Skip to main content

Nanoclay/Polymer Composites: Recent Developments and Future Prospects

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Clay can be counted among the most widely investigated and commercially high demand filler in the polymer industry. Recently there has been a growing interest for the development of polymer/clay nanocomposites due to their superior properties compared to conventional filled polymers even at a very low fraction of filler addition. The easy availability, processability, low cost, and nontoxicity of clay and the advancements in the processing of clay nanocomposites have invited a lot of commercial attention for these materials. The value-added properties enhanced without sacrificing of pure polymer properties make the clays more and more important in the modern polymer industry. Today it finds a wide range of applications ranging from household items to aerospace to medicine. This chapter looks at the chemical and physical aspects of this wonderful material, clay/polymer nanocomposite processing techniques, and the commercial importance of these nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Hussain M, Seo K-S, Choa Y-H (2010) J Appl Polym Sci 116:314

    Google Scholar 

  • Alexandre M, Dubois P (2000) Polymer–layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63

    Article  Google Scholar 

  • Arash Chavooshia Z, Navib Mohammad, Madhoushia Mehrab, Mohammad Yousef A (2014) bareshic MDF dust/PP composites reinforced with nanoclay: morphology, long-term physical properties and withdrawal strength of fasteners in dry and saturated conditions. Constr Build Mater 52:324–330

    Article  Google Scholar 

  • Arroyo M, Manchado MAL, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44:2447–2453

    Article  CAS  Google Scholar 

  • Azizi S, Yunus WMZW, Ahmad M (2011) Effect of polyethylene-grafted maleic anhydride on properties of high-density polyethylene and polystyrene blend/layered silicate nanocomposites. J Reinf Plast Comp 30:1649–1654

    Article  CAS  Google Scholar 

  • Brindley GW, Brown G (1980) crystal structures of clay minerals and their X-ray identifications. Mineral Soc, London, pp 1–123

    Book  Google Scholar 

  • Bertini F, Canetti M, Audisio G, Costa G, Falqui L (2006) Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites. Polym Degrad Stabil 91:600–605

    Article  CAS  Google Scholar 

  • Chana M-L, Lau K-T, Wonga TT, Cardonab F (2011) Interfacial bonding characteristic of nanoclay/polymer composites. Appl Sur Sci 258:860–864

    Article  Google Scholar 

  • Chan M-L, Lau K-T, Wong T-T, Ho M-P, Hui D (2011) Mechanism of reinforcement in a nanoclay/polymer composite. Composites: Part B 42:1708–1712

    Google Scholar 

  • Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: a study of the mechanical properties J Appl Polym Sci 69:1891–1899

    Google Scholar 

  • Chin IJ, Thomas TA, Kim HC, Thomas PR, Wang J (2001) Polymer 42:5947–5952

    Article  CAS  Google Scholar 

  • Christoph L Opportunities and risks of nanotechnologies, Allianz report in cooperation with the OECD international future program clay analysis of clay minerals, vols 4 and 10. Oxford University Press, Oxford, pp 104–120

    Google Scholar 

  • Dai G, Mishnaevsky Jr L (2013) Damage evolution in nanoclay-reinforced polymers: a three-dimensional computational study. Compos Sci Technol 74:67–77

    Article  CAS  Google Scholar 

  • Durmus A, Woo M, Kas_goz A, Macosko CW, Tsapatsis M (2007) Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. Eur Polym J 43:3737–3749

    Article  CAS  Google Scholar 

  • Fan J, Liu S, Chen G, Qi Z (2002) SEM study of polystyrene/clay nanocomposite. J Appl Polym Sci 83:66–69

    Google Scholar 

  • Gasification studies of polymer layered silicate nanocomposites. Chem Mater 14:881–887

    Google Scholar 

  • Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35

    Article  CAS  Google Scholar 

  • Giannelis EP (1998) Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl Organo met Chem 12:675–680

    Article  CAS  Google Scholar 

  • Gatos KG, Karger-Kocsis J (2007) Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites. Eur Polym J 43:1097–1104

    Article  CAS  Google Scholar 

  • Hull TR, Price D, Liu Y, Wills CL, Brady J (2003) An investigation into the decomposition and burning behaviour of Ethylene-vinyl acetate copolymer nanocomposite materials. Polym Degrad Stab 82:365–371

    Article  CAS  Google Scholar 

  • Hemati F, Garmabi H (2011) Compatibilised LDPE/LLDPE/nanoclaynanocomposites: I. Structural, mechanical, and thermal properties. Can J Chem Eng 89:187–196

    Article  CAS  Google Scholar 

  • Hussain F, Hojjati M, Okamoto M, Gorga R.E (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater, 40(17):1511–1571

    Google Scholar 

  • Jeon CH, Ryu SH, Chang YW (2003) Optical properties of plasticized polycarbonate. Polym Int 53:153–155

    Google Scholar 

  • Jieming CX, Ning Y (2013) Mechanical properties and dimensional stability of organo-nanoclay modified biofiber polymer composites. Composites: Part B 47:248–254

    Google Scholar 

  • Jyh MH, George J, Jiang, Zong MG, Wei X, Wei PP (2002) The characterization of organic modified clay and clay-filled PMMA nanocomposite. J Appl Polym Sci, 83:1702–1718

    Google Scholar 

  • Lau K, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites: Part B 37:425–436

    Google Scholar 

  • Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  CAS  Google Scholar 

  • Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T (1993) Kamigaito O (1993) Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ∈-caprolactam. J Polym Sci Part A: Polym Chem 31:983–986

    Article  CAS  Google Scholar 

  • Kormann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure. Polymer 42:4493–4499

    Article  Google Scholar 

  • Kord B, Kiakojouri SMH (2011) Effect of nanoclay dispersion on physical and mechanical properties of wood flour/polypropylene/glass fibre hybrid composites. Bioresources 6:1741–1751

    CAS  Google Scholar 

  • Kord B (2011a) Effect of nanoparticles loading on properties of polymeric composite based on hemp fiber/polypropylene. J Thermoplast Compos 2:4

    Google Scholar 

  • Kord B (2011b) Nanofiller reinforcement effects on the thermal, dynamic mechanical and morphological behavior of HDPE/rice husk flour composites. Bioresources 6:1351–1358

    CAS  Google Scholar 

  • Lagaly G (1986) Development in ionic polymers. Appl Sci Publ, London

    Google Scholar 

  • Lan T, Kaviratna PD, Pannavaia T (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. J Chem Mater 7:2144–2150

    Article  CAS  Google Scholar 

  • LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29

    Article  CAS  Google Scholar 

  • Lu JK, Ke YC, Qi ZN, Yi XS (2001) Studies of intercalation and exfoliation behavior of organoclays in epoxy resin. J Poym Sci Part B: Polym Phys 39:115–120

    Article  Google Scholar 

  • Lotti C, Isaac CS, Branciforti MC, Alves RMV, Liberman S, Bretas RES (2008) Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J 44:1346–1357

    Article  CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504

    Article  CAS  Google Scholar 

  • Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578

    Article  CAS  Google Scholar 

  • Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HPS, Salemae AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410

    Article  CAS  Google Scholar 

  • Matti P, Nam PH, Okamoto M, Kotaka T, Hasewaga N, Usuki A (2002) Influence of crystallization on inercalation, morphology and mechanical properties of polypropylene/clay nanocomposites. Macromol, 35:2043–2058

    Google Scholar 

  • Mittal V (2007) Polypropylene-layered silicate nanocomposites: filler matrix interactionsand mechanical properties. J Thermoplast Compos Mater 20:575–599

    Article  CAS  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of Najafi A, Kord B, Abdi A, Ranaee S (2011) The impact of the nature of nanoclay on physical and mechanical properties of polypropylene/reed flour nanocomposites. J Thermoplast Compos

    Google Scholar 

  • Okada A, Usuki A (2006) Twenty years of polymer composites. Macromol Mater Eng 291:1449–1476

    Google Scholar 

  • Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usukin A (2001) A house of cards structure in polypropylene/clay nanocomposites under elongational flow. Nano Lett 1:295–298

    Article  CAS  Google Scholar 

  • Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocompopsites. Prog Polym Sci 32:1119–1198

    Article  Google Scholar 

  • Pinnavaia TJ, Farzanch F (1983) Metal complex catalyst interlayered in smecitite clay, hydroformylation of 1 hexene with rhodium complexes ion exchanged into hectorite. Inorg. Chem, 22:2216–2220

    Google Scholar 

  • Pratheep Kumar A, Pal Singh R (2007) Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. J Appl Polym Sci 104:2672–2682

    Article  Google Scholar 

  • Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Google Scholar 

  • Rehab A, Salahuddin N (2005) Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Mater Sci Eng A399:368–376

    Google Scholar 

  • Strawhecker KE, Manias E (2000) Structure and properties of poly(Vinyl alcohol)/Na-montmorillonite nanocomposites. Chem Mater 12:2943

    Article  CAS  Google Scholar 

  • Tcherbi-Narteh A, Hosur M, Triggs E, Owuor P, Jelaani S (2014) Viscoelastic and thermal properties of full and partially cured DGEBA epoxy resin composites modified with montmorillonite nano clay exposed to UV radiation. Polymer Degradation and Stability. Polym Degrad Stab 101:81–91

    Google Scholar 

  • Theng BKG (1974) The chemistry of clay organic reactions. Wiley, Adam Hilger, London

    Google Scholar 

  • Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516

    Google Scholar 

  • Tabuani D, Ceccia S, Camino G (2011) Polypropylene nanocomposites, study of the influence of the nanofiller nature on morphology and material properties. Macromol Symp 301:114–27

    Google Scholar 

  • Timmerman JF, Hayes BS, Seferis JC (2002) Nanoclay reinforcement effects on the cryogenic microcracking of carbon fibre/epoxy composites.Compos Sci Technol 62:1249

    Google Scholar 

  • Tjong SC (2006) Structural and mechanical properties polymer nanocomposites. Mater Sci Eng R 53:73–197

    Article  Google Scholar 

  • Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969

    Article  CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Kessler MR (2014a) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356

    Article  CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092. doi:10.1021/sc500087z

    Article  CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014c) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684

    Article  CAS  Google Scholar 

  • Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014d) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249

    Article  CAS  Google Scholar 

  • Usuki YK, Okada A, Karauchi T, Kamigaito O (1993) J Polym Sci Part A: Polym Chem 31:2493

    Google Scholar 

  • Venkatesh GS, Deb A, Karmarkar A, Chauhan SS (2012) Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/polypropylene nanocomposites. Mater Des 37:285–291

    Article  CAS  Google Scholar 

  • Wang Z, Pinnavaia TJ (1998) Hybrid organic–inorganic nanocomposites: exfoliation of Wang ZF, Wang B, Qi N, Zhang HF, Zhang LQ (2005) Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons. Polymer 46:719–724

    Google Scholar 

  • Xue B, Zhang P, Jiang Y, Sun M, Liu D, Yu L (2011) Preparation and characterization of linear low-density polyethylene/dickitenanocomposites prepared by the direct melt blending of linear low-density polyethylene with exfoliated dickite. J Appl Polym Sci 120:1736–1743

    Article  CAS  Google Scholar 

  • Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide/clay hybrid. J Polym Sci Polym Chem 31:2493–2498

    Google Scholar 

  • Zanetti M, Costa L (2004) Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer 45:4367–4373

    Article  CAS  Google Scholar 

  • Zanetti M, Lomakin S, Camino G (2000) Macromol Mater Eng 279:1

    Google Scholar 

  • Zhang J, Hereid J, Hagen M, Bakirtzis D, Delichatsios MA, Fina A et al (2009) Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Saf J 44:504–513

    Article  CAS  Google Scholar 

  • Zhong Y, Poloso T, Hetzer M, De Kee D (2007) Enhancement of wood/polyethylene composites via compatibilization and incorporation of organoclay particles. Polym Eng Sci 47:797–803

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Priya Dasan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Dasan, K.P. (2015). Nanoclay/Polymer Composites: Recent Developments and Future Prospects. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_19

Download citation

Publish with us

Policies and ethics