Advertisement

Nanoclay/Polymer Composites: Recent Developments and Future Prospects

  • K. Priya DasanEmail author
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 75)

Abstract

Clay can be counted among the most widely investigated and commercially high demand filler in the polymer industry. Recently there has been a growing interest for the development of polymer/clay nanocomposites due to their superior properties compared to conventional filled polymers even at a very low fraction of filler addition. The easy availability, processability, low cost, and nontoxicity of clay and the advancements in the processing of clay nanocomposites have invited a lot of commercial attention for these materials. The value-added properties enhanced without sacrificing of pure polymer properties make the clays more and more important in the modern polymer industry. Today it finds a wide range of applications ranging from household items to aerospace to medicine. This chapter looks at the chemical and physical aspects of this wonderful material, clay/polymer nanocomposite processing techniques, and the commercial importance of these nanocomposites.

Keywords

Nanoclay Nanocomposite Intercalation Exfoliation 

References

  1. Ahmad I, Hussain M, Seo K-S, Choa Y-H (2010) J Appl Polym Sci 116:314Google Scholar
  2. Alexandre M, Dubois P (2000) Polymer–layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28:1–63CrossRefGoogle Scholar
  3. Arash Chavooshia Z, Navib Mohammad, Madhoushia Mehrab, Mohammad Yousef A (2014) bareshic MDF dust/PP composites reinforced with nanoclay: morphology, long-term physical properties and withdrawal strength of fasteners in dry and saturated conditions. Constr Build Mater 52:324–330CrossRefGoogle Scholar
  4. Arroyo M, Manchado MAL, Herrero B (2003) Organo-montmorillonite as substitute of carbon black in natural rubber compounds. Polymer 44:2447–2453CrossRefGoogle Scholar
  5. Azizi S, Yunus WMZW, Ahmad M (2011) Effect of polyethylene-grafted maleic anhydride on properties of high-density polyethylene and polystyrene blend/layered silicate nanocomposites. J Reinf Plast Comp 30:1649–1654CrossRefGoogle Scholar
  6. Brindley GW, Brown G (1980) crystal structures of clay minerals and their X-ray identifications. Mineral Soc, London, pp 1–123CrossRefGoogle Scholar
  7. Bertini F, Canetti M, Audisio G, Costa G, Falqui L (2006) Characterization and thermal degradation of polypropylene–montmorillonite nanocomposites. Polym Degrad Stabil 91:600–605CrossRefGoogle Scholar
  8. Chana M-L, Lau K-T, Wonga TT, Cardonab F (2011) Interfacial bonding characteristic of nanoclay/polymer composites. Appl Sur Sci 258:860–864CrossRefGoogle Scholar
  9. Chan M-L, Lau K-T, Wong T-T, Ho M-P, Hui D (2011) Mechanism of reinforcement in a nanoclay/polymer composite. Composites: Part B 42:1708–1712Google Scholar
  10. Chen X, Guo Q, Mi Y (1998) Bamboo fiber-reinforced polypropylene composites: a study of the mechanical properties J Appl Polym Sci 69:1891–1899Google Scholar
  11. Chin IJ, Thomas TA, Kim HC, Thomas PR, Wang J (2001) Polymer 42:5947–5952CrossRefGoogle Scholar
  12. Christoph L Opportunities and risks of nanotechnologies, Allianz report in cooperation with the OECD international future program clay analysis of clay minerals, vols 4 and 10. Oxford University Press, Oxford, pp 104–120Google Scholar
  13. Dai G, Mishnaevsky Jr L (2013) Damage evolution in nanoclay-reinforced polymers: a three-dimensional computational study. Compos Sci Technol 74:67–77CrossRefGoogle Scholar
  14. Durmus A, Woo M, Kas_goz A, Macosko CW, Tsapatsis M (2007) Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. Eur Polym J 43:3737–3749CrossRefGoogle Scholar
  15. Fan J, Liu S, Chen G, Qi Z (2002) SEM study of polystyrene/clay nanocomposite. J Appl Polym Sci 83:66–69Google Scholar
  16. Gasification studies of polymer layered silicate nanocomposites. Chem Mater 14:881–887Google Scholar
  17. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35CrossRefGoogle Scholar
  18. Giannelis EP (1998) Polymer-layered silicate nanocomposites: synthesis, properties and applications. Appl Organo met Chem 12:675–680CrossRefGoogle Scholar
  19. Gatos KG, Karger-Kocsis J (2007) Effect of the aspect ratio of silicate platelets on the mechanical and barrier properties of hydrogenated acrylonitrile butadiene rubber (HNBR)/layered silicate nanocomposites. Eur Polym J 43:1097–1104CrossRefGoogle Scholar
  20. Hull TR, Price D, Liu Y, Wills CL, Brady J (2003) An investigation into the decomposition and burning behaviour of Ethylene-vinyl acetate copolymer nanocomposite materials. Polym Degrad Stab 82:365–371CrossRefGoogle Scholar
  21. Hemati F, Garmabi H (2011) Compatibilised LDPE/LLDPE/nanoclaynanocomposites: I. Structural, mechanical, and thermal properties. Can J Chem Eng 89:187–196CrossRefGoogle Scholar
  22. Hussain F, Hojjati M, Okamoto M, Gorga R.E (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater, 40(17):1511–1571Google Scholar
  23. Jeon CH, Ryu SH, Chang YW (2003) Optical properties of plasticized polycarbonate. Polym Int 53:153–155Google Scholar
  24. Jieming CX, Ning Y (2013) Mechanical properties and dimensional stability of organo-nanoclay modified biofiber polymer composites. Composites: Part B 47:248–254Google Scholar
  25. Jyh MH, George J, Jiang, Zong MG, Wei X, Wei PP (2002) The characterization of organic modified clay and clay-filled PMMA nanocomposite. J Appl Polym Sci, 83:1702–1718Google Scholar
  26. Lau K, Gu C, Hui D (2006) A critical review on nanotube and nanotube/nanoclay related polymer composite materials. Composites: Part B 37:425–436Google Scholar
  27. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958CrossRefGoogle Scholar
  28. Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T (1993) Kamigaito O (1993) Synthesis of nylon 6–clay hybrid by montmorillonite intercalated with ∈-caprolactam. J Polym Sci Part A: Polym Chem 31:983–986CrossRefGoogle Scholar
  29. Kormann X, Lindberg H, Berglund LA (2001) Synthesis of epoxy–clay nanocomposites. Influence of the nature of the curing agent on structure. Polymer 42:4493–4499CrossRefGoogle Scholar
  30. Kord B, Kiakojouri SMH (2011) Effect of nanoclay dispersion on physical and mechanical properties of wood flour/polypropylene/glass fibre hybrid composites. Bioresources 6:1741–1751Google Scholar
  31. Kord B (2011a) Effect of nanoparticles loading on properties of polymeric composite based on hemp fiber/polypropylene. J Thermoplast Compos 2:4Google Scholar
  32. Kord B (2011b) Nanofiller reinforcement effects on the thermal, dynamic mechanical and morphological behavior of HDPE/rice husk flour composites. Bioresources 6:1351–1358Google Scholar
  33. Lagaly G (1986) Development in ionic polymers. Appl Sci Publ, LondonGoogle Scholar
  34. Lan T, Kaviratna PD, Pannavaia T (1995) Mechanism of clay tactoid exfoliation in epoxy-clay nanocomposites. J Chem Mater 7:2144–2150CrossRefGoogle Scholar
  35. LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15:11–29CrossRefGoogle Scholar
  36. Lu JK, Ke YC, Qi ZN, Yi XS (2001) Studies of intercalation and exfoliation behavior of organoclays in epoxy resin. J Poym Sci Part B: Polym Phys 39:115–120CrossRefGoogle Scholar
  37. Lotti C, Isaac CS, Branciforti MC, Alves RMV, Liberman S, Bretas RES (2008) Rheological, mechanical and transport properties of blown films of high density polyethylene nanocomposites. Eur Polym J 44:1346–1357CrossRefGoogle Scholar
  38. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504CrossRefGoogle Scholar
  39. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578CrossRefGoogle Scholar
  40. Majeed K, Jawaid M, Hassan A, Abu Bakar A, Abdul Khalil HPS, Salemae AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410CrossRefGoogle Scholar
  41. Matti P, Nam PH, Okamoto M, Kotaka T, Hasewaga N, Usuki A (2002) Influence of crystallization on inercalation, morphology and mechanical properties of polypropylene/clay nanocomposites. Macromol, 35:2043–2058Google Scholar
  42. Mittal V (2007) Polypropylene-layered silicate nanocomposites: filler matrix interactionsand mechanical properties. J Thermoplast Compos Mater 20:575–599CrossRefGoogle Scholar
  43. Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of Najafi A, Kord B, Abdi A, Ranaee S (2011) The impact of the nature of nanoclay on physical and mechanical properties of polypropylene/reed flour nanocomposites. J Thermoplast ComposGoogle Scholar
  44. Okada A, Usuki A (2006) Twenty years of polymer composites. Macromol Mater Eng 291:1449–1476Google Scholar
  45. Okamoto M, Nam PH, Maiti P, Kotaka T, Hasegawa N, Usukin A (2001) A house of cards structure in polypropylene/clay nanocomposites under elongational flow. Nano Lett 1:295–298CrossRefGoogle Scholar
  46. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocompopsites. Prog Polym Sci 32:1119–1198CrossRefGoogle Scholar
  47. Pinnavaia TJ, Farzanch F (1983) Metal complex catalyst interlayered in smecitite clay, hydroformylation of 1 hexene with rhodium complexes ion exchanged into hectorite. Inorg. Chem, 22:2216–2220Google Scholar
  48. Pratheep Kumar A, Pal Singh R (2007) Novel hybrid of clay, cellulose, and thermoplastics. I. Preparation and characterization of composites of ethylene–propylene copolymer. J Appl Polym Sci 104:2672–2682CrossRefGoogle Scholar
  49. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641Google Scholar
  50. Rehab A, Salahuddin N (2005) Nanocomposite materials based on polyurethane intercalated into montmorillonite clay. Mater Sci Eng A399:368–376Google Scholar
  51. Strawhecker KE, Manias E (2000) Structure and properties of poly(Vinyl alcohol)/Na-montmorillonite nanocomposites. Chem Mater 12:2943CrossRefGoogle Scholar
  52. Tcherbi-Narteh A, Hosur M, Triggs E, Owuor P, Jelaani S (2014) Viscoelastic and thermal properties of full and partially cured DGEBA epoxy resin composites modified with montmorillonite nano clay exposed to UV radiation. Polymer Degradation and Stability. Polym Degrad Stab 101:81–91Google Scholar
  53. Theng BKG (1974) The chemistry of clay organic reactions. Wiley, Adam Hilger, LondonGoogle Scholar
  54. Thostenson ET, Li C, Chou TW (2005) Nanocomposites in context. Compos Sci Technol 65:491–516Google Scholar
  55. Tabuani D, Ceccia S, Camino G (2011) Polypropylene nanocomposites, study of the influence of the nanofiller nature on morphology and material properties. Macromol Symp 301:114–27Google Scholar
  56. Timmerman JF, Hayes BS, Seferis JC (2002) Nanoclay reinforcement effects on the cryogenic microcracking of carbon fibre/epoxy composites.Compos Sci Technol 62:1249Google Scholar
  57. Tjong SC (2006) Structural and mechanical properties polymer nanocomposites. Mater Sci Eng R 53:73–197CrossRefGoogle Scholar
  58. Thakur VK, Yan J, Lin M-F et al (2012) Novel polymer nanocomposites from bioinspired green aqueous functionalization of BNNTs. Polym Chem 3:962–969CrossRefGoogle Scholar
  59. Thakur VK, Vennerberg D, Kessler MR (2014a) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interfaces 6:9349–9356CrossRefGoogle Scholar
  60. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2:1072–1092. doi: 10.1021/sc500087z CrossRefGoogle Scholar
  61. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014c) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684CrossRefGoogle Scholar
  62. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014d) PMMA-g-SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249CrossRefGoogle Scholar
  63. Usuki YK, Okada A, Karauchi T, Kamigaito O (1993) J Polym Sci Part A: Polym Chem 31:2493Google Scholar
  64. Venkatesh GS, Deb A, Karmarkar A, Chauhan SS (2012) Effect of nanoclay content and compatibilizer on viscoelastic properties of montmorillonite/polypropylene nanocomposites. Mater Des 37:285–291CrossRefGoogle Scholar
  65. Wang Z, Pinnavaia TJ (1998) Hybrid organic–inorganic nanocomposites: exfoliation of Wang ZF, Wang B, Qi N, Zhang HF, Zhang LQ (2005) Influence of fillers on free volume and gas barrier properties in styrene-butadiene rubber studied by positrons. Polymer 46:719–724Google Scholar
  66. Xue B, Zhang P, Jiang Y, Sun M, Liu D, Yu L (2011) Preparation and characterization of linear low-density polyethylene/dickitenanocomposites prepared by the direct melt blending of linear low-density polyethylene with exfoliated dickite. J Appl Polym Sci 120:1736–1743CrossRefGoogle Scholar
  67. Yano K, Usuki A, Okada A, Kurauchi T, Kamigaito O (1993) Synthesis and properties of polyimide/clay hybrid. J Polym Sci Polym Chem 31:2493–2498Google Scholar
  68. Zanetti M, Costa L (2004) Preparation and combustion behaviour of polymer/layered silicate nanocomposites based upon PE and EVA. Polymer 45:4367–4373CrossRefGoogle Scholar
  69. Zanetti M, Lomakin S, Camino G (2000) Macromol Mater Eng 279:1Google Scholar
  70. Zhang J, Hereid J, Hagen M, Bakirtzis D, Delichatsios MA, Fina A et al (2009) Effects of nanoclay and fire retardants on fire retardancy of a polymer blend of EVA and LDPE. Fire Saf J 44:504–513CrossRefGoogle Scholar
  71. Zhong Y, Poloso T, Hetzer M, De Kee D (2007) Enhancement of wood/polyethylene composites via compatibilization and incorporation of organoclay particles. Polym Eng Sci 47:797–803CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Material Chemistry DivisionSAS, VIT UniversityVelloreIndia

Personalised recommendations