Advertisement

Biodegradable Starch Nanocomposites

  • N. L. García
  • L. Famá
  • N. B. D’AccorsoEmail author
  • S. GoyanesEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 75)

Abstract

Biodegradable thermoplastic materials offer great potential to be used in food packaging or biomedical industry. In this chapter we will present a review of the research done on starch and starch nanocomposites. In the case of nanocomposites based on starch, special attention will be given to the influence of starch nanoparticles, cellulose whiskers, zinc oxide nanorods, antioxidants, and antimicrobial inclusion on the physicochemical properties of the materials. The discussion will be focused on structural, mechanical, and barrel properties as well as on degradation, antibacterial and antioxidant activities. Finally, we will discuss our perspectives on how future research should be oriented to contribute in the substitution of synthetic materials with new econanocomposites.

Keywords

Starch Nanocomposites Starch nanoparticles Cellulose Layered silicate Antioxidant nanofillers Antimicrobial nanofillers 

Abbreviations

σ

Tensile strength

Ag-NP

Silver nanoparticles

B-NC

Bamboo nanocrystals

C-NC

Cellulose nanocrystals

C-NF

Cellulose nanofibers

C-NW

Cellulose nanowhiskers

CH

Chitosan

CH-NP

Chitosan nanoparticles

CA-S-NP

Citric acid-modified starch nanoparticles

CO2

Carbon dioxide

CMC

Carboxymethylcellulose sodium

D

Diameter

DAS

Dialdehyde starch

F-CN

Flax cellulose nanocrystals

HC-NC

Hemp (Cannabis sativa) cellulose nanocrystals

k

Aspect ratio

L

Length

MCC

Microcrystalline cellulose

MEO

Pennyroyal

MFC

Microfibrillated cellulose

MMT

Montmorillonite

PLA

Polylactic acid

PO2

Oxygen permeability

PVA

Polyvinyl alcohol

REX

Reactive extrusion

RTE

Ready-to-eat

S-NP

Starch nanoparticles

SME

Specific mechanical energy

Td

Decomposition temperature

Tg

Glass transition temperature

TiO2

Titanium oxide

TiO2-NP

Titanium oxide nanoparticles

Tm

Melting temperature

TPS

Thermoplastic starch

WVP

Water vapor permeability

UV

Ultraviolet spectroscopy

wt%

Weight percentage

ZEO

Zataria multiflora Boiss

ZnO

Zinc oxide

ZnO-NP

Zinc oxide nanoparticles

ZnO-NP-CMC

Zinc oxide nanoparticles-carboxymethylcellulose sodium

ZnO-NR

Zinc oxide nanorods

Notes

Acknowledgements

The authors want to thank the National Scientific and Technical Research Council of Argentina, CONICET (PIP 2013-2015, 11220120100508CO and 11220110100370CO), the University of Buenos Aires (UBACYT 2011-2014, 20020100100350 and 200220100100142, and UBACYT 2012-2015, 20020110200196), and ANPCyT (PICT-2012-1093 and PICT-2012-0717), for their support.

References

  1. Abdorreza MN, Cheng LH, Karim AA (2011) Effects of plasticizers on thermal properties and heat sealability of sago starch films. Food Hydrocolloid 25:56–60Google Scholar
  2. Akdogan H (1996) Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Res Int 29:423–429Google Scholar
  3. Alebooyeh R, Nafchi AM, Jokar M (2012) The effects of ZnO nanorods on the characteristics of sago starch biodegradable films. J Chem Health Risks 2:13–16Google Scholar
  4. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–63Google Scholar
  5. Amada S, Ichikawa Y, Munekata T, Nagase Y, Shimuzu H (1997) Fibre texture and mechanical graded structure of bamboo. Compos Part B Eng 28:13–20Google Scholar
  6. Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7:531–539Google Scholar
  7. Angles MN, Dufresne A (2000) Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33:8344–8353Google Scholar
  8. Angles MN, Dufresne A (2001) Plasticized starch/tunicin whiskers nanocomposite materials. 2.Mechanical behavior. Macromolecules 34:2921–2931Google Scholar
  9. Aouada FA, Mattoso LHC, Longo E (2011) A simple procedure for the preparation of laponite and thermoplastic starch nanocomposites: structural, mechanical, and thermal characterizations. J Therm Comp Mat 26:109–124Google Scholar
  10. Appendini P, Hotchkiss JH (1997) Immobilization of lysozyme on food contact polymers as potential antimicrobial films. Packag Technol Sci 10:271–279Google Scholar
  11. Arockianathan PM, Sekar S, Kumaran B, Sastry TP (2012) Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol 50:939–946Google Scholar
  12. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49Google Scholar
  13. Arvanitoyannis I, Billiaderis CG, Ogawa H, Kawasaki N (1998) Biodegradable films made from low-density polyethylene (LDPE), rice starch and potato starch for food packaging applications: part 1. Carbohydr Polym 36:89–104Google Scholar
  14. Atwell WA, Hood LF, Lineback DR, Varriano-Marston E, Zobel HF (1988) The terminology and methodology associated with basic starch phenomena. Cereal Food World 33:306–311 Google Scholar
  15. Auer G, Griebler WD, Jahn B (2005) Industrial inorganic pigments. Wiley-VCH Verlag GmbH & Co, KGaA, WeinheimGoogle Scholar
  16. Avérous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56:111–122Google Scholar
  17. Ayadi F, Dole P (2011) Stoichiometric interpretation of thermoplastic starch water sorption and relation to mechanical behavior. Carbohydr Polym 84:872–880Google Scholar
  18. Baker R, Baldwin E, Nisperos-Carriedo M (1994) Edible coatings and films to improve food quality. CRC Press, Lancaster, p 392Google Scholar
  19. Barringer EA, Bowen HK (1982) Formation, packing and sintering of monodispersed TiO2 powders. J Am Ceram Soc 65:199–201Google Scholar
  20. Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054Google Scholar
  21. Bergaya F, Jaber M, Lambert JF (2009) Clays and clay minerals as layered nanofillers for (bio) polymers. In: Averous L, Pollet E (eds) Environmental silicate nano-biocomposites (green energy and technology). Springer, London, pp 41–75Google Scholar
  22. Bertan LC, Tanada-Palmu PS, Siani AC, Grosso CRF (2005) Effect of fatty acids and ‘Brazilian elemi’ on composite films based on gelatin. Food Hydrocolloid 19:73–82Google Scholar
  23. Bertolini C, Souza E, Nelson JE, Huber KC (2003) Composition and reactivity of A- and B-type starch granules of normal, partial waxy, and waxy wheat. Cereal Chem 80:544–549Google Scholar
  24. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Fischer JE, Johnson AT (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80:2767–2769Google Scholar
  25. Bierhalz ACK, da Silva MA, Kieckbusch TG (2012) Natamycin release from alginate/pectin films for food packaging applications. J Food Eng 110:18–25Google Scholar
  26. Borges SV, Dias ML, Pita VJRR, Azuma C, Dias MV (2012) Water vapor permeability and tensile properties of poly(l-lactic acid)/synthetic mica nanocomposites prepared by melt blending. J Plast Film Sheet. doi: 10.1177/8756087912463712 Google Scholar
  27. Bourtoom T (2009) Edible protein films: properties enhancement. Int Food Res J 16:1–9Google Scholar
  28. Bouwmeester H, Dekkers S, Noordam MY, Hagens WI, Bulder AS, de Heer C (2009) Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 53:52–62Google Scholar
  29. Bouyer E, Mekhloufi G, Rosilio V, Grossiord J-L, Agnely F (2012) Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: alternatives to synthetic surfactants in the pharmaceutical field? Int J Pharma 436:359–378Google Scholar
  30. Bradley EL, Castle L, Chaudhry Q (2011) Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci Technol doi: 10.1016/j.tifs.2011.01.002 (in press)
  31. Cai K, Bossert J, Jandt KD (2006) Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation? Colloid Surf B Biointerfaces 49:136–144Google Scholar
  32. Cao X, Chen Y, Chang PR, Huneault MA (2007) Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites. J Appl Polym Sci 106:1431–1437Google Scholar
  33. Cao X, Chen Y, Chang PR, Muir AD, Falk G (2008a) Starch-based nanocomposites reinforced with flax cellulose nanocrystals. Express Polym Lett 2:502–510Google Scholar
  34. Cao X, Chen Y, Chang PR, Stumborg M, Huneault MA (2008b) Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci 109:3804–3810Google Scholar
  35. Cao X, Ding B, Yu J, Al-Deyab S (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90:1075–1080Google Scholar
  36. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L, Bleve-Zacheo T, D’Alessio M, Zambonin PG, Traversa E (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262Google Scholar
  37. Copeland L, Blazek J, Salman H, Tang MCM (2009) Form and functionality of starch. Food Hydrocolloid 23:1527–1531Google Scholar
  38. Corzo-Martínez M, Corzo N, Villamiel M (2007) Biological properties of onions and garlic. Trends Food Sci Tech 18:609–625Google Scholar
  39. Creutz C (1981) The complexities of ascorbate as a reducing agent. Inorg Chem 20:4449–4452Google Scholar
  40. Cuq JL, Aymard C, Cheftel C (1977) Effects of hypochlorite treatments on a methionyl peptide. Food Chem 2:309–314Google Scholar
  41. Chang PR, Yu J, Ma X (2009) Fabrication and characterization of Sb2O3/carboxymethyl cellulose sodium and the properties of plasticized starch composite films. Macromol Mat Eng 294:762–767Google Scholar
  42. Chang PR, Jian R, Zheng P, Yu J, Ma X (2010a) Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle (CN) composites. Carbohydr Polym 79:301–305Google Scholar
  43. Chang PR, Jian R, Yu J, Ma X (2010b) Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem 120:736–740Google Scholar
  44. Chang PR, Jian R, Yu J, Ma X (2010c) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80:421–426Google Scholar
  45. Chakraborty S, Sahoo B, Teraka I, Miller LM, Gross RA (2005) Enzyme-catalyzed regioselective modification of starch nanoparticles. Macromolecules 38:61–68Google Scholar
  46. Chartoff RP (1981) Thermal characterization of polymeric materials. In: Turi E (ed) Academic Press, San Diego, p 526Google Scholar
  47. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam A 25:241–258Google Scholar
  48. Chen Y, Cao X, Chang PR, Huneault MA (2008) Comparative study on the films of poly(vinyl alcohol)/pea starch nanocrystals and poly(vinyl alcohol)/native pea starch. Carbohydr Polym 73:8–17Google Scholar
  49. Chen Y, Liu C, Chang PR, Anderson DP, Huneault MA (2009a) Pea starch-based composite films with pea hull fibers and pea hull fiber-derived nanowhiskers. Polym Eng Sci 49:369–378Google Scholar
  50. Chen Y, Liu C, Chang PR, Cao X, Anderson DP (2009b) Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzed from pea hull fibre: effect of hydrolysis time. Carbohydr Polym 76:607–615Google Scholar
  51. Cheng LH, Karim AA, Seow CC (2006) Effects of water–glycerol and water–sorbitol interactions on the physical properties of konjac glucomannan films. J Food Sci 71:62–67Google Scholar
  52. Cheviron P, Gouanvé F, Espuche E (2014) Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr Polym 108:291–298Google Scholar
  53. Chivrac CF, Pollet E, Dole P, Avérous L (2010) Starch base nano-biocomposites: plasticizer impact on the montmorillonite exfoliation process. Carbohydr Polym 79:941–947Google Scholar
  54. Davidson PM, Zivanovic S (2003) The use of natural antimicrobials. In: Zeuthen P, Bogh-Sorensen L (eds) Food preservation techniques. CRC Press, Boca Raton, pp 5–30Google Scholar
  55. Davidson PM, Taylor TM (2007) Chemical preservatives and natural antimicrobial compounds. In: Doyle MP, Beuchat LR (eds) Food microbiology: fundamentals and frontiers. ASM Press, Washington, DC, pp 713–746Google Scholar
  56. Davies MB (1992) Reactions of L-ascorbic acid with transition metal complexes. Polyhedron 11:285–321Google Scholar
  57. De Azedero HMC (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253Google Scholar
  58. De Berardis B, Civitelli G, Condello M, Lista P, Pozzi R, Arancia G, Meschini S (2010) Exposure to ZnO nanoparticles induces oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol Appl Pharm 246:116–127Google Scholar
  59. de Mesa NJE, Sajid A, Singh N, Shi YC, Dogan H, Sang Y (2009) Soy protein fortified expanded extrudates: baseline study using normal corn starch. J Food Eng 90:262–270Google Scholar
  60. Dhakal HN, Zhang Z (2012) Polymer matrix composites: moisture effects and dimensional stability. In: Nicolais L, Borsachiello A (eds) Wiley encyclopedia of composites. Wiley, New YorkGoogle Scholar
  61. Dieu T, Liem N, Mai Y, Tung N (2004) Study on fabrication of BMC laminates based on unsaturated polyester resin reinforced by hybrid bamboo/glass fibers. JSME Int J Ser A 47:570–573Google Scholar
  62. DTU Food (2009) Food National Institute Food. Danish Food Composition Databank. (http://www.foodcomp.dk/v7/fcdb_foodnutrlist.asp?CompId=0065)
  63. Du YY, Fang HH, Zheng PW (2013) Porous sepiolite/starch composites: Preparation, structure and absorption properties. Adv Mat Res 1937:634–638Google Scholar
  64. Duquesne E, Moins S, Alexandre M, Dubois P (2007) How can nanohybrids enhance polyester/sepiolite nanocomposite properties? Macromol Chem Phys 208:2542–2550Google Scholar
  65. Duran N, Lemes AP, Duran M, Freer J, Baeza J (2011) A mini review of cellulose nanocrystals and its potential integration as co-product in bioethanol production. J Chil Chem Soc 56:672–677Google Scholar
  66. Dutta PK, Tripathi S, Mehrotra GK, Dutta J (2009) Perspectives for chitosan based antimicrobial films in food applications. Food Chem 114:1173–1182Google Scholar
  67. Elsabee MZ, Abdou ES (2013) Chitosan based edible films and coatings: a review. Mater Sci Eng C 33:1819–1841Google Scholar
  68. Ellmer K, Klein A, Rech B (2008) Transparent conductive zinc oxide. Springer, HeidelbergGoogle Scholar
  69. Eugenius GF, Jongboom ROJ, Feil H, Gotlieb KF, Boersma A (2000) Patent WO 2000069916 A1, 20001123Google Scholar
  70. Espitia PJP, Soares NFF, dos Reis Coimbra JS, de Andrade NJ, Cruz RS, Alves Medeiros EA (2012) Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol 5:1447–1464Google Scholar
  71. European Project (FlexPakRenew–FP7/2007-2013—no. 207810. http://ec.europa.eu/research/infocentre/converting.cfm
  72. Famá L, Rojas AM, Goyanes S, Gerschenson L (2005) Mechanical properties of tapioca-starch edible films containing sorbates. LWT 38:631–639Google Scholar
  73. Famá L, Flores SK, Gerschenson L, Goyanes S (2006) Physical characterization of cassava starch biofilms with special reference to dynamic mechanical properties at low temperatures. Carbohydr Polym 66:8–15Google Scholar
  74. Famá L, Goyanes S, Gerschenson L (2007) Influence of storage time at room temperature in physicochemical properties of tapioca starch edible films. Carbohydr Polym 70:265–273Google Scholar
  75. Famá L, Gerschenson L, Goyanes S (2009a) Starch-vegetable fiber composites to protect food products. Carbohydr Polym 75:230–235Google Scholar
  76. Famá L, Gerschenson LN, Goyanes S (2009b) Nanocompuestos biodegradables y comestibles: almidón-polvo de ajo. Suplemento de la Revista Latinoamericana de Metalurgia y Materiales S1(3):1235–1240Google Scholar
  77. Famá L, Bittante AMBQ, Sobral PJA, Goyanes S, Gerschenson LN (2010) Garlic powder and wheat bran as fillers: their effect on the physicochemical properties of edible biocomposites. Mat Sci Eng C 30:853–859Google Scholar
  78. Famá LM, Pettarin V, Goyanes S, Bernal CR (2011) Starch based nanocomposites with improved mechanical properties. Carbohydr Polym 83:1226–1231Google Scholar
  79. Famá LM, Gañan P, Bernal CR, Goyanes S (2012) Biodegradable starch nanocomposites with low water vapor permeability and high storage modulus. Carbohydr Polym 87:1989–1993Google Scholar
  80. Famá L, Kumar R (2014) Nanocomposites based on polylactic acid (PLA) reinforced by functionalized carbon nanotubes (CNT). In: Kumar R (ed) Polymer-matrix composites: types, applications and performance. Nova Science Publishers, Inc. USA (in press)Google Scholar
  81. FDA (2011) Part 182-substances generally recognized as safe. Food and drug administration. Washington DC. http://ecfr.gpoaccess.gov/cgi/t/text/text-idx?c0ecfr&sid0786bafc6f6343634fbf79fcdca7061e1&rgn0div5&-
  82. Flores S, Famá L, Rojas AN, Goyanes S, Gerschenson L (2007) Physicochemical properties of tapioca-starch edible films. Influence of gelatinization and drying technique. Food Res Int 4:257–265Google Scholar
  83. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462Google Scholar
  84. Gálvez A, Abriouel H, López RL, Omar NB (2007) Bacteriocin-based strategies for food biopreservation. Int J Food Microbiol 120:51–70Google Scholar
  85. García MA, Martino MN, Zaritzky NE (1998) Starch-based coatings: effect on refrigerated strawberry (Fragaria × Ananassa) quality. J Sci Food Agric 76:411–420Google Scholar
  86. García NL, Famá L, Dufresne A, Aranguren A, Goyanes S (2009a) A comparison between the physico-chemical properties of tuber and cereal starches. Food Res Int 42:976–982Google Scholar
  87. García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2009b) Physico mechanical properties of biodegradable starch nanocomposites. Macromol Mater Eng 294:169–177Google Scholar
  88. García NL, Ribba L, Dufresne A, Aranguren M, Goyanes S (2011) Effect of glycerol on the morphology of nanocomposites made from thermoplastic starch and starch nanocrystals. Carbohydr Polym 84:203–210Google Scholar
  89. Galicia-García T, Martínez-Bustos F, Jiménez-Arévalo OA, Arencón D, Gámez-Pérez J, Martínez AB (2012) Films of native and modified starch reinforced with fiber: influence of some extrusion variables using response surface methodology. J Appl Polym Sci 126:327–336Google Scholar
  90. Gaspar M, Benko Z, Dogossy G, Reczey K, Czigany T (2005) Reducing water absorption in compostable starch-based plastics. Polym Degrad Stab 90:563–569Google Scholar
  91. Ghanbarzadeh B, Almasi H, Entezami A (2011) Improving the barrier and mechanical properties of corn starch-based edible films: effect of citric acid and carboxymethyl cellulose. Ind Crop Prod 33:229–235Google Scholar
  92. Ghavami K (2005) Bamboo as reinforcement in structural concrete elements. Cement Concr Comp 27:637–649Google Scholar
  93. Ghasemlou M, Aliheidari N, Fahmi R, Shojaee-Aliabadi S, Keshavarz B, Cran MJ, Khaksar R (2013) Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr Polym 98:1117–1126Google Scholar
  94. Ghori MU, Alba K, Smith AM, Conway BR, Kontogiorgos V (2014) Okra extracts in pharmaceutical and food applications. Food Hydrocolloid ISSN 0268005X. Available online 26 April 2014 (in press)Google Scholar
  95. Godavarti S, Karwe MV (1997) Determination of specific mechanical energy distribution on a twin-screw extruder. J Agric Eng Res 67:277–287Google Scholar
  96. Godbillot L, Dole P, Joly C, Rogé B, Mathlouthi M (2006) Analysis of water binding in starch plasticized films. Food Chem 96:380–386Google Scholar
  97. González Seligra P, Nuevo F, Lamanna M, Famá L (2013) Covalent grafting of carbon nanotubes to PLA in order to improve compatibility. Compos B Eng 46:61–68Google Scholar
  98. Goyanes S, Aranguren M, García N, Famá L, Ribba L, Dufresne A (2010) International Patent No 20.100.100.044Google Scholar
  99. Gropper M, Moraru CI, Kokini JL (2002) Effect of specific mechanical energy on properties of extruded protein–starch mixtures. Cereal Chem 79:429–433Google Scholar
  100. Guerrero P, Beatty E, Kerry JP, de la Caba K (2012) Extrusion of soy protein with gelatin and sugars at low moisture content. J Food Eng 110:53–59Google Scholar
  101. Gutiérrez TJ, Pérez E, Guzmán R, Tapia MS, Famá L (2014a) Physicochemical and functional properties of native and modified by crosslinking, dark cush-cush yam (Dioscorea trifida) and cassava (Manihot esculenta) starch. J Polym Biopolym Phys Chem 2:1–5Google Scholar
  102. Gutiérrez TJ, Morales NJ, Tapia MS, Pérez E, Famá L (2014b) Corn starch 80:20 “waxy”: regular, “native” and phosphated, as bio-matrixes for edible films. Procedia materials science. Elsevier, New York. ISSN 2211-8128 (in press)Google Scholar
  103. Haafiz MKM, Hassan A, Zakaria Z, Inuwa IM (2014) Isolation and characterization of cellulose nanowhiskers from oil palm biomass microcrystalline cellulose. Carbohydr Polym 103:119–125Google Scholar
  104. Halsall TG, Hirst EL, Jones JKN, Sansome FW (1948) The amylose content of the starch present in the growing potato tuber. Biochem J 43:70–72Google Scholar
  105. Halioua B, Ziskind B (2005) Medicine in the days of the pharaohs. Belknap Press of Harvard University Press. http://www.PalArch.nl, web based Netherlands scientific journal
  106. Han JH (2005) Antimicrobial packaging systems. In: Jung HH (ed) Innovations in food packaging. Academic Press, London, pp 80–107Google Scholar
  107. Han JH, Seo GH, Park IM, Kim GN, Lee DS (2006) Physical and mechanical properties of pea starch edible films containing beeswax emulsions. J Food Sci 71:290–296Google Scholar
  108. Hansen NML, Plackett D (2008) Sustainable films and coatings from hemicelluloses: a review. Biomacromolecules 9:1494–1505Google Scholar
  109. Hasobe T, Imahori H, Fukuzumi S, Kamat PV (2003) Light energy conversion using mixed molecular nanoclusters. Porphyrin and C60 cluster films of efficient photocurrent generation. J Phys Chem B 107:12105–12112Google Scholar
  110. He Y, Kong W, Wang W, Liu T, Liu Y, Gong Q, Gao J (2012) Modified natural halloysite/potato starch composite films. Carbohydr Polym 87:2706–2711Google Scholar
  111. He A, Li S, Ma J, Yang Z (2014) Environmental friendly polymer materials for sustainable Development. Int J Polym Sci 2014. Article ID 107028. http://dx.doi.org/10.1155/2014/107028 (in press)
  112. Hejri Z, Ahmadpour A, Seifkordi AA, Zebarjad SM (2012) Role of nano-sized TiO2 on mechanical and thermal behavior of starch/poly (vinyl alcohol) blend films. Int J Nanosci Nanotechnol 8:215–226Google Scholar
  113. Hietala M, Mathew AP, Oksman K (2013) Bionanocomposites of thermoplastic starch and cellulose nanofibers manufactured using twin-screw extrusion. Eur Polym J 49:950–956Google Scholar
  114. Hoover R, Hughes T, Chung HJ, Liu Q (2010) Composition, molecular structure, properties and modification of pulse starches: a review. Food Res Int 43:399–413Google Scholar
  115. Hotza D (1997) Colagem de Folhas Cerâmicas. Tape Casting Cerâmica 159–166Google Scholar
  116. Huneault MA, Li H (2012) Preparation and properties of extruded thermoplastic starch/polymer blends. J Appl Polym Sci 126:96–108Google Scholar
  117. Huang H, Yuan Q, Yang X (2004) Preparation and characterization of metal–chitosan nanocomposites. Colloid Surf B 39:31–37Google Scholar
  118. Huang Y-F, Lin Y-W, Chang H-T (2006) Growth of various Au-Ag nanocomposites from gold seeds in amino acid solutions. Nanotechnology 17:4885–4894Google Scholar
  119. Iman M, Maji TK (2012) Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydr 89:290–297Google Scholar
  120. International Zinc Association-Zinc Oxide Information Center (2011). http://www.znoxide.org/index.html
  121. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121:198–201Google Scholar
  122. Jane JL (2007) Structure of starch granules. J Appl Glycosci 54:31–36Google Scholar
  123. Janssen LPBM, Moscicki L, Mitrus M (2002) Energy aspects in food extrusion-cooking. Int Agrophys 16:191–195Google Scholar
  124. Jayakody L, Hoover R (2002) The effect of lintnerization on cereal starch granules. Food Res Int 35:665–680Google Scholar
  125. Jiménez A, Fabra MJ, Talens P, Chiralt A (2010) Effect of lipid self-association on the microstructure and physical properties of hydroxypropyl-methylcellulose edible films containing fatty acids. Carbohydr Polym 82:585–593Google Scholar
  126. Jiménez A, Fabra MJ, Talens P, Chiralt A (2013) Phase transitions in starch based films containing fatty acids. Effect on water sorption and mechanical behavior. Food Hydrocolloid 30:408–418Google Scholar
  127. Jin Z, Hsieh F, Huff HE (1994) Extrusion of corn meal with soy fiber, salt, and sugar. Cereal Chem 7:227–234Google Scholar
  128. Jindal UC (1986) Development and testing of bamboo–fibres reinforced plastic composites. J Compos Mater 20:19–29Google Scholar
  129. Jones N, Ray B, Ranjit KT, Manna AC (2007) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76Google Scholar
  130. Kamat PV, Huehn R, Nicolaescu R (2002) A sense and shoot approach for photocatalytic degradation of organic contaminants in water. J Phys Chem B 106:788–794Google Scholar
  131. Kanehira K, Banzai T, Ogino C, Shimizu N, Kubota Y, Sonezaki S (2008) Properties of TiO2–polyacrylic acid dispersions with potential for molecular recognition. Colloid Surf B 64:10–15Google Scholar
  132. Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol In Vitro 23:1116–1122Google Scholar
  133. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82:337–345Google Scholar
  134. Khachatryan K, Khachatryan G, Fiedorowicz M, Para A, Tomasik P (2013) Formation of nanometal particles in the dialdehyde starch matrix. Colloid Surf B 102:578–584Google Scholar
  135. Kilbride BE, Coleman JN, Fournet P, Cadek M, Drury A, Blau WJ (2002) Experimental observation of scaling laws for alternating current and direct current conductivity in polymer-carbon nanotube composite thin films. J Appl Phys 92:4024–4030Google Scholar
  136. Kim E, Jiang ZT, No K (2000) Measurement and calculation of optical band gap of chromium alumunium oxide films. Jpn J Appl Phys 39:4820–4825Google Scholar
  137. Kim H-S, Huber KC (2008) Channels within soft wheat starch A- and B-type granules. J Cereal Sci 48:159–172Google Scholar
  138. Kim J-Y, Lim S-T (2009) Preparation of nano-sized starch particles by complex formation with n-butanol. Carbohydr Polym 76:110–116Google Scholar
  139. Kim J-Y, Park D-J, Lim S-T (2008) Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chem 85:182–187Google Scholar
  140. Kim SJ, Shin BS, Hong JL, Cho WJ, Ha CS (2001) Reactive compatibilization of the PBT/EVA blend by maleic anhydride. Polymer 42:4073–4080Google Scholar
  141. Kitagawa K, Ishiaku US, Mizoguchi M, Hamada H (2005) Bamboo-based ecocomposites and their potential applications. In: Amar K, Misra MM, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, Chapter 11Google Scholar
  142. Klingshirn C (2007a) ZnO: from basics towards applications. Phys Status Solidi B 244:3027–3073Google Scholar
  143. Klingshirn C (2007b) ZnO: material, physics and applications. Chem Phys Chem 8:782–803Google Scholar
  144. Koch K, Gillgren T, Stading M, Andersson R (2010) Mechanical and structural properties of solution-cast high-amylose maize starch films. Int J Biol Macromol 46:13–19Google Scholar
  145. Kondo M, Shinozaki K, Ooki R, Mizutani N (1994) Crystallization behavior and microstructure of hydrothermally treated monodispersed titanium dioxide particles. J Ceram Soc Jpn 102:742–746Google Scholar
  146. Kristo E, Biliaderis CG (2007) Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 68:146–158Google Scholar
  147. Kvien I, Sugiyama J, Votrubec M, Oksman K (2007) Characterization of starch based nanocomposites. J Mater Sci 42:8163–8171Google Scholar
  148. Labet M, Thielemans W, Dufresne A (2007) Polymer grafting onto starch nanocrystals. Biomacromolecules 8:2916–2927Google Scholar
  149. Lagaly G (1986) Interaction of alkylamines with different types of layered compounds. Solid State Ionics 22:43–51Google Scholar
  150. Lamanna M, Morales NJ, García NL, Goyanes S (2013) Development and characterization of starch nanoparticles by gamma radiation: potential application as starch matrix filler. Carbohydr Polym 97:90–97Google Scholar
  151. Larotonda FDS (2007) Biodegradable films and coatings obtained from carrageenan from Mastocarpus stellatus and starch from Quercus suber, PhD Thesis, Universidade do Porto, Portugal, pp 136–140Google Scholar
  152. Lau HC, Hale AH, Bernardi Jr LA (1997) Drilling fluid. Patent H001685, USGoogle Scholar
  153. Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153Google Scholar
  154. Le Corre D, Bras J, Dufresne A (2011) Ceramic membrane filtration for isolating starch nanocrystals. Carbohydr Polym 86:1565–1570Google Scholar
  155. Lee SY, Chun SJ, Kang IA, Park JY (2009) Preparation of cellulose nanofibrils by high-pressure homogenizer and cellulose-based composite films. J Ind Eng Chem 15:50–55Google Scholar
  156. Lelievre J (1974) Starch gelatinization. J Appl Polym Sci 18:293–296Google Scholar
  157. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4:26–49Google Scholar
  158. Li XH, Xing YG, Li WL, Jiang YH, Ding YL (2010) Antibacterial and physical properties of poly(vinyl chloride)-based film coated with ZnO nanoparticles. Food Sci Technol Int 16:225–232Google Scholar
  159. Li M, Liu P, Zou W, Yu L, Xie F, Pu H, Liu H, Chen L (2011a) Extrusion processing and characterization of edible starch films with different amylose contents. J Food Eng 106:95–101Google Scholar
  160. Li R, Liu C, Ma J (2011b) Crystallinity in starch plastics: consequences for material properties. Carbohydr Polym 84:631–637Google Scholar
  161. Li L, Sun J, Li X, Zhang Y, Wang Z, Wang C, Dai J (2012) Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity. Biomaterials 33:1714–1721Google Scholar
  162. Li XH, Gao X, Wang Y, Zhang X, Tong Z (2013) Comparison of chitosan/starch composite film properties before and after cross-linking. Int J Biol Macromol 52:275–279Google Scholar
  163. Liao HT, Wu CS (2008) New biodegradable blends prepared from polylactide, titanium tetraisopropylate, and starch. J Appl Polym Sci 108:2280–2289Google Scholar
  164. Liu Q (2005) Understanding starches and their role in foods. In: Cui SW (ed) Food carbohydrates: chemistry, physical properties and applications. CRC Press, Boca Raton, Chapter 7Google Scholar
  165. Liu X, Yu L, Liu H, Chen L, Li L (2008) In situ thermal decomposition of starch with constant moisture in a sealed system. Polym Degrad Stabil 93:260–262Google Scholar
  166. Liu D, Zhong T, Chang PR, Li K, Wu Q (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101:2529–2536Google Scholar
  167. Liu D, Chang PR, Deng S, Wang C, Zhang B, Tian Y, Huang S, Yao J, Ma X (2011) Fabrication and characterization of zirconium hydroxide-carboxymethyl cellulose sodium/plasticized Trichosanthes Kirilowii starch nanocomposites. Carbohydr Polym 86:1699–1704Google Scholar
  168. Liu Y, Kim H-I (2012) Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydr Polym 89:111–116Google Scholar
  169. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504Google Scholar
  170. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578Google Scholar
  171. Lloyd SM, Lave LB (2003) Life cycle economic and environmentals. Environ Sci Technol 37:3458–3466Google Scholar
  172. López O, García MA (2012) Starch films from a novel (Pachyrhizus ahipa) and conventional sources: development and characterization. Mater Sci Eng C 32:1931–1940Google Scholar
  173. López O, Zaritzky N, Grossmann M, García MA (2013) Acetylated and native corn starch blend films produced by blown extrusion. J Food Eng 116:286–329Google Scholar
  174. López O, Garcia MA, Villar MA, Gentili A, Rodriguez MS, Albertengo L (2014) Thermo-compression of biodegradable thermoplastic corn starch films containing chitin and chitosan. LWT 57:106–115Google Scholar
  175. Lu CM, Zhang CYW, Tao MX (2002) Research of the effect of nanometer on germination and growth enhancement of Gly-cine max L. and its mechanism. Soybean Sci 21:168–172Google Scholar
  176. Lu Y, Tighzert L, Berzin F, Rondot S (2005) Innovative plasticized starch films modified with waterborne polyurethane from renewable sources. Carbohydr Polym 61:174–182Google Scholar
  177. Lu Y, Weng L, Cao X (2006) Morphological, thermal and mechanical properties of ramie crystallites-reinforced plasticized starch biocomposites. Carbohydr Polym 63:198–204Google Scholar
  178. Lu C, Mai Y-W (2007) Permeability modelling of polymer-layered silicate nanocomposites. Compos Sci Technol 67:2895–2902Google Scholar
  179. Lu H, Gui Y, Zheng L, Liu X (2013) Morphological, crystalline, thermal and physicochemical properties of cellulose nanocrystals obtained from sweet potato residue. Food Res Int 50:112–121Google Scholar
  180. Ma X, Yu JG, Wang N (2008a) Glycerol plasticized-starch/multiwall carbon nanotube composites for electroactive polymers. Compos Sci Technol 68:268–273Google Scholar
  181. Ma X, Chang PR, Yu JG (2008b) Characterizations of glycerol plasticized starch (GPS)/carbon black (CB) membranes prepared by melt extrusion and microwave radiation. Carbohydr Polym 74:895–900Google Scholar
  182. Ma X, Jian R, Chang PR, Yu J (2008c) Fabrication and characterization of citric acid-modified starch nanoparticles/plasticized-starch composites. Biomacromolecules 9:3314–3320Google Scholar
  183. Ma X, Chang PR, Yang J, Yu J (2009) Preparation and properties of glycerol plasticized-pea starch/zinc oxide-starch bionanocomposites. Carbohydr Polym 75:472–478Google Scholar
  184. Macanás J, Farre M, Muñoz M, Alegret S, Muraviev DN (2006) Preparation and characterization of polymer-stabilized metal nanoparticles for sensor applications. Phys Status Solidi A 203:1194–1200Google Scholar
  185. Magalhaes NF, Andrade CT (2009) Thermoplastic corn starch/clay hybrids: effect of clay type and content on physical properties. Carbohydr Polym 75:712–718Google Scholar
  186. Majdzadeh-Ardakani K, Navarchian A, Sadheghi F (2010) Optimization of mechanical properties of thermoplastic starch/clay nanocomposites. Carbohydr Polym 79:547–554Google Scholar
  187. Mali S, Grossmann M, Garcia M, Martino M, Zaritzky N (2005) Mechanical and thermal properties of yam starch films. Food Hydro 19:157–164Google Scholar
  188. Martinez-Bustos F, Viveros-Contreras R, Galicia-Garcia T, Nabeshima EH, Verdalet-Guzman I (2011) Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch. Ciênc Tecnol Aliment 31:870–878Google Scholar
  189. Martinez-Gutierrez F, Thi EP, Silverman J, de Oliveira CC, Svensson SL, Hoek AV, Sanchez EM, Reiner NE, Gaynor EC, Pryzdial ELG, Conway EM, Orrantia E, Ruiz F, Av-Gay Y, Bach H (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 8:328–336Google Scholar
  190. Martins JT, Cerqueira MA, Vicente AA (2012) Influence of α-tocopherol on physicochemical properties of chitosan-based films. Food Hydrocolloid 27:220–227Google Scholar
  191. Mathew AP, Dufresne A (2002) Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers. Biomacromolecules 3:609–617Google Scholar
  192. Matsuda DKM, Verceheze AES, Carvalho GM, Yamashita F, Mali S (2013) Baked foams of cassava starch and organically modified nanoclays. Ind Crops Prod 44:705–711Google Scholar
  193. Mbey JA, Hoppe S, Thomas F (2012) Cassava starch–kaolinite composite film. Effect of clay content and clay modification on film properties. Carbohydr Polym 88:213–222Google Scholar
  194. Meskinfam M, Sadjadi MAS, Jazdarreh H, Zare K (2011) Biocompatibility evaluation of nano hydroxyapatite-starch biocomposites. J Biomed Nanotechnol 7:455–459Google Scholar
  195. Miao Z, Ding K, Wu T, Liu Z, Han B, An G, Miao S, Yang G (2008) Fabrication of 3D-networks of native starch and their application to produce porous inorganic oxide networks through a supercritical route. Microporous Mesoporous Mat 111:104–109Google Scholar
  196. Mitrus M, Moscicki L (2014) Extrusion-cooking of starch protective loose-fillfoams. Chem Eng Res Des 9:778–783Google Scholar
  197. Moad G (2011) Chemical modification of starch by reactive extrusion. Progr Polym Sci 36:218–237Google Scholar
  198. Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185–186:1–22Google Scholar
  199. Montoya IA, Viveros T, Dominguez JM, Canales LA, Shifter I (1992) On the effects of the sol-gel synthesis parameters on textural characteristics of TiO2. Catal Lett 15:207–217Google Scholar
  200. Moongngarm A (2013) Chemical compositions and resistant starch content in starchy foods. Am J Agr Biol Sci 8:107–113Google Scholar
  201. Mościcki L, van Zuilichem DJ (2011) Extrusion-cooking and related technique. In: Moscicki L (ed) Extrusion-cooking techniques: applications, theory and sustainability. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  202. Mościcki L, Mitrus M, Wojtowicz A, Oniszczuk T, Rejak A, Janssen L (2012) Application of extrusion-cooking for processing of thermoplastic starch (TPS). Food Res Int 47:291–329Google Scholar
  203. Mościcki L, Mitrus M, Wojtowicz A, Oniszczuk T, Rejak A (2013) Extrusion-cooking of starch, advances in agrophysical research. In: Grundas S (ed) Tech doi:  10.5772/52323. http://www.intechopen.com/books/advances-in-agrophysical-research/extrusion-cooking-of-starch
  204. Müller C, Laurindo J, Yamashita F (2011) Effect of nanoclay incorporation method on mechanical and water vapor barrier properties of starch-based films. Ind Crop Prod 33:605–610Google Scholar
  205. Müller C, Yamashita F, Laurindo J (2008) Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohydr Polym 72:82–87Google Scholar
  206. Müller C, Laurindo J, Yamashita F (2009) Effect of cellulose fibers addition on the mechanical properties and water vapor barrier of starch-based films. Food Hydrocolloid 23:1328–1333Google Scholar
  207. Müller C, Laurindo J, Yamashita F (2012) Composites of thermoplastic starch and nanoclays produced by extrusion and thermopressing. Carbohydr Polym 89:504–510Google Scholar
  208. Muraviev DN, Macanás J, Esplandiu MJ, Farre M, Muñoz M, Alegret S (2007) Simple route for intermatrix synthesis of polymer stabilized core-shell metal nanoparticles for sensor applications. Phys Status Solidi A 204:1686–1692Google Scholar
  209. Murillo-Martínez MM, Pedroza-Islas R, Lobato-Calleros C, Martinez-Ferez A, Vernon-Carter EJ (2011) Designing W-1/O/W-2 double emulsions stabilized by protein-polysaccharide complexes for producing edible films: rheological, mechanical and water vapour properties. Food Hydrocolloid 25:577–585Google Scholar
  210. Murugadoss A, Chattopadhyay A (2008) A ‘green’ chitosan–silver nanoparti-cles composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnol 19:015603/1-015603/9Google Scholar
  211. Myllärinen P, Partanen R, Sepalla J, Forsell P (2002) Effect of glicerol on behavior of amylose and amylopectin films. Carbohydr Polym 50:355–361Google Scholar
  212. Nafchi AM, Alias AK, Mahmud S, Robal M (2012) Antimicrobial, rheological, and physicochemical properties of sago starch films filled with nanorod-rich zinc oxide. J Food Eng 113:511–519Google Scholar
  213. Nafchi AM, Nassiri R, Sheibani S, Ariffin F, Karim AA (2013) Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr Polym 96:233–239Google Scholar
  214. Narayanan R, El-Sayed MA (2005) Catalysis with transition metal nanopariclesin colloidal solution: nanoparticle shape dependence and stability. J Phys Chem B 109:12663–12676Google Scholar
  215. Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386Google Scholar
  216. Norajit K, Kim MK, Ryu GH (2010) Comparative studies on the characterization and antioxidant properties of biodegradable alginate films containing ginseng extract. J Food Eng 98:377–384Google Scholar
  217. Norman TJ, Grant CD, Magana D, Zhang JZ, Liu J, Cao D, Bridges F, Buuren AV (2002) Near infrared optical absorption of gold nanoparticle aggregates. J Phys Chem B 106:7005–7012Google Scholar
  218. Nuryetti HH, Nasikin M (2012) Structure, energy band gap and electrical conductivity of Tapioca/metal oxide composite. J Eng Chem 6:911–919Google Scholar
  219. Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Comp Sci Tech 66:2776–2784Google Scholar
  220. Oliveira de Moraes J, Scheibe AS, Sereno A, Laurindo JB (2013) Scale-up of the production of cassava starch based films using tape-casting. J Food Eng 119:800–808Google Scholar
  221. Olsson E, Hedenqvist M, Johansson C, Järnström L (2013) Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydr Polym 94:765–772Google Scholar
  222. Orliac O, Rouilly A, Silvestre F, Rigal L (2003) Effects of various plasticizers on the mechanical properties, water resistance and aging of thermo-moulded films made from sunflower proteins. Ind Crop Prod 18:91–100Google Scholar
  223. Ozgur U, Ya IA, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98:041301Google Scholar
  224. Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Osterberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8:1934–1941Google Scholar
  225. Pagnoulle C, Jerome R (2001) Particle-in-particle morphology for the dispersed phase formed in reactive compatibilization of SAN/EPDM blends. Polymer 42:1893–1906Google Scholar
  226. Pantani R, Gorrasi G, Vigliotta G, Murariu M, Dubois P (2013) PLA-ZnO nanocomposite films: water vapor barrier properties and specific end-use characteristics. Eur Polym J 49:3471–3482Google Scholar
  227. Pastor C, Sánchez-González L, Chiralt A, Cháfer M, González-Martínez C (2013) Physical and antioxidant properties of chitosan and methylcellulose based films containing resveratrol. Food Hydrocolloid 30:272–280Google Scholar
  228. Pelissari FM, Yamashita F, Garcia MA, Martino MN, Zaritzky NE, Grossmann MVE (2012) Constrained mixture design applied to the development of cassava starch–chitosan blown films. J Food Eng 108:262–267Google Scholar
  229. Pereda M, Amica G, Rácz I, Marcovich NE (2011) Structure and properties of nanocomposite films based on sodium caseinate and nanocellulose fibers. J Food Eng 103:76–83Google Scholar
  230. Pérez E, Segovia X, Tapia MA, Schroeder M (2012) Native and cross-linked modified Dioscorea trifida (cush-cush yam) starches as bio-matrices for edible films. J Cell Plast 48:545–556Google Scholar
  231. Petersson M, Stading M (2005) Water vapor permeability and mechanical properties of mixed starch-monoglyceride films and effect of film forming conditions. Food Hydrocolloid 19:123–132Google Scholar
  232. Piyada K, Waranyou S, Thawien W (2013) Mechanical, thermal and structural properties of rice starch films reinforced with rice starch nanocrystals. Int Food Res J 20:439–449Google Scholar
  233. Plattner BS, Wenger L, Rokey GJ (2011) Extruded, highly cooked, non-sticky starch products. Patent US 20110086150 A1. Application number US 12/829,948Google Scholar
  234. Polesi LF, Sarmiento SBS, dos Anjos CBP (2011) Composition and characterization of pea and chickpea starches. Braz J Food Technol 14:74–81Google Scholar
  235. Poole CP, Owens FJ (2003) Introduction to nanotechnology. Wiley, ChichesterGoogle Scholar
  236. Prajapati VD, Jani GK, Moradiya NG, Randeria NP (2013) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 92:1685–1699Google Scholar
  237. Ptaszek A, Lukasiewicz M, Bednarz S (2013) Environmental friendly polysaccharide modification—rheological properties of oxidized starches water systems. Starch Stärke 65:134–145Google Scholar
  238. Qiao R, Brinson LC (2009) Simulation of interphase percolation and gradients in polymer nanocomposites. Compos Sci Technol 69:491–499Google Scholar
  239. Rahman MAA, Mahmud S, Alias AK, Nor AFM (2013) Effect of nanorod zinc oxide on electrical and optical properties of starch-based polymer nanocomposites. J Phys Sci 24:17–28Google Scholar
  240. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83Google Scholar
  241. Rajendra R, Balakumar C, Ahammed H, Jayakumar S, Vaideki K, Rajesh E (2010) Use of zinc oxide nano particles for production of antimicrobial textiles. Int J Eng Sci Technol 2:202–208Google Scholar
  242. Ratnayake WS, Jackson DS, Steve LT (2008) Starch gelatinization. Adv Food Nutr Res 55:221–268Google Scholar
  243. Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641Google Scholar
  244. Raybaudi-Massilia RM, Mosqueda-Melgar J, Soliva-Fortuny R, Martin-Belloso O (2009) Control of pathogenic and spoilage microorganisms in fresh-cut fruits and fruit juices by traditional and alternative natural antimicrobial. Comp Rev Food Sci F 8:157–180Google Scholar
  245. Reddy MM, Vivekanandhan S, Misra M, Bhatia SK, Mohanty AK (2013) Biobased plastics and bionanocomposites: current status and future opportunities. Prog Polym Sci 38:1653–1689Google Scholar
  246. Rhim JW, Wang LF, Hong SL (2013) Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocolloid 33:327–335Google Scholar
  247. Richard ME, Twiname ER (2000) Tape casting. In: American Ceramics Society, USA, Theory and Practice, p 293Google Scholar
  248. Rindlav-Westling A, Stading M, Gatenholm P (1998) Structure, barrier and mechanical properties of amylose and amylopectin films. Carbohydr Polym 36:217–224Google Scholar
  249. Roessler S, Zimmermann R, Scharnweber D, Werner C, Worch H (2002) Characterization of oxide layers on Ti6Al4V and titanium by streaming potential and streaming current measurements. Colloid Surf B 26:387–395Google Scholar
  250. Rojas-Graü MA, Avena-Bustillos RJ, Olsen C, Friedman M, Henika OR, Martín-Belloso O, Pan Z, McHugh TH (2007) Effects of plant essential oils and oils compounds on mechanical, barrier and antimicrobial properties of alginate–apple puree edible films. J Food Eng 81:634–641Google Scholar
  251. Romero-Bastida CA, Bello-Pérez LA, García MA, Martino MN, Solorza-Feria J, Zarintzky NE (2005) Physicochemical and microstructural characterization of films prepared by thermal and cold gelatinization from non-conventional sources of starches. Carbohydr Polym 60:235–244Google Scholar
  252. Roselli M, Finamore A, Garaguso I, Britti MS, Mengheri E (2003) Zinc oxide protects cultured enterocytes from the damage induced by Escherichia coli. J Nutr 133:4077–4082Google Scholar
  253. Rosin PM, Lajolo FM, Menezes EW (2002) Measurement and characterization of dietary starches. J Food Compos Anal 15:367–377Google Scholar
  254. Rubilar JF, Cruz RMS, Silva HD, Vicente AA, Khmelinskii I, Vieira MC (2013) Physico-mechanical properties of chitosan films with carvacrol and grape seed extract. J Food Eng 115:466–474Google Scholar
  255. Russell PL (1987) Gelatinisation of starches of different amylose/amylopectin content. A study by differential scanning calorimetry. J Cereal Sci 6:133–145Google Scholar
  256. Sadegh-Hassani F, Nafchi AM (2014) Preparation and characterization of bionanocomposite films based on potato starch/halloysite nanoclay. Int J Biol Macromol 67:446–458Google Scholar
  257. Salman H, Blazek J, Lopez-Rubio A, Gilbert EP, Hanley T, Copeland L (2009) Structure-function relationships in A and B granules from wheat starches of similar amylose content. Carbohydr Polym 75:420–427Google Scholar
  258. Sandhu KS, Singh N (2007) Some properties of corn starches II: physicochemical, gelatinization, retrogradation, pasting and gel textural properties. Food Chem 101:1499–1507Google Scholar
  259. Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44:5893–5899Google Scholar
  260. Sandstedt RM (1961) The function of starch in the baking of bread. Baker Dig 35:36–44 Google Scholar
  261. Sanpui P, Murugadoss A, Prasad PVD, Ghosh SS, Chattopadhyay A (2008) The antibacterial properties of a novel chitosan–Ag-nanoparticle composite. Int J Food Microbiol 124:142–146Google Scholar
  262. Santiago-Silva P, Soares NFF, Nóbrega JE, Júnior MAW, Barbosa KBF, Volp ACP, Zerdas ERMA, Würlitzer NJ (2009) Antimicrobial efficiency of film incorporated with pediocin (ALTA®2351) on preservation of sliced ham. Food Control 20:85–89Google Scholar
  263. Sato E, Kohno M, Hamano H, Niwano Y (2006) Increased antioxidative potency of garlic by spontaneous short-term fermentation. Plant Foods Hum Nutr 61:157–160Google Scholar
  264. Sayanjali S, Ghanbarzadeh B, Ghiassifar S (2011) Evaluation of antimicrobial and physical properties of edible film based on carboxymethyl cellulose containing potassium sorbate on some mycotoxigenic Aspergillus species in fresh pistachios. LWT 44:1133–1138Google Scholar
  265. Sayyadnejad MA, Ghaffarian HR, Saeidi M (2008) Removal of hydrogen sulfide by zinc oxide nanoparticles in drilling fluid. Int J Environ Sci Technol 5:565–569Google Scholar
  266. Savadekar NR, Mhaske ST (2012) Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydr Polym 89:146–151Google Scholar
  267. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Method 54:177–182Google Scholar
  268. Schiavello M (1997) Heterogeneous photocatalysis. Wiley, New YorkGoogle Scholar
  269. Schirmer BC, Heiberg R, Eie T, Moretro T, Maugesten T, Carlehog M, Langsrud S (2009) A novel packaging method with a dissolving CO2 headspace combined with organic acids prolongs the shelf life of fresh salmon. Int J Food Microbiol 133:154–160Google Scholar
  270. Schmid G, Simon U (2005) Gold nanoparticles: assembly and electrical properties in 1–3 dimensions. Chem Commun 6:697–710Google Scholar
  271. Schmid AH, Dolan KD, Ng PKW (2005) Effect of extruding wheat flour at lower temperatures on physical attributes of extrudates and on thiamin loss when using carbon dioxide gas as a puffing agent. Cereal Chem 82:305–313Google Scholar
  272. Seo SY, Lee GH, Lee SG, Jung SY, Lim JO, Choi JH (2012) Alginate-based composite sponge containing silver nanoparticles synthesized in situ. Carbohydr Polym 90:109–115Google Scholar
  273. Sepone N, Pelizzetti E (1989) Photocatalysis: fundamentals and applications. Wiley, New YorkGoogle Scholar
  274. Shanks R, Kong I (2012) Thermoplastic starch. In: El-Sonbati A (ed) Thermoplastic elastomers. http://www.intechopen.com/books/thermoplasticelastomers/thermoplastic-starch
  275. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interfac 145:83–96Google Scholar
  276. Shelma R, Paul W, Sharma CP (2008) Chitin nanofibre reinforced thin chitosan films for wound healing application. Trends Biomater Artif Organs 22:107–115Google Scholar
  277. Shi L, Zhou J, Gunasekaran S (2008) Low temperature fabrication of ZnO-whey protein isolate nanocomposite. Mater Lett 62:4383–4385Google Scholar
  278. Siqueira G, Bras J, Dufresne A (2009) Cellulosic bionanocomposites: a review of preparation and properties of nanocomposites. Biomacromolecules 10:425–432Google Scholar
  279. Sing P, Rhee HW, Tomar SK, Nagarale RK (2010) Ternary semiconductor nanoparticles embedded in PEO-polymer electrolyte matrix. J Thermoplast Compos 23:227–237Google Scholar
  280. Singh M, Singh S, Prasad S, Gambhir IS (2008) Nanotechnology in medicine and antibacterial effect of silver nanoparticles. Digest J Nanomater Biostruct 3:115–122Google Scholar
  281. Singha AS, Thakur VK (2008a) Saccaharum cilliare fiber reinforced polymer composites. Eur J Chem 5:782–791Google Scholar
  282. Singha AS, Thakur VK (2008b) Effect of fibre loading on urea-formaldehyde matrix based green composites. Iran Polym J 17:861–873Google Scholar
  283. Singha AS, Thakur VK (2009a) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym Plast Technol Eng 48:482–487Google Scholar
  284. Singha AS, Thakur VK (2009b) Physical, chemical and mechanical properties of Hibiscus sabdariffa fiber/polymer composite. Int J Polym Mater 58:217–228Google Scholar
  285. Singha AS, Thakur VK (2009c) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76Google Scholar
  286. Singha AS, Thakur VK (2009d) Fabrication and characterization of S. cilliare fibre reinforced polymer composites. Bull Mater Sci 32:49–58Google Scholar
  287. Singha AS, Thakur VK (2009e) Synthesis, characterisation and analysis of Hibiscus sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194Google Scholar
  288. Singha AS, Thakur VK, Mehtac IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14:695–711Google Scholar
  289. Singha AS, Thakur VK (2010a) Mechanical, morphological, and thermal characterization of compression-molded polymer. Biocomposites 15:87–97Google Scholar
  290. Singha AS, Thakur VK (2010b) Synthesis, characterization and study of pine needles reinforced polymer matrix based composites. J Reinf Plast Compos 29:700–709Google Scholar
  291. Slavutsky AM, Bertuzzi MA (2014) Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydr Polym 110:53–61Google Scholar
  292. Son Y, Ahn KH, Char K (2000) Effect of processing conditions and reactive compatibilizer on the morphology of injection molded modified poly(phenylene oxide)/polyamide-6 blends. Polym Eng Sci 40:1385–1394Google Scholar
  293. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study of E. coli as a model for gram-negative bacteria. J Colloid Interf Sci 275:177–182Google Scholar
  294. Song D, Thio YS, Deng Y (2011) Starch nanoparticle formation via reactive extrusion and related mechanism study. Carbohydr Polym 85:208–214Google Scholar
  295. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bionanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95Google Scholar
  296. Souza AC, Goto GEO, Mainardi JA, Coelho ACV, Tadini CC (2013) Cassava starch composite films incorporated with cinnamon essential oil: antimicrobial activity, microstructure, mechanical and barrier properties. LWT 54:346–352Google Scholar
  297. Sreekumar PA, Al-Harthi MA, De SK (2012) Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. J Compos Mater 46:3181–3187Google Scholar
  298. Stodolak E, Paluszkiewicz C, Bogun M, Blazewicz M (2009) Nanocomposite fibers for medical applications. J Mol Struct 924–926:208–213Google Scholar
  299. Sullivan JW, Johnson JA (1964) Measurement of starch gelatinization by enzyme susceptibility. Cereal Chem 41:73–77Google Scholar
  300. Suvakanta D, Narsimha MP, Pulak D, Joshabir C, Biswajit D (2014) Optimization and characterization of purified polysaccharide from Musa sapientum L as a pharmaceutical excipient. Food Chem 149:76–83Google Scholar
  301. Svegmark K, Helmersson K, Nilsson G, Nilsson P-O, Andersson R, Svensson E (2002) Comparison of potato amylopectin starches and potato starches: influence of year and variety. Carbohydr Polym 47:331–340Google Scholar
  302. Tajuddin S, Xie F, Nicholson TM, Liu P, Halley PJ (2011) Rheological properties of thermoplastic starch studied by multipass rheometer. Carbohydr Polym 83:914–919 Google Scholar
  303. Takagi H, Takura R (2003) The manufacture and mechanical properties of composite boards made from starch-based biodegradable plastic and bamboo powder. J Soc Mater Sci 4:357–361Google Scholar
  304. Takagi H, Ichihara Y (2004) Effect of fiber length on mechanical properties of “green” composites using a starch-based resin and short bamboo fibers. JSME Int J Ser A 47:551–555Google Scholar
  305. Takeda C, Takeda Y, Hizukuri S (1989) Structure of amylomaize. Cereal Chem 66:22–25Google Scholar
  306. Talja RA, Helén H, Roos YH, Jouppila K (2007) Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films. Carbohydr Polym 67:288–297Google Scholar
  307. Tam KH, Djurisic AB, Chan CMN, Xi YY, Tse CW, Leung YH, Chan WK, Leung FCC (2008) Antibacterial activity of ZnO nanorods prepared by a hydrothermal method. Thin Solid Films 516:6167–6174Google Scholar
  308. Tankhiwale R, Bajpai SK (2012) Preparation, characterization and antibacterial applications of ZnO-nanoparticles coated polyethylene films for food packaging. Colloid Surf B 90:16–20Google Scholar
  309. Teixeira EdM, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78:422–431Google Scholar
  310. Thakur VK, Singha AS, Mehta IK (2010a) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15:137–146Google Scholar
  311. Thakur VK, Singha AS, Kaur I, Nagarajarao RP, Liping Y (2010b) Silane functionalization of saccaharum cilliare fibers: Thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414Google Scholar
  312. Thakur VK, Singha AS, Misra N (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122:532–544Google Scholar
  313. Thakur VK, Singha AS, Thakur MK (2012a) In-air graft copolymerization of ethyl acrylate onto natural cellulosic polymers. Int J Polym Anal Charact 17:48–60Google Scholar
  314. Thakur VK, Singha AS, Thakur MK (2012b) Graft Copolymerization of Methyl Acrylate onto Cellulosic Biofibers: Synthesis, Characterization and Applications. J Polym Environ 20:164–174Google Scholar
  315. Thakur VK, Singha AS, Thakur MK (2012c) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421Google Scholar
  316. Thakur VK, Singha AS, Thakur MK (2012d) Modification of natural biomass by graft copolymerization. Int J Polym Anal Charact 17:547–555Google Scholar
  317. Thakur VK, Singha AS, Thakur MK (2012e) Green composites from natural fibers: mechanical and chemical aging properties. Int J Polym Anal Charact 17:401–407Google Scholar
  318. Thakur VK, Thakur MK (2014a) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15Google Scholar
  319. Thakur VK, Thakur MK (2014b) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117Google Scholar
  320. Thakur VK, Thakur MK (2014c) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117Google Scholar
  321. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014a) Progress in green polymer composites from lignin for multifunctional applications: A Review. ACS Sustainable Chem Eng 2:1072–1092Google Scholar
  322. Thakur VK, Thakur MK, Gupta RK (2014b) Review: Raw natural fiber–based polymer composites. Int J Polym Anal Charact 19:256–271Google Scholar
  323. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014c) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249Google Scholar
  324. Thakur VK, Grewell D, Thunga M, Kessler MR (2014d) Novel Composites from Eco-Friendly Soy Flour/SBS Triblock Copolymer. Macromol Mater Eng 299:953–958Google Scholar
  325. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014e) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684Google Scholar
  326. Tharanathan RN (2003) Biodegradable films and composite coatings: Past, present and future. Trends Food Sci Technol 14:71–78Google Scholar
  327. Thunwall M, Kuthanová V, Boldizar A, Rigdahl M (2008) Film blowing of thermoplastic starch. Carbohydr Polym 71:583–590Google Scholar
  328. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R Rep 53:73–97Google Scholar
  329. Torres-Castro A, González González VA, Navarro MG, González EG (2011) Síntesis de nanocompósitos de plata con almidón. Ingenierías XIV No 50Google Scholar
  330. Tripathi P, Dubey NK (2004) Exploitation of natural products as an alternative strategy to control postharvest fungal rotting of fruit and vegetables. Postharvest Biol Technol 32:235–245Google Scholar
  331. Tunç S, Duman O (2010) Preparation and characterization of biodegradable methyl cellulose/montmorillonite nanocomposite films. Appl Clay Sci 48:414–424Google Scholar
  332. Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci Appl Polym Symp 37:815–827Google Scholar
  333. Ung T, Liz-Marzan LM, Mulvaney P (2002) Gold nanoparticle. Thin Films Colloid Surf A 202:119–126Google Scholar
  334. Van der Maarel MJEC, Van der Veen B, Uitdehaag JCM, Leemhuis H, Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the alpha-amylase family. J Biotechnol 94:137–155Google Scholar
  335. Varaprasad K, Mohan IM, Ravindra S, Reddy NN, Vimala K, Monika K, Sreedhar B, Raju KM (2010) Hydrogel–silver nanoparticle composites: a new generation of antimicrobials. J Appl Polym Sci 115:1199–1207Google Scholar
  336. Vasanthan T, Bergthaller W, Driedger D, Yeung J, Sporns P (1999) Starch from Alberta potatoes: wet-isolation and some physicochemical properties. Food Res Int 32:355–365Google Scholar
  337. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Test 21:4433–4442Google Scholar
  338. Vazquez A, Cyras VP, Alvarez VA, Morán JI (2012) Starch/clay nano-biocomposites. In: Averous L, Pollet E (eds) Environmental silicate nano-biocomposites. Springer, LondonGoogle Scholar
  339. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602Google Scholar
  340. Vergnes B, Berzin F (2010) Predicting starch transformation in twin screw extrusion. Society of Plastic Engineers. http://www.4spepro.org/view.php?article=002986-2010-06-22
  341. Verran J, Sandoval G, Allen NS, Edge M, Stratton J (2007) Variables affecting the antibacterial properties of nano and pigmentary titania particles in suspension. Dyes Pigments 73:298–304Google Scholar
  342. Vicentini N, Sobral P, Cereda M (2002) The influence of the thickness on the functional properties of cassava starch edible films. Plant Biopolym Sci Food and Non-Food Appl 291–300Google Scholar
  343. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263Google Scholar
  344. Viguié J, Molina-Boisseau S, Dufresne A (2007) Processing and characterization of waxy maize starch films plasticized by sorbitol and reinforced with starch nanocrystals. Macromol Biosci 7:1206–1216Google Scholar
  345. Wang H, Niu J, Long X, He Y (2008) Sonophotocatalytic degradation of methyl orange by nano-sized Ag/TiO2 particles in aqueous solutions. Ultrason Sonochem 15:386–392Google Scholar
  346. Wang H, Sun XZ, Seib P (2001) Trengthening blends of poly(lactic acid) and starch with methylenediphenyl diisocyanate. J Appl Polym Sci 82:1761–1767Google Scholar
  347. Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R, Zhang Y (2004) Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces. Adv Funct Mater 14:943–956Google Scholar
  348. Wang N, Maximiuk L, Toews R (2012) Pea starch noodles: effect of processing variables on characteristics and optimisation of twin-screw extrusion process. Food Chem 133:742–753Google Scholar
  349. Wang J, Cheng F, Zhu P (2014) Structure and properties of urea-plasticized starch films with different urea contents. Carbohydr Polym 101:1109–1115Google Scholar
  350. Wei C, Srivastava D, Cho K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 2:647–650Google Scholar
  351. Weibel A, Bouchet R, Knauth P (2006) Electrical properties and defect chemistry of anatase (TiO2). Solid State Ionics 177:229–236Google Scholar
  352. Wessels JM, Nothofer H, Ford WE, von Wrochem F, Scholz F, Vossmeyer T, Schroedter A, Weller H, Yasuda A (2004) Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies. J Am Chem Soc 126:3349–3356Google Scholar
  353. Wiley B, Herricks T, Sun Y, Xia Y (2004) Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739Google Scholar
  354. Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40:1067–1076Google Scholar
  355. Wilhelm H-M, Sierakowski M-R, Reicher F, Wypych F, Souza GP (2005) Dynamic rheological properties of Yam starch/hectorite composite gels. Polym Int 54:814–822Google Scholar
  356. Wollerdorfer M, Bader H (1998) Influence of natural fibres on the mechanical properties of biodegradable polymers. Ind Crop Prod 8:105–112Google Scholar
  357. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K (2003) Physical interactions at carbon nanotube-polymer interfaces. Polymer 44:7757–7764Google Scholar
  358. Wonisch A, Polfer P, Kraft T, Dellert A, Heunisch A, Roosen A (2011) A comprehensive simulation scheme for tape casting: from flow behavior to anisotropy development. J Am Ceram Soc 94:2053–2060Google Scholar
  359. Woranucha S, Yoksana R (2013) Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging. Carbohydr Polym 96:586–592Google Scholar
  360. Wu M, Wang M, Ge M (2009) Investigation into the performance and mechanism of SiO2 nanoparticles and starch composite films. J Text I 100:254–259Google Scholar
  361. Xie J, Lee JY, Wang DIC, Ting IP (2007) Silver nanoplates: from biological to biomimetic synthesis. ACS Nano 1:429–439Google Scholar
  362. Xie F, Yu L, Liu H, Dean K (2006) Effect of compatibilizer distribution on thermal and rheological properties of gelatinized starch/biodegradable polyesters blends. Int Polym Proc 21:379–385 Google Scholar
  363. Xie F, Halley PJ, Averous L (2011a) Bio-nanocomposites based on starch. In: Mittal V (ed) Nanocomposites with biodegradable polymers: synthesis, properties and future perspectives. Oxford University Press, Oxford, pp 234–260Google Scholar
  364. Xie Y, Chang PR, Wang S, Yu J, Ma X (2011b) Preparation and properties of halloysite nanotubes/plasticized Dioscorea opposite Thunb starch composites. Carbohydr Polym 83:186–191Google Scholar
  365. Xie F, Halley PJ, Averous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Prog Polym Sci 37:595–623Google Scholar
  366. Xie F, Liu P, Yu L (2014) Processing of plasticized starch-based materials: state of the art and perspectives. In: Halley P, Avérous L (eds) Starch polymers. From genetic engineering to green applications, 1st edn. Elsevier, Amsterdam, pp 257–289Google Scholar
  367. Yadav A, Prasad V, Kathe AA, Raj S, Yadav D, Sundarmoorthy C, Vigneshvaran N (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645Google Scholar
  368. Yan Q, Hou H, Guo P, Dong H (2012) Effects of extrusion and glycerol content on properties of oxidized and acetylated corn starch-based films. Carbohydr Polym 87:707–712Google Scholar
  369. Yoksan R, Chirachanchai S (2010) Silver nanoparticle-loaded chitosan–starch based films: Fabrication and evaluation of tensile, barrier and antimicrobial properties. Mater Sci Eng C 30:891–897Google Scholar
  370. You S, Stevenson SG, Izydorczyk MS, Preston KR (2002) Separation and characterization of barley starch polymers by a flow field-flow fractionation technique in combination with multiangle light scattering and differential refractive index detection. Cereal Chem J 79:624–630Google Scholar
  371. Yu J, Ai F, Dufresne A, Gao S, Huang J, Chang PR (2008a) Structure and mechanical properties of poly(lactic acid) filled with (starch nanocrystal)-graft-poly(ε-caprolactone). Macromol Mater Eng 293:763–770Google Scholar
  372. Yu J, Wang N, Ma XF (2008b) Fabrication and characterization of poly(lactic acid)/acetyl tributyl citrate/carbon black as conductive polymer composites. Biomacromolecules 9:1050–1057Google Scholar
  373. Yu J, Yang J, Liu B, Ma X (2009) Preparation and characterization of glycerol plasticized-pea starch/ZnO-carboxymethylcellulose sodium nanocomposites. Bioresour Technol 100:2832–2841Google Scholar
  374. Yurdakul H, Durukan O, Seyhan AT, Celebi H, Oksuzoglu M, Turan S (2013) Microstructural characterization of corn starch-based porous thermoplastic composites filled with multiwalled carbon nanotubes. J App Polym Sci 127:812–820Google Scholar
  375. Yumin D, Zuyong X, Rong L (1997) Blend films of chitosan/starch. Wuhan Univ J Nat Sci 2:220–224Google Scholar
  376. Yun YH, Hwang KJ, Wee YJ, Yoon SD (2011) Synthesis, physical properties, and characterization of starch-based blend films by adding nano-sized TiO2/poly(methyl metacrylate-co-acrylamide). J Appl Polym Sci 120:1850–1858Google Scholar
  377. Yun YH, Youn YN, Yoon SD, Lee JU (2012) Preparation and physical properties of starch-based nanocomposite films with the addition of titanium oxide nanoparticles. J Ceram Process Res 13:59–64Google Scholar
  378. Zavareze E, Guerra Días A (2011) Impact of heat–moisture treatment and annealing in starches: a review. Carbohydr Polym 83:317–328Google Scholar
  379. Zepon KM, Vieira LF, Soldi V, Salmoria GV, Kanis LA (2013) Influence of process parameters on microstructure and mechanical properties of starch-cellulose acetate/silver sulfadiazine matrices prepared by melt extrusion. Polym Test 32:1123–1127Google Scholar
  380. Zeppa C, Gouanvé Espuche E (2009) Effect of a plasticizer on the structure of biodegradable starch/clay nanocomposites: thermal, water-sorption, and oxygen-barrier properties. J App Polym Sci 112:2044–2056Google Scholar
  381. Zhang L, Ding Y, Povey M, York D (2008) ZnO nanofluids: a potential antibacterial agent. Prog Nat Sci 18:939–944Google Scholar
  382. Zhang PP, Tong DS, Lin CX, Yang HM, Zhong ZK, Yu WH, Wang H, Zhou CH (2014) Effects of acid treatments on bamboo cellulose nanocrystals. Asia-Pacific J Chem doi: 10.1002/apj.1812 (in press)
  383. Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chu PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716Google Scholar
  384. Zheng H, Ai F, Chang PR, Huang J, Dufresne A (2009) Structure and properties of starch nanocrystal-reinforced so y protein plastics. Polym Compos 30:474–480Google Scholar
  385. Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 105:83–91Google Scholar
  386. Zhu L, Shukri R, de Mesa-Stonestreet NJ, Alavi S, Dogan H, Shi Y (2010) Mechanical and microstructural properties of soy protein: high amylose corn starch extrudates in relation to physiochemical changes of starch during extrusion. J Food Eng 100:232–238Google Scholar
  387. Zobel HF (1994) Starch granule structure. In: Alexander RJ, Zobel HF (eds) Developments in carbohydrate chemistry. The American Association of Cereal Chemists, St Paul Minnesota, pp 1–36Google Scholar
  388. Zuraida A, Yusliza Y, Anuar H, Mohd Khairul Muhaimin R (2012) The effect of water and citric acid on sago starch bio-plastics. Int Food Res J 19(2):715–719Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.CIHIDECAR-CONICET; Departamento de Química Orgánica, FCEyN-UBACiudad Universitaria, 1428Ciudad Autónoma de Buenos AiresArgentina
  2. 2.Laboratory of Polymer and Composite Materials, Departamento de Física, FCEyN-UBACiudad Universitaria, 1428Ciudad Autónoma de Buenos AiresArgentina
  3. 3.IFIBA-CONICETCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations