Advertisement

Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering

  • Ibrahim M. El-SherbinyEmail author
  • Isra H. Ali
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 75)

Abstract

Recently, nanofibers have been investigated with remarkable increased applicability in different fields due to their numerous advantages such as large surface area and controlled morphology. Nanofibers can be prepared using three main techniques, namely electrospinning, phase separation, and self-assembly. Of these, electrospinning is the most commonly used technique and also seems to exhibit the most desirable results. This chapter provides an overview of the electrospinning of eco-friendly polymers and polymeric nanocomposites for biomedical applications with an emphasis on their applications in wound healing and tissue regenration. Controlling the characteristics of the developed electrospun nanocomposites via tailoring the collectors used during electrospinning as well as carefully changing their surface chemistry for the proper design of wound healing nanofibrous dressings and tissue engineering nanofibrous scaffolds will be explored. Also, the challenges associated with the use of electrospun polymeric nanofibers-based nanocomposites for wound healing and tissue engineering will be described.

Keywords

Electrospinning Nanofibers Nanocomposites Wound healing Tissue engineering 

References

  1. Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15):2467–2477. doi: 10.1016/j.biomaterials.2004.06.047 Google Scholar
  2. Silva A, Silva-Freitas É, Carvalho J, Pontes T, Araújo-Neto R, Silva K, Carriço A, Egito E (2012) Advances in applied biotechnology (M Petre, Ed). InTech. doi: 10.5772/1096
  3. Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS (2006) Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27(4):596–606. doi: 10.1016/j.biomaterials.2005.05.084 Google Scholar
  4. Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40(26):7397–7407. doi: 10.1016/S0032-3861(98)00866-0 Google Scholar
  5. Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. doi: 10.1021/ma0351975 Google Scholar
  6. Chew SY, Wen J, Yim EKF, Leong KW (2005) Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6(4):2017–2024. doi: 10.1021/bm0501149 Google Scholar
  7. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906. doi: 10.1016/j.biomaterials.2008.03.031 Google Scholar
  8. Deitzel J, Kleinmeyer J, Harris D, Beck Tan N (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272. doi: 10.1016/S0032-3861(00)00250-0 Google Scholar
  9. Demir M, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43(11):3303–3309. doi: 10.1016/S0032-3861(02)00136-2 Google Scholar
  10. Desai TA (2000) Micro- and nanoscale structures for tissue engineering constructs. Med Eng Phys 22(9):595–606. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.elsevier-8b9c2a18-0fa6-3146-8a5e-f0b5a004a799
  11. Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94(1):264–272. doi: 10.1002/jbm.b.31651 Google Scholar
  12. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review, 2011(ii). doi: 10.1155/2011/290602
  13. Duan B, Dong C, Yuan X, Yao K (2004) Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed 15(6):797–811. doi: 10.1163/156856204774196171 Google Scholar
  14. Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Super-Hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem 114(7):1269–1271. doi: 10.1002/1521-3757(20020402)114:7<1269:AID-ANGE1269>3.0.CO;2-E Google Scholar
  15. Fong H, Chun I, Reneker D (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592. doi: 10.1016/S0032-3861(99)00068-3 Google Scholar
  16. Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432. doi: 10.1016/j.biomaterials.2005.01.066 Google Scholar
  17. Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S (2000) Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng 67(3):344–53. http://www.ncbi.nlm.nih.gov/pubmed/10620265
  18. Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 46(30):5670–5703. doi: 10.1002/anie.200604646 Google Scholar
  19. Gupta D, Venugopal J, Prabhakaran MP, Dev VRG, Low S, Choon AT, Ramakrishna S (2009) Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 5(7):2560–2569. doi: 10.1016/j.actbio.2009.01.039 Google Scholar
  20. Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46(13):4799–4810. doi: 10.1016/j.polymer.2005.04.021 Google Scholar
  21. Hang AT, Tae B, Park JS (2010) Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: fabrication and characterization. Carbohydr Polym 82(2):472–479. doi: 10.1016/j.carbpol.2010.05.016 Google Scholar
  22. Huang L, Nagapudi K, P.Apkarian R, Chaikof EL (2001) Engineered collagen–PEO nanofibers and fabrics. J Biomater Sci, Polym Ed 12(9):979–993. doi: 10.1163/156856201753252516
  23. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. doi: 10.1016/S0266-3538(03)00178-7 Google Scholar
  24. Jafari J, Emami SH, Samadikuchaksaraei A, Bahar MA, Gorjipour F (2011) Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation. Bio-Med Mater Eng 21(2):99–112. doi: 10.3233/BME-2011-0660 Google Scholar
  25. Jang J-H, Castano O, Kim H-W (2009) Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 61(12):1065–1083. doi: 10.1016/j.addr.2009.07.008 Google Scholar
  26. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Supaphol P (2005a) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41(3):409–421. doi: 10.1016/j.eurpolymj.2004.10.010 Google Scholar
  27. Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Supaphol P (2005b) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41(3):409–421. doi: 10.1016/j.eurpolymj.2004.10.010 Google Scholar
  28. Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232. doi: 10.1016/j.carbpol.2010.04.074 Google Scholar
  29. Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337. doi: 10.1016/j.biotechadv.2011.01.005 Google Scholar
  30. Jiang H, Fang D, Hsiao BS, Chu B, Chen W (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5(2):326–333. doi: 10.1021/bm034345w Google Scholar
  31. Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, Yi L (2009) Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5(1):453–461. doi: 10.1016/j.actbio.2008.07.002 Google Scholar
  32. Katti D, Lakshmi S, Langer R, Laurencin C (2002) Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54(7):933–961. doi: 10.1016/S0169-409X(02)00052-2 Google Scholar
  33. Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH (2005) Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 46(14):5094–5102. doi: 10.1016/j.polymer.2005.04.040 Google Scholar
  34. Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26(1):37–46. doi: 10.1016/j.biomaterials.2004.01.063 Google Scholar
  35. Kim B, Park H, Lee S-H, Sigmund WM (2005a) Poly(acrylic acid) nanofibers by electrospinning. Mater Lett 59(7):829–832. doi: 10.1016/j.matlet.2004.11.032 Google Scholar
  36. Kim HS, Kim K, Jin HJ, Chin I-J (2005b) Morphological characterization of electrospun nano-fibrous membranes of biodegradable poly(l-lactide) and poly(lactide–co–glycolide). Macromol Symp 224(1):145–154. doi: 10.1002/masy.200550613 Google Scholar
  37. Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74. doi: 10.1016/j.biomaterials.2010.08.074 Google Scholar
  38. Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58(3–4):493–497. doi: 10.1016/S0167-577X(03)00532-9 Google Scholar
  39. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29(30):4100–4107. doi: 10.1016/j.biomaterials.2008.06.028 Google Scholar
  40. Ladd MR, Hill TK, Yoo JJ, Lee SJ (2008) Electrospun nanofibers in tissue engineeringGoogle Scholar
  41. Lee JS, Choi KH, Ghim H Do, Kim SS, Chun DH, Kim HY, Lyoo WS (2004) Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci 93(4):1638–1646. doi: 10.1002/app.20602 Google Scholar
  42. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ (2008) Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29(19):2891–2898. doi: 10.1016/j.biomaterials.2008.03.032 Google Scholar
  43. Lee EJ, Khan SA, Park JK, Lim K-H (2012) Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioprocess Biosyst Eng 35(1–2):297–307. doi: 10.1007/s00449-011-0591-2 Google Scholar
  44. Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938. doi: 10.1021/nl049590f Google Scholar
  45. Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res, 60(4):613–21. http://www.ncbi.nlm.nih.gov/pubmed/11948520
  46. Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715. doi: 10.1016/j.biomaterials.2005.11.037 Google Scholar
  47. Liao S, Murugan R, Chan CK, Ramakrishna S (2008) Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering. J Mech Behav Biomed Mater 1(3):252–260. doi: 10.1016/j.jmbbm.2008.01.007 Google Scholar
  48. Lin T, Wang H, Wang H, Wang X (2004) The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15(9):1375–1381. doi: 10.1088/0957-4484/15/9/044 Google Scholar
  49. Liu G, Ding J, Qiao L, Guo A, Dymov BP, Gleeson JT, Saijo K (1999) Polystyrene-block-poly(2-cinnamoylethyl methacrylate) nanofibers—preparation, characterization, and liquid crystalline properties. Chem Eur J 5(9):2740–2749. doi: 10.1002/(SICI)1521-3765(19990903)5:9<2740:AID-CHEM2740>3.0.CO;2-V Google Scholar
  50. Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci, Part B: Polym Phys 40(18):2119–2129. doi: 10.1002/polb.10261 Google Scholar
  51. Liu Y, Kim H-I (2012) Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydr Polym 89(1):111–116. doi: 10.1016/j.carbpol.2012.02.058 Google Scholar
  52. Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40. doi: 10.1016/S1369-7021(04)00233-0 Google Scholar
  53. Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142. doi: 10.1016/S0142-9612(99)00011-3 Google Scholar
  54. Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746. doi: 10.1021/cm960166s Google Scholar
  55. Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238. doi: 10.1021/bm015533u Google Scholar
  56. Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466. doi: 10.1021/ma020444a Google Scholar
  57. Mi F-L, Tan Y-C, Liang H-F, Sung H-W (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23(1):181–191. doi: 10.1016/S0142-9612(01)00094-1 Google Scholar
  58. Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35(5):1068–1077. doi: 10.1016/0032-3861(94)90953-9 Google Scholar
  59. Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 205(17):2327–2338. doi: 10.1002/macp.200400225 Google Scholar
  60. Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14):1417–1422. doi: 10.1016/0142-9612(96)87284-X Google Scholar
  61. Murugan R, Ramakrishna S (2006) Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 12(3):435–447. doi: 10.1089/ten.2006.12.435 Google Scholar
  62. Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76(2):167–182. doi: 10.1016/j.carbpol.2008.11.002 Google Scholar
  63. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798. doi: 10.1016/j.progpolymsci.2007.05.017 Google Scholar
  64. Ner Y, Asemota C, Olson JR, Sotzing GA (2009) Nanofiber alignment on a flexible substrate: hierarchical order from macro to nano. ACS Appl Mater Interf 1(10):2093–2097. doi: 10.1021/am900382f Google Scholar
  65. Nerem RM (1992) Tissue engineering in the USA. Med Biol Eng Comput 30(4):CE8–CE12. doi: 10.1007/BF02446171
  66. Ni H, Zeng S, Wu J, Cheng X, Luo T, Wang W (2012) Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation. 22:121–127. doi: 10.3233/BME-2012-0697
  67. Niklason LE (2001) Prospects for organ and tissue replacement. JAMA 285(5):573. doi: 10.1001/jama.285.5.573 Google Scholar
  68. Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS (2008) Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 87(1):251–263. doi: 10.1002/jbm.b.31000 Google Scholar
  69. Ondarçuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett (EPL) 42(2):215–220. doi: 10.1209/epl/i1998-00233-9 Google Scholar
  70. Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211. doi: 10.1089/ten.2006.12.1197 Google Scholar
  71. Powell HM, Boyce ST (2009) Engineered human skin fabricated using electrospun collagen-PCL blends: morphogenesis and mechanical properties. Tissue Eng Part A 15(8):2177–2187. doi: 10.1089/ten.tea.2008.0473 Google Scholar
  72. Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30(28):4996–5003. doi: 10.1016/j.biomaterials.2009.05.057 Google Scholar
  73. Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B, Rev 14(1):105–18. doi: 10.1089/teb.2007.0318
  74. Qian Y-F, Zhang K-H, Chen F, Ke Q-F, Mo X-M (2011) Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. J Biomater Sci Polym Ed 22(8):1099–1113. doi: 10.1163/092050610X499447 Google Scholar
  75. Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003a) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi: 10.1021/bm034130m Google Scholar
  76. Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003b) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi: 10.1021/bm034130m Google Scholar
  77. Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223. doi: 10.1088/0957-4484/7/3/009 Google Scholar
  78. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. doi: 10.1016/j.progpolymsci.2006.06.001 Google Scholar
  79. Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater 5:29–39, discussion 39–40. http://www.ncbi.nlm.nih.gov/pubmed/14562270
  80. Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 58(4):352–357. doi: 10.1002/jbm.1028 Google Scholar
  81. Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77(4):863–869. doi: 10.1016/j.carbpol.2009.03.009 Google Scholar
  82. Shin HJ, Lee CH, Cho IH, Kim Y-J, Lee Y-J, Kim IA, Shin J-W (2006) Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed 17(1–2):103–119. doi: 10.1163/156856206774879126 Google Scholar
  83. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006. doi: 10.1016/j.biomaterials.2008.01.011 Google Scholar
  84. Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14(8):695–711. doi: 10.1080/10236660903325518 Google Scholar
  85. Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97. doi: 10.1080/10236660903474506 Google Scholar
  86. Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications, (i):728–765. doi: 10.3390/polym2040728
  87. Sohier J, Carubelli I, Sarathchandra P, Latif N, Chester AH, Yacoub MH (2014) The potential of anisotropic matrices as substrate for heart valve engineering. Biomaterials 35(6):1833–1844. doi: 10.1016/j.biomaterials.2013.10.061 Google Scholar
  88. Son WK, Youk JH, Lee TS, Park WH (2004) The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45(9):2959–2966. doi: 10.1016/j.polymer.2004.03.006 Google Scholar
  89. Steyaert I, Van der Schueren L, Rahier H, de Clerck K (2012) An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres. Macromol Symp 321–322(1):71–75. doi: 10.1002/masy.201251111 Google Scholar
  90. Sun K (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Expr Polym Lett 5(4):342–361. doi: 10.3144/expresspolymlett.2011.34 Google Scholar
  91. Sun T, Mai S, Norton D, Haycock JW, Ryan AJ, MacNeil S (2005) Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng 11(7–8):1023–1033. doi: 10.1089/ten.2005.11.1023 Google Scholar
  92. Sundar S, Kundu J, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11(1):014104. doi: 10.1088/1468-6996/11/1/014104 Google Scholar
  93. Thakur VK, Kessler MR (2014a) Free radical induced graft copolymerization of ethyl acrylate onto SOY for multifunctional materials. Mater Today Commun. doi: 10.1016/j.mtcomm.2014.09.003
  94. Thakur VK, Kessler MR (2014b) Synthesis and characterization of AN–g–SOY for sustainable polymer composites. ACS Sustain Chem Eng 2:2454–2460. doi: 10.1021/sc500473a
  95. Tang Y, Su Y, Yang N, Zhang L, Lv Y (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem. doi: 10.1021/ac5005162 Google Scholar
  96. Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89–R106. doi: 10.1088/0957-4484/17/14/R01 Google Scholar
  97. Thakur VK, Singha AS (2010) Natural fibres-based polymers: part i—mechanical analysis of Pine needles reinforced biocomposites. Bull Mater Sci 33:257–264. doi: 10.1007/s12034-010-0040-x Google Scholar
  98. Thakur VK, Singha AS, Kaur I et al (2010a) Silane functionalization of Saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414. doi: 10.1080/1023666X.2010.510106
  99. Thakur VK, Singha AS, Mehta IK (2010b) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):137–146. doi: 10.1080/10236660903582233
  100. Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122(1):532–544. doi: 10.1002/app.34094 Google Scholar
  101. Thakur VK, Singha AS, Thakur MK (2012a) Green composites from natural fibers: mechanical and chemical aging properties. Int J Polym Anal Charact 17(6):401–407. doi: 10.1080/1023666X.2012.668665 Google Scholar
  102. Thakur VK, Singha AS, Thakur MK (2012b) Rapid synthesis of MMA grafted pine needles using microwave radiation. Polym-Plast Technol Eng 51:1598–1604. doi: 10.1080/03602559.2012.721443 Google Scholar
  103. Thakur VK, Singha AS, Thakur MK (2013a) Natural cellulosic polymers as potential reinforcement in composites: physicochemical and mechanical studies. Adv Polym Technol 32:E427–E435. doi: 10.1002/adv.21290 Google Scholar
  104. Thakur VK, Singha AS, Thakur MK (2013b) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater Polym Biomater 62:226–230. doi: 10.1080/00914037.2011.641694 Google Scholar
  105. Thakur VK, Singha AS, Thakur MK (2013c) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64–72. doi: 10.1080/1023666X.2013.747246 Google Scholar
  106. Thakur VK, Singha AS, Thakur MK (2013d) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32:E741–E748. doi: 10.1002/adv.21317 Google Scholar
  107. Thakur VK, Thakur MK (2014a) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652. doi: 10.1021/sc500634p Google Scholar
  108. Thakur VK, Thakur MK (2014b) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. doi: 10.1016/j.carbpol.2014.03.039 Google Scholar
  109. Thakur and Thakur (2014c) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15. doi: 10.1016/j.jclepro.2014.06.066
  110. Thakur VK, Thakur MK, Gupta RK (2014a) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271. doi: 10.1080/1023666X.2014.880016 Google Scholar
  111. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092. doi: 10.1021/sc500087z Google Scholar
  112. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014c) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. Rsc Adv 4:6677–6684. doi: 10.1039/c3ra46592f Google Scholar
  113. Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014d) PMMA–g–SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249. doi: 10.1039/c4ra01894j Google Scholar
  114. Thakur VK, Grewell D, Thunga M, Kessler MR (2014e) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958. doi: 10.1002/mame.201300368 Google Scholar
  115. Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12(3):384–390. doi: 10.1088/0957-4484/12/3/329 Google Scholar
  116. Theron SA, Yarin AL, Zussman E, Kroll E (2005) Multiple jets in electrospinning: experiment and modeling. Polymer 46(9):2889–2899. doi: 10.1016/j.polymer.2005.01.054 Google Scholar
  117. Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1996) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7(1):23–38. doi: 10.1163/156856295X00805 Google Scholar
  118. Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2009) Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 1(1):218–223. doi: 10.1021/am800063x Google Scholar
  119. Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34. doi: 10.1016/S0140-6736(99)90247-7 Google Scholar
  120. Wang Y, Wang G, Chen L, Li H, Yin T, Wang B, Yu Q (2009) Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds. Biofabrication 1(1):015001. doi: 10.1088/1758-5082/1/1/015001 Google Scholar
  121. Wannatong L, Sirivat A, Supaphol P (2004) Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 53(11):1851–1859. doi: 10.1002/pi.1599 Google Scholar
  122. Yang F, Murugan R, Ramakrishna S, Wang X, Ma Y-X, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25(10):1891–1900. doi: 10.1016/j.biomaterials.2003.08.062 Google Scholar
  123. Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689. doi: 10.1089/107632701753337645 Google Scholar
  124. Yang Y, Zhu X, Cui W, Li X, Jin Y (2009) Electrospun composite mats of poly[(D, L-lactide) –co– glycolide] and collagen with high porosity as potential scaffolds for skin tissue engineering. Macromol Mater Eng 294(9):611–619. doi: 10.1002/mame.200900052 Google Scholar
  125. Yuan X, Zhang Y, Dong C, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53(11):1704–1710. doi: 10.1002/pi.1538 Google Scholar
  126. Zahedi P, Rezaeian I, Ranaei-Siadat S-O, Jafari S-H, Supaphol P (2009) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol n/a–n/a. doi: 10.1002/pat.1625
  127. Zander N (2013) Hierarchically structured electrospun fibers. Polymers 5(1):19–44. doi: 10.3390/polym5010019 Google Scholar
  128. Zeng J, Haoqing H, Schaper A, Wendorff JH, Greiner A (2003) Poly-L-lactide nanofibers by electrospinning—influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. E-Polymers 3(1):102–110. http://www.degruyter.com/view/j/epoly.2003.3.issue-1/epoly.2003.3.1.102/epoly.2003.3.1.102.xml
  129. Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polymer J 41(3):423–432. doi: 10.1016/j.eurpolymj.2004.10.027 Google Scholar
  130. Zhang K, Wang X, Jing D, Yang Y, Zhu M (2009) Bionic electrospun ultrafine fibrous poly(L-lactic acid) scaffolds with a multi-scale structure. Biomed Mater (Bristol, England) 4(3):035004. doi: 10.1088/1748-6041/4/3/035004
  131. Zhong SP, Zhang YZ, Lim CT (n.d.). Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisc Rev Nanomed Nanobiotechnol 2(5):510–25. doi: 10.1002/wnan.100
  132. Zhuang X, Cheng B, Kang W, Xu X (2010) Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr Polym 82(2):524–527. doi: 10.1016/j.carbpol.2010.04.085 Google Scholar
  133. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412. doi: 10.1016/S0032-3861(02)00275-6 Google Scholar
  134. Zuo W, Zhu M, Yang W, Yu H, Chen Y, Zhang Y (2005) Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym Eng Sci 45(5):704–709. doi: 10.1002/pen.20304 Google Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  1. 1.Center for Materials ScienceUniversity of Science and Technology (UST), Zewail City of Science and TechnologyGizaEgypt

Personalised recommendations