Skip to main content

Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

Recently, nanofibers have been investigated with remarkable increased applicability in different fields due to their numerous advantages such as large surface area and controlled morphology. Nanofibers can be prepared using three main techniques, namely electrospinning, phase separation, and self-assembly. Of these, electrospinning is the most commonly used technique and also seems to exhibit the most desirable results. This chapter provides an overview of the electrospinning of eco-friendly polymers and polymeric nanocomposites for biomedical applications with an emphasis on their applications in wound healing and tissue regenration. Controlling the characteristics of the developed electrospun nanocomposites via tailoring the collectors used during electrospinning as well as carefully changing their surface chemistry for the proper design of wound healing nanofibrous dressings and tissue engineering nanofibrous scaffolds will be explored. Also, the challenges associated with the use of electrospun polymeric nanofibers-based nanocomposites for wound healing and tissue engineering will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15):2467–2477. doi:10.1016/j.biomaterials.2004.06.047

    CAS  Google Scholar 

  • Silva A, Silva-Freitas É, Carvalho J, Pontes T, Araújo-Neto R, Silva K, Carriço A, Egito E (2012) Advances in applied biotechnology (M Petre, Ed). InTech. doi:10.5772/1096

  • Badami AS, Kreke MR, Thompson MS, Riffle JS, Goldstein AS (2006) Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials 27(4):596–606. doi:10.1016/j.biomaterials.2005.05.084

    CAS  Google Scholar 

  • Buchko CJ, Chen LC, Shen Y, Martin DC (1999) Processing and microstructural characterization of porous biocompatible protein polymer thin films. Polymer 40(26):7397–7407. doi:10.1016/S0032-3861(98)00866-0

    CAS  Google Scholar 

  • Casper CL, Stephens JS, Tassi NG, Chase DB, Rabolt JF (2004) Controlling surface morphology of electrospun polystyrene fibers: effect of humidity and molecular weight in the electrospinning process. Macromolecules 37(2):573–578. doi:10.1021/ma0351975

    CAS  Google Scholar 

  • Chew SY, Wen J, Yim EKF, Leong KW (2005) Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 6(4):2017–2024. doi:10.1021/bm0501149

    CAS  Google Scholar 

  • Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008) The influence of electrospun aligned poly(epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes. Biomaterials 29(19):2899–2906. doi:10.1016/j.biomaterials.2008.03.031

    CAS  Google Scholar 

  • Deitzel J, Kleinmeyer J, Harris D, Beck Tan N (2001) The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42(1):261–272. doi:10.1016/S0032-3861(00)00250-0

    CAS  Google Scholar 

  • Demir M, Yilgor I, Yilgor E, Erman B (2002) Electrospinning of polyurethane fibers. Polymer 43(11):3303–3309. doi:10.1016/S0032-3861(02)00136-2

    CAS  Google Scholar 

  • Desai TA (2000) Micro- and nanoscale structures for tissue engineering constructs. Med Eng Phys 22(9):595–606. http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.elsevier-8b9c2a18-0fa6-3146-8a5e-f0b5a004a799

  • Dhandayuthapani B, Krishnan UM, Sethuraman S (2010) Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J Biomed Mater Res B Appl Biomater 94(1):264–272. doi:10.1002/jbm.b.31651

    Google Scholar 

  • Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS (2011) Polymeric scaffolds in tissue engineering application: a review, 2011(ii). doi:10.1155/2011/290602

  • Duan B, Dong C, Yuan X, Yao K (2004) Electrospinning of chitosan solutions in acetic acid with poly(ethylene oxide). J Biomater Sci Polym Ed 15(6):797–811. doi:10.1163/156856204774196171

    CAS  Google Scholar 

  • Feng L, Li S, Li H, Zhai J, Song Y, Jiang L, Zhu D (2002) Super-Hydrophobic surface of aligned polyacrylonitrile nanofibers. Angew Chem 114(7):1269–1271. doi:10.1002/1521-3757(20020402)114:7<1269:AID-ANGE1269>3.0.CO;2-E

    Google Scholar 

  • Fong H, Chun I, Reneker D (1999) Beaded nanofibers formed during electrospinning. Polymer 40(16):4585–4592. doi:10.1016/S0032-3861(99)00068-3

    CAS  Google Scholar 

  • Geng X, Kwon O-H, Jang J (2005) Electrospinning of chitosan dissolved in concentrated acetic acid solution. Biomaterials 26(27):5427–5432. doi:10.1016/j.biomaterials.2005.01.066

    CAS  Google Scholar 

  • Glicklis R, Shapiro L, Agbaria R, Merchuk JC, Cohen S (2000) Hepatocyte behavior within three-dimensional porous alginate scaffolds. Biotechnol Bioeng 67(3):344–53. http://www.ncbi.nlm.nih.gov/pubmed/10620265

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed Engl 46(30):5670–5703. doi:10.1002/anie.200604646

    CAS  Google Scholar 

  • Gupta D, Venugopal J, Prabhakaran MP, Dev VRG, Low S, Choon AT, Ramakrishna S (2009) Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater 5(7):2560–2569. doi:10.1016/j.actbio.2009.01.039

    CAS  Google Scholar 

  • Gupta P, Elkins C, Long TE, Wilkes GL (2005) Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer 46(13):4799–4810. doi:10.1016/j.polymer.2005.04.021

    CAS  Google Scholar 

  • Hang AT, Tae B, Park JS (2010) Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: fabrication and characterization. Carbohydr Polym 82(2):472–479. doi:10.1016/j.carbpol.2010.05.016

    CAS  Google Scholar 

  • Huang L, Nagapudi K, P.Apkarian R, Chaikof EL (2001) Engineered collagen–PEO nanofibers and fabrics. J Biomater Sci, Polym Ed 12(9):979–993. doi:10.1163/156856201753252516

  • Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253. doi:10.1016/S0266-3538(03)00178-7

    CAS  Google Scholar 

  • Jafari J, Emami SH, Samadikuchaksaraei A, Bahar MA, Gorjipour F (2011) Electrospun chitosan-gelatin nanofiberous scaffold: fabrication and in vitro evaluation. Bio-Med Mater Eng 21(2):99–112. doi:10.3233/BME-2011-0660

    CAS  Google Scholar 

  • Jang J-H, Castano O, Kim H-W (2009) Electrospun materials as potential platforms for bone tissue engineering. Adv Drug Deliv Rev 61(12):1065–1083. doi:10.1016/j.addr.2009.07.008

    CAS  Google Scholar 

  • Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Supaphol P (2005a) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41(3):409–421. doi:10.1016/j.eurpolymj.2004.10.010

    CAS  Google Scholar 

  • Jarusuwannapoom T, Hongrojjanawiwat W, Jitjaicham S, Wannatong L, Nithitanakul M, Pattamaprom C, Supaphol P (2005b) Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur Polym J 41(3):409–421. doi:10.1016/j.eurpolymj.2004.10.010

    CAS  Google Scholar 

  • Jayakumar R, Menon D, Manzoor K, Nair SV, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232. doi:10.1016/j.carbpol.2010.04.074

    CAS  Google Scholar 

  • Jayakumar R, Prabaharan M, Sudheesh Kumar PT, Nair SV, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337. doi:10.1016/j.biotechadv.2011.01.005

    CAS  Google Scholar 

  • Jiang H, Fang D, Hsiao BS, Chu B, Chen W (2004) Optimization and characterization of dextran membranes prepared by electrospinning. Biomacromolecules 5(2):326–333. doi:10.1021/bm034345w

    CAS  Google Scholar 

  • Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, Yi L (2009) Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5(1):453–461. doi:10.1016/j.actbio.2008.07.002

    Google Scholar 

  • Katti D, Lakshmi S, Langer R, Laurencin C (2002) Toxicity, biodegradation and elimination of polyanhydrides. Adv Drug Deliv Rev 54(7):933–961. doi:10.1016/S0169-409X(02)00052-2

    CAS  Google Scholar 

  • Ki CS, Baek DH, Gang KD, Lee KH, Um IC, Park YH (2005) Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 46(14):5094–5102. doi:10.1016/j.polymer.2005.04.040

    CAS  Google Scholar 

  • Kidoaki S, Kwon IK, Matsuda T (2005) Mesoscopic spatial designs of nano- and microfiber meshes for tissue-engineering matrix and scaffold based on newly devised multilayering and mixing electrospinning techniques. Biomaterials 26(1):37–46. doi:10.1016/j.biomaterials.2004.01.063

    CAS  Google Scholar 

  • Kim B, Park H, Lee S-H, Sigmund WM (2005a) Poly(acrylic acid) nanofibers by electrospinning. Mater Lett 59(7):829–832. doi:10.1016/j.matlet.2004.11.032

    CAS  Google Scholar 

  • Kim HS, Kim K, Jin HJ, Chin I-J (2005b) Morphological characterization of electrospun nano-fibrous membranes of biodegradable poly(l-lactide) and poly(lactide–co–glycolide). Macromol Symp 224(1):145–154. doi:10.1002/masy.200550613

    CAS  Google Scholar 

  • Kolambkar YM, Dupont KM, Boerckel JD, Huebsch N, Mooney DJ, Hutmacher DW, Guldberg RE (2011) An alginate-based hybrid system for growth factor delivery in the functional repair of large bone defects. Biomaterials 32(1):65–74. doi:10.1016/j.biomaterials.2010.08.074

    CAS  Google Scholar 

  • Koski A, Yim K, Shivkumar S (2004) Effect of molecular weight on fibrous PVA produced by electrospinning. Mater Lett 58(3–4):493–497. doi:10.1016/S0167-577X(03)00532-9

    CAS  Google Scholar 

  • Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT (2008) Electrospun poly(lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials 29(30):4100–4107. doi:10.1016/j.biomaterials.2008.06.028

    CAS  Google Scholar 

  • Ladd MR, Hill TK, Yoo JJ, Lee SJ (2008) Electrospun nanofibers in tissue engineering

    Google Scholar 

  • Lee JS, Choi KH, Ghim H Do, Kim SS, Chun DH, Kim HY, Lyoo WS (2004) Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci 93(4):1638–1646. doi:10.1002/app.20602

    CAS  Google Scholar 

  • Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ (2008) Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29(19):2891–2898. doi:10.1016/j.biomaterials.2008.03.032

    CAS  Google Scholar 

  • Lee EJ, Khan SA, Park JK, Lim K-H (2012) Studies on the characteristics of drug-loaded gelatin nanoparticles prepared by nanoprecipitation. Bioprocess Biosyst Eng 35(1–2):297–307. doi:10.1007/s00449-011-0591-2

    CAS  Google Scholar 

  • Li D, Xia Y (2004) Direct fabrication of composite and ceramic hollow nanofibers by electrospinning. Nano Lett 4(5):933–938. doi:10.1021/nl049590f

    CAS  Google Scholar 

  • Li W-J, Laurencin CT, Caterson EJ, Tuan RS, Ko FK (2002) Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res, 60(4):613–21. http://www.ncbi.nlm.nih.gov/pubmed/11948520

  • Li M, Guo Y, Wei Y, MacDiarmid AG, Lelkes PI (2006) Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications. Biomaterials 27(13):2705–2715. doi:10.1016/j.biomaterials.2005.11.037

    CAS  Google Scholar 

  • Liao S, Murugan R, Chan CK, Ramakrishna S (2008) Processing nanoengineered scaffolds through electrospinning and mineralization suitable for biomimetic bone tissue engineering. J Mech Behav Biomed Mater 1(3):252–260. doi:10.1016/j.jmbbm.2008.01.007

    Google Scholar 

  • Lin T, Wang H, Wang H, Wang X (2004) The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15(9):1375–1381. doi:10.1088/0957-4484/15/9/044

    CAS  Google Scholar 

  • Liu G, Ding J, Qiao L, Guo A, Dymov BP, Gleeson JT, Saijo K (1999) Polystyrene-block-poly(2-cinnamoylethyl methacrylate) nanofibers—preparation, characterization, and liquid crystalline properties. Chem Eur J 5(9):2740–2749. doi:10.1002/(SICI)1521-3765(19990903)5:9<2740:AID-CHEM2740>3.0.CO;2-V

    CAS  Google Scholar 

  • Liu H, Hsieh Y-L (2002) Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate. J Polym Sci, Part B: Polym Phys 40(18):2119–2129. doi:10.1002/polb.10261

    CAS  Google Scholar 

  • Liu Y, Kim H-I (2012) Characterization and antibacterial properties of genipin-crosslinked chitosan/poly(ethylene glycol)/ZnO/Ag nanocomposites. Carbohydr Polym 89(1):111–116. doi:10.1016/j.carbpol.2012.02.058

    CAS  Google Scholar 

  • Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40. doi:10.1016/S1369-7021(04)00233-0

    CAS  Google Scholar 

  • Madihally SV, Matthew HWT (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142. doi:10.1016/S0142-9612(99)00011-3

    CAS  Google Scholar 

  • Martin CR (1996) Membrane-based synthesis of nanomaterials. Chem Mater 8(8):1739–1746. doi:10.1021/cm960166s

    CAS  Google Scholar 

  • Matthews JA, Wnek GE, Simpson DG, Bowlin GL (2002) Electrospinning of collagen nanofibers. Biomacromolecules 3(2):232–238. doi:10.1021/bm015533u

    CAS  Google Scholar 

  • Megelski S, Stephens JS, Chase DB, Rabolt JF (2002) Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 35(22):8456–8466. doi:10.1021/ma020444a

    CAS  Google Scholar 

  • Mi F-L, Tan Y-C, Liang H-F, Sung H-W (2002) In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials 23(1):181–191. doi:10.1016/S0142-9612(01)00094-1

    CAS  Google Scholar 

  • Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN, Vacanti JP (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35(5):1068–1077. doi:10.1016/0032-3861(94)90953-9

    CAS  Google Scholar 

  • Mit-uppatham C, Nithitanakul M, Supaphol P (2004) Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter. Macromol Chem Phys 205(17):2327–2338. doi:10.1002/macp.200400225

    CAS  Google Scholar 

  • Mooney DJ, Baldwin DF, Suh NP, Vacanti JP, Langer R (1996) Novel approach to fabricate porous sponges of poly(d, l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17(14):1417–1422. doi:10.1016/0142-9612(96)87284-X

    CAS  Google Scholar 

  • Murugan R, Ramakrishna S (2006) Nano-featured scaffolds for tissue engineering: a review of spinning methodologies. Tissue Eng 12(3):435–447. doi:10.1089/ten.2006.12.435

    CAS  Google Scholar 

  • Muzzarelli RAA (2009) Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr Polym 76(2):167–182. doi:10.1016/j.carbpol.2008.11.002

    CAS  Google Scholar 

  • Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32(8–9):762–798. doi:10.1016/j.progpolymsci.2007.05.017

    CAS  Google Scholar 

  • Ner Y, Asemota C, Olson JR, Sotzing GA (2009) Nanofiber alignment on a flexible substrate: hierarchical order from macro to nano. ACS Appl Mater Interf 1(10):2093–2097. doi:10.1021/am900382f

    CAS  Google Scholar 

  • Nerem RM (1992) Tissue engineering in the USA. Med Biol Eng Comput 30(4):CE8–CE12. doi:10.1007/BF02446171

  • Ni H, Zeng S, Wu J, Cheng X, Luo T, Wang W (2012) Cellulose nanowhiskers: preparation, characterization and cytotoxicity evaluation. 22:121–127. doi:10.3233/BME-2012-0697

  • Niklason LE (2001) Prospects for organ and tissue replacement. JAMA 285(5):573. doi:10.1001/jama.285.5.573

    CAS  Google Scholar 

  • Nisbet DR, Crompton KE, Horne MK, Finkelstein DI, Forsythe JS (2008) Neural tissue engineering of the CNS using hydrogels. J Biomed Mater Res B Appl Biomater 87(1):251–263. doi:10.1002/jbm.b.31000

    Google Scholar 

  • Ondarçuhu T, Joachim C (1998) Drawing a single nanofibre over hundreds of microns. Europhys Lett (EPL) 42(2):215–220. doi:10.1209/epl/i1998-00233-9

    Google Scholar 

  • Pham QP, Sharma U, Mikos AG (2006) Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng 12(5):1197–1211. doi:10.1089/ten.2006.12.1197

    CAS  Google Scholar 

  • Powell HM, Boyce ST (2009) Engineered human skin fabricated using electrospun collagen-PCL blends: morphogenesis and mechanical properties. Tissue Eng Part A 15(8):2177–2187. doi:10.1089/ten.tea.2008.0473

    CAS  Google Scholar 

  • Prabhakaran MP, Venugopal JR, Ramakrishna S (2009) Mesenchymal stem cell differentiation to neuronal cells on electrospun nanofibrous substrates for nerve tissue engineering. Biomaterials 30(28):4996–5003. doi:10.1016/j.biomaterials.2009.05.057

    CAS  Google Scholar 

  • Priya SG, Jungvid H, Kumar A (2008) Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B, Rev 14(1):105–18. doi:10.1089/teb.2007.0318

  • Qian Y-F, Zhang K-H, Chen F, Ke Q-F, Mo X-M (2011) Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. J Biomater Sci Polym Ed 22(8):1099–1113. doi:10.1163/092050610X499447

    CAS  Google Scholar 

  • Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003a) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi:10.1021/bm034130m

    CAS  Google Scholar 

  • Rabea EI, Badawy ME-T, Stevens CV, Smagghe G, Steurbaut W (2003b) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4(6):1457–1465. doi:10.1021/bm034130m

    CAS  Google Scholar 

  • Reneker DH, Chun I (1996) Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7(3):216–223. doi:10.1088/0957-4484/7/3/009

    CAS  Google Scholar 

  • Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632. doi:10.1016/j.progpolymsci.2006.06.001

    CAS  Google Scholar 

  • Sachlos E, Czernuszka JT (2003) Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur Cells Mater 5:29–39, discussion 39–40. http://www.ncbi.nlm.nih.gov/pubmed/14562270

  • Schoof H, Apel J, Heschel I, Rau G (2001) Control of pore structure and size in freeze-dried collagen sponges. J Biomed Mater Res 58(4):352–357. doi:10.1002/jbm.1028

    CAS  Google Scholar 

  • Shalumon KT, Binulal NS, Selvamurugan N, Nair SV, Menon D, Furuike T, Jayakumar R (2009) Electrospinning of carboxymethyl chitin/poly(vinyl alcohol) nanofibrous scaffolds for tissue engineering applications. Carbohydr Polym 77(4):863–869. doi:10.1016/j.carbpol.2009.03.009

    CAS  Google Scholar 

  • Shin HJ, Lee CH, Cho IH, Kim Y-J, Lee Y-J, Kim IA, Shin J-W (2006) Electrospun PLGA nanofiber scaffolds for articular cartilage reconstruction: mechanical stability, degradation and cellular responses under mechanical stimulation in vitro. J Biomater Sci Polym Ed 17(1–2):103–119. doi:10.1163/156856206774879126

    CAS  Google Scholar 

  • Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29(13):1989–2006. doi:10.1016/j.biomaterials.2008.01.011

    CAS  Google Scholar 

  • Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14(8):695–711. doi:10.1080/10236660903325518

    CAS  Google Scholar 

  • Singha AS, Thakur VK (2010) Mechanical, morphological, and thermal characterization of compression-molded polymer biocomposites. Int J Polym Anal Charact 15:87–97. doi:10.1080/10236660903474506

    CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications, (i):728–765. doi:10.3390/polym2040728

  • Sohier J, Carubelli I, Sarathchandra P, Latif N, Chester AH, Yacoub MH (2014) The potential of anisotropic matrices as substrate for heart valve engineering. Biomaterials 35(6):1833–1844. doi:10.1016/j.biomaterials.2013.10.061

    CAS  Google Scholar 

  • Son WK, Youk JH, Lee TS, Park WH (2004) The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer 45(9):2959–2966. doi:10.1016/j.polymer.2004.03.006

    CAS  Google Scholar 

  • Steyaert I, Van der Schueren L, Rahier H, de Clerck K (2012) An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres. Macromol Symp 321–322(1):71–75. doi:10.1002/masy.201251111

    Google Scholar 

  • Sun K (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Expr Polym Lett 5(4):342–361. doi:10.3144/expresspolymlett.2011.34

    CAS  Google Scholar 

  • Sun T, Mai S, Norton D, Haycock JW, Ryan AJ, MacNeil S (2005) Self-organization of skin cells in three-dimensional electrospun polystyrene scaffolds. Tissue Eng 11(7–8):1023–1033. doi:10.1089/ten.2005.11.1023

    CAS  Google Scholar 

  • Sundar S, Kundu J, Kundu SC (2010) Biopolymeric nanoparticles. Sci Technol Adv Mater 11(1):014104. doi:10.1088/1468-6996/11/1/014104

    Google Scholar 

  • Thakur VK, Kessler MR (2014a) Free radical induced graft copolymerization of ethyl acrylate onto SOY for multifunctional materials. Mater Today Commun. doi:10.1016/j.mtcomm.2014.09.003

  • Thakur VK, Kessler MR (2014b) Synthesis and characterization of AN–g–SOY for sustainable polymer composites. ACS Sustain Chem Eng 2:2454–2460. doi:10.1021/sc500473a

  • Tang Y, Su Y, Yang N, Zhang L, Lv Y (2014) Carbon nitride quantum dots: a novel chemiluminescence system for selective detection of free chlorine in water. Anal Chem. doi:10.1021/ac5005162

    Google Scholar 

  • Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17(14):R89–R106. doi:10.1088/0957-4484/17/14/R01

    CAS  Google Scholar 

  • Thakur VK, Singha AS (2010) Natural fibres-based polymers: part i—mechanical analysis of Pine needles reinforced biocomposites. Bull Mater Sci 33:257–264. doi:10.1007/s12034-010-0040-x

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Kaur I et al (2010a) Silane functionalization of Saccaharum cilliare fibers: thermal, morphological, and physicochemical study. Int J Polym Anal Charact 15:397–414. doi:10.1080/1023666X.2010.510106

  • Thakur VK, Singha AS, Mehta IK (2010b) Renewable resource-based green polymer composites: analysis and characterization. Int J Polym Anal Charact 15(3):137–146. doi:10.1080/10236660903582233

  • Thakur VK, Singha AS, Misra BN (2011) Graft copolymerization of methyl methacrylate onto cellulosic biofibers. J Appl Polym Sci 122(1):532–544. doi:10.1002/app.34094

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012a) Green composites from natural fibers: mechanical and chemical aging properties. Int J Polym Anal Charact 17(6):401–407. doi:10.1080/1023666X.2012.668665

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2012b) Rapid synthesis of MMA grafted pine needles using microwave radiation. Polym-Plast Technol Eng 51:1598–1604. doi:10.1080/03602559.2012.721443

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013a) Natural cellulosic polymers as potential reinforcement in composites: physicochemical and mechanical studies. Adv Polym Technol 32:E427–E435. doi:10.1002/adv.21290

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013b) Fabrication and physico-chemical properties of high-performance pine needles/green polymer composites. Int J Polym Mater Polym Biomater 62:226–230. doi:10.1080/00914037.2011.641694

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013c) Ecofriendly biocomposites from natural fibers: mechanical and weathering study. Int J Polym Anal Charact 18:64–72. doi:10.1080/1023666X.2013.747246

    CAS  Google Scholar 

  • Thakur VK, Singha AS, Thakur MK (2013d) Synthesis of natural cellulose-based graft copolymers using methyl methacrylate as an efficient monomer. Adv Polym Technol 32:E741–E748. doi:10.1002/adv.21317

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014a) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2:2637–2652. doi:10.1021/sc500634p

    CAS  Google Scholar 

  • Thakur VK, Thakur MK (2014b) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117. doi:10.1016/j.carbpol.2014.03.039

    CAS  Google Scholar 

  • Thakur and Thakur (2014c) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15. doi:10.1016/j.jclepro.2014.06.066

  • Thakur VK, Thakur MK, Gupta RK (2014a) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271. doi:10.1080/1023666X.2014.880016

    CAS  Google Scholar 

  • Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092. doi:10.1021/sc500087z

    CAS  Google Scholar 

  • Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014c) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. Rsc Adv 4:6677–6684. doi:10.1039/c3ra46592f

    CAS  Google Scholar 

  • Thakur VK, Thunga M, Madbouly SA, Kessler MR (2014d) PMMA–g–SOY as a sustainable novel dielectric material. RSC Adv 4:18240–18249. doi:10.1039/c4ra01894j

    CAS  Google Scholar 

  • Thakur VK, Grewell D, Thunga M, Kessler MR (2014e) Novel composites from eco-friendly soy flour/SBS triblock copolymer. Macromol Mater Eng 299:953–958. doi:10.1002/mame.201300368

    CAS  Google Scholar 

  • Theron A, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibres. Nanotechnology 12(3):384–390. doi:10.1088/0957-4484/12/3/329

    Google Scholar 

  • Theron SA, Yarin AL, Zussman E, Kroll E (2005) Multiple jets in electrospinning: experiment and modeling. Polymer 46(9):2889–2899. doi:10.1016/j.polymer.2005.01.054

    CAS  Google Scholar 

  • Thomson RC, Yaszemski MJ, Powers JM, Mikos AG (1996) Fabrication of biodegradable polymer scaffolds to engineer trabecular bone. J Biomater Sci Polym Ed 7(1):23–38. doi:10.1163/156856295X00805

    Google Scholar 

  • Torres-Giner S, Gimeno-Alcañiz JV, Ocio MJ, Lagaron JM (2009) Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl Mater Interfaces 1(1):218–223. doi:10.1021/am800063x

    CAS  Google Scholar 

  • Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:S32–S34. doi:10.1016/S0140-6736(99)90247-7

    Google Scholar 

  • Wang Y, Wang G, Chen L, Li H, Yin T, Wang B, Yu Q (2009) Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds. Biofabrication 1(1):015001. doi:10.1088/1758-5082/1/1/015001

    Google Scholar 

  • Wannatong L, Sirivat A, Supaphol P (2004) Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polym Int 53(11):1851–1859. doi:10.1002/pi.1599

    CAS  Google Scholar 

  • Yang F, Murugan R, Ramakrishna S, Wang X, Ma Y-X, Wang S (2004) Fabrication of nano-structured porous PLLA scaffold intended for nerve tissue engineering. Biomaterials 25(10):1891–1900. doi:10.1016/j.biomaterials.2003.08.062

    CAS  Google Scholar 

  • Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679–689. doi:10.1089/107632701753337645

    CAS  Google Scholar 

  • Yang Y, Zhu X, Cui W, Li X, Jin Y (2009) Electrospun composite mats of poly[(D, L-lactide) –co– glycolide] and collagen with high porosity as potential scaffolds for skin tissue engineering. Macromol Mater Eng 294(9):611–619. doi:10.1002/mame.200900052

    CAS  Google Scholar 

  • Yuan X, Zhang Y, Dong C, Sheng J (2004) Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym Int 53(11):1704–1710. doi:10.1002/pi.1538

    CAS  Google Scholar 

  • Zahedi P, Rezaeian I, Ranaei-Siadat S-O, Jafari S-H, Supaphol P (2009) A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages. Polym Adv Technol n/a–n/a. doi:10.1002/pat.1625

  • Zander N (2013) Hierarchically structured electrospun fibers. Polymers 5(1):19–44. doi:10.3390/polym5010019

    Google Scholar 

  • Zeng J, Haoqing H, Schaper A, Wendorff JH, Greiner A (2003) Poly-L-lactide nanofibers by electrospinning—influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology. E-Polymers 3(1):102–110. http://www.degruyter.com/view/j/epoly.2003.3.issue-1/epoly.2003.3.1.102/epoly.2003.3.1.102.xml

  • Zhang C, Yuan X, Wu L, Han Y, Sheng J (2005) Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polymer J 41(3):423–432. doi:10.1016/j.eurpolymj.2004.10.027

    CAS  Google Scholar 

  • Zhang K, Wang X, Jing D, Yang Y, Zhu M (2009) Bionic electrospun ultrafine fibrous poly(L-lactic acid) scaffolds with a multi-scale structure. Biomed Mater (Bristol, England) 4(3):035004. doi:10.1088/1748-6041/4/3/035004

  • Zhong SP, Zhang YZ, Lim CT (n.d.). Tissue scaffolds for skin wound healing and dermal reconstruction. Wiley Interdisc Rev Nanomed Nanobiotechnol 2(5):510–25. doi:10.1002/wnan.100

  • Zhuang X, Cheng B, Kang W, Xu X (2010) Electrospun chitosan/gelatin nanofibers containing silver nanoparticles. Carbohydr Polym 82(2):524–527. doi:10.1016/j.carbpol.2010.04.085

    CAS  Google Scholar 

  • Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B (2002) Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 43(16):4403–4412. doi:10.1016/S0032-3861(02)00275-6

    CAS  Google Scholar 

  • Zuo W, Zhu M, Yang W, Yu H, Chen Y, Zhang Y (2005) Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym Eng Sci 45(5):704–709. doi:10.1002/pen.20304

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim M. El-Sherbiny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

El-Sherbiny, I.M., Ali, I.H. (2015). Eco-friendly Electrospun Polymeric Nanofibers-Based Nanocomposites for Wound Healing and Tissue Engineering. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_13

Download citation

Publish with us

Policies and ethics