studies on thermally surface plasmon tuned Au, Ag and Au: Ag nanocomposite polymer films. Spectrochim Acta A Mol Biomol Spectrosc 96:456–460

    Article  CAS  Google Scholar 

  • Kashefi K, Tor JM, Nevin KP, Lovley DR (2001) Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea. Appl Environ Microbiol 67:3275–3279

    Article  CAS  Google Scholar 

  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R (1999) Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65:4734–4740

    CAS  Google Scholar 

  • Kim J, Van der Bruggen B (2010) The use of nanoparticles in polymeric and ceramic membrane structures: review of manufacturing procedures and performance improvement for water treatment. Environ Poll 158:2335–2349

    Article  CAS  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96:13611–13614

    Article  CAS  Google Scholar 

  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T (2007a) Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128:648–653

    Article  CAS  Google Scholar 

  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S (2007b) Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochim Acta 53:186–192

    Article  CAS  Google Scholar 

  • Kornig A, Dong J, Bennet M, Widdrat M, Andert J, Muller FD, Schuler D, Klumpp S, Faivre D (2014) Probing the mechanical properties of magnetosome chains in living magnetotactic bacteria. Nano Lett 14:4653–4659

    Article  Google Scholar 

  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2002) Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78:583–588

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Lengke M, Southam G (2006) Bioaccumulation of gold by sulfate-reducing bacteria cultured in the presence of gold(I)-thiosulfate complex. Geochim Cosmochim Acta 70:3646–3661

    Article  CAS  Google Scholar 

  • Lengke M, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G (2006a) Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold(III)-chloride complex. Environ Sci Technol 40:6304–6309

    Article  CAS  Google Scholar 

  • Lengke M, Fleet ME, Southam G (2006b) Morophology of gold nanoparticles synthesized by filamentous cyanobacteria from gold(I)-thiosulfate and gold(III)-chloride complexes. Langmuir 22:2780–2787

    Article  CAS  Google Scholar 

  • Li XZ, Nikaido H, Williams KE (1997) Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J Bacteriol 179:6127–6132

    CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  Google Scholar 

  • Lin Z, Wu J, Xue R, Yang Y (2005) Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae. Spectrochim Acta Part A 61:761–765

    Article  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Article  CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    Article  CAS  Google Scholar 

  • Loganathan B, Karthikeyan B (2013) Au core Pd/Pt shell in trimetallic Au/Pd/Pt colloidal nanocomposites: physicochemical characterization study. Colloids Surf A Physicochem Eng Asp 436:944–952

    Article  CAS  Google Scholar 

  • Lortie L, Gould WD, Rajan S, McCready RGL, Cheng KJ (1992) Reduction of selenite and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044

    CAS  Google Scholar 

  • Losi ME, Frankenberger WT Jr (1997) Reduction of selenium oxyanions by Enterobacter cloacae SLD1a-1: isolation and growth of the bacterium and its expulsion of selenium particles. Appl Environ Microbiol 63:3079–3084

    CAS  Google Scholar 

  • Mann S (1992) Bacteria and the midas touch. Nature 357:358–360

    Article  Google Scholar 

  • Mann S, Frankel RB, Blakemore RP (1984) Structure, morphology and crystal growth of bacterial magnetite. Nature 310:405–407

    Article  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001a) Bioreduction of AuCl4̅ ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Article  CAS  Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001b) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519

    Article  CAS  Google Scholar 

  • Naik RR, Stringer SJ, Agarwal G, Jones SE, Stone MO (2002) Biomimetic synthesis and patterning of silver nanoparticles. Nat Mater 1:169–172

    Article  CAS  Google Scholar 

  • Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2:293–298

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011a) Synthesis and characterization of nano-gold composite using Cylindrocladium floridanum and its heterogeneous catalysis in the degradation of 4-nitrophenol. J Hazard Mater 189:519–525

    Article  CAS  Google Scholar 

  • Narayanan KB, Sakthivel N (2011b) Heterogeneous catalytic reduction of anthropogenic pollutant, 4-nitrophenol by silver-bionanocomposite using Cylindrocladium floridanum. Bioresour Technol 102:10737–10740

    Article  CAS  Google Scholar 

  • Pighi L, Pumpel T, Schinner F (1989) Selective accumulation of silver by fungi. Biotechnol Lett 11:275–280

    Article  CAS  Google Scholar 

  • Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11:1811–1815

    Article  CAS  Google Scholar 

  • Salvadori MR, Ando RA, Oller do Nascimento CA, Correa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9:e87968

    Google Scholar 

  • Sathiyadevi G, Loganathan B, Karthikeyan B (2014) Solvent-mediated eco-friendly synthesis and characterization of monodispersed bimetallic Ag/Pd nanocomposites for sensing and Raman scattering applications. J Nanosci 762453

    Google Scholar 

  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R (2004) Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Ind J Phys 78A:101–105

    CAS  Google Scholar 

  • Seshadri S, Prakash A, Kowshik M (2012) Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8. Bull Mater Sci 35:1201–1205

    Article  CAS  Google Scholar 

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41:5137–5142

    Article  CAS  Google Scholar 

  • Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11:253–256

    Article  CAS  Google Scholar 

  • Silverberg RA, Wong PTS, Chau YK (1976) Localization of selenium in bacterial cells using TEM and energy dispersive X-ray analysis. Arch Microbiol 107:1–6

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2008a) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2008b) Saccaharum cilliare fiber reinforced polymer composites. E-J Chem 5:782–791

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2010a) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Character 15:87–97

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK (2010b) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709

    Article  CAS  Google Scholar 

  • Singha AS, Thakur VK, Mehta IK, Sharma A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Character 14:695–711

    Article  CAS  Google Scholar 

  • Smith PR, Holmes JD, Richardson DJ, Russell DA, Sodeau JR (1998) Photophysical and photochemical characterisation of bacterial semiconductor cadmium sulfide particles. J Chem Soc Faraday Trans 94:1235–1241

    Article  CAS  Google Scholar 

  • Southam G, Beveridge TJ (1994) The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58:4527–4530

    Article  CAS  Google Scholar 

  • Srivastava P, Braganca J, Ramanan S, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831

    Article  CAS  Google Scholar 

  • Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Radionuclide contamination: nanometer-size products of uranium bioreduction. Nature 419:134

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014c) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Mehta IK (2010a) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Character 15:137–146

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010b) Silane functionalization of Saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Character 15:397–414

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544

    Article  CAS  Google Scholar 

  • Thakur VK, Yan J, Lin M-F et al (2012a) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Character 17:48–60

    Article  CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Kessler MR (2014a) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. Acs Appl Mater Interfaces 6:9349–9356

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustainable Chem Eng 2:1072–1092

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Gupta RK (2014c) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19:256–271. doi:10.1080/1023666X.2014.880016

    Article  CAS  Google Scholar 

  • Tomei FA, Barton LL, Lemanski CL, Zocco TG, Fink NH, Sillerud LO (1995) Transformation of selenite and selenite to elemental selenium by Desulfovibrio desulfuricans. J Ind Microbiol 14:329–336

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61:1413–1418

    Article  CAS  Google Scholar 

  • Yadav V, Sharma N, Prakash R, Raina KK, Bharadwaj LM, Prakash NT (2008) Generation of selenium containing nano-structures by soil bacterium, Pseudomonas aeruginosa. Biotechnology 7:299–304

    Article  CAS  Google Scholar 

  • Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80:285–290

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Department of Science and Technology (DST), Government of India for financial support through funds for improvement of science and technology infrastructure in various universities and higher educational institutions (FIST) Programme coordinated by Prof. N. Sakthivel

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anil K. Suresh or Natarajan Sakthivel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Narayanan, K.B., Suresh, A.K., Sakthivel, N. (2015). Metallic Nanocomposites: Bacterial-Based Ecologically Benign Biofabrication and Optimization Studies. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_7

Download citation

Publish with us

Policies and ethics