Advertisement

Bionanocomposites of Regenerated Cellulose Reinforced with Halloysite Nanoclay and Graphene Nanoplatelets: Characterizations and Properties

  • Mohammad Soheilmoghaddam
  • Raheleh Heidar Pour
  • Mat Uzir WahitEmail author
  • Harintharavimal Balakrishnan
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 75)

Abstract

In recent years, the development of environmentally friendly materials obtained from renewable resources has attracted immense interest due to the new sustainable development policies. Cellulose is a readily available, naturally occurring biodegradable, and biocompatible linear polysaccharide. Recently, room temperature ionic liquids have been used as solvents to produce regenerated cellulose (RC) due to their attractive properties such as good chemical and thermal stability, low flammability, low melting point, and ease of recycling. Polymer/nanofiller nanocomposites are believed to have strong potential to widen polymer applications due to enhanced performance. It is also widely accepted that the incorporation of small amount of nanofiller (less than 5 wt%) into bio-based matrixes to produce nano-biocomposite materials with enhanced mechanical, permeability, and thermal properties. The tubular silica-based naturally occurring nanofiller, halloysite nanotubes (HNT), has been investigated due to its high surface area, unique geometry, and its potential to make the hydrogen bonding with polymers to disperse well in the matrix. Graphene nanoplatelets (GNP) have also attracted enormous attention among polymer engineers over the last few years due to its unique electrical, thermal, and mechanical properties. Single layer two-dimensional GNP sheet is considered as the strongest material along with the high surface area and aspect ratio. The chapter aims to highlight the effect of the addition of two different types of nanofillers such as HNT and GNP to produce RC nanocomposites on selected properties.

Keywords

Regenerated cellulose Halloysite nanotube Graphene nanoplates Ionic liquids 

References

  1. Abdullayev E, Joshi A, Wei W, Zhao Y, Lvov Y (2012) Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6(8):7216–7226CrossRefGoogle Scholar
  2. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Rep 28(1–2):1–63CrossRefGoogle Scholar
  3. Arce A, Earle MJ, Katdare SP, Rodríguez H, Seddon KR (2007) Phase equilibria of mixtures of mutually immiscible ionic liquids. Fluid Phase Equilib 261(1–2):427–433CrossRefGoogle Scholar
  4. Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6(2):612–626CrossRefGoogle Scholar
  5. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRefGoogle Scholar
  6. Bordes P, Pollet E, Avérous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34(2):125–155CrossRefGoogle Scholar
  7. Bredereck K, Hermanutz F (2005) Man–made cellulosics. Rev Prog Color Relat Top 35(1):59–75CrossRefGoogle Scholar
  8. Chandrasekaran S, Seidel C, Schulte K (2013) Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: mechanical, electrical and thermal properties. Eur Polymer J 49(12):3878–3888CrossRefGoogle Scholar
  9. Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Rep 67(1):1–17CrossRefGoogle Scholar
  10. Crosthwaite JM, Aki SNVK, Maginn EJ, Brennecke JF (2004) Liquid phase behavior of imidazolium-based ionic liquids with alcohols. J Phys Chem B 108(16):5113–5119CrossRefGoogle Scholar
  11. De Silva RT, Pasbakhsh P, Goh KL, Chai S-P, Ismail H (2013) Physico-chemical characterisation of chitosan/halloysite composite membranes. Polym Testing 32(2):265–271CrossRefGoogle Scholar
  12. Debelak B, Lafdi K (2007) Use of exfoliated graphite filler to enhance polymer physical properties. Carbon 45(9):1727–1734CrossRefGoogle Scholar
  13. Du M, Guo B, Lei Y, Liu M, Jia D (2008) Carboxylated butadiene–styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22):4871–4876CrossRefGoogle Scholar
  14. Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liq 142(1–3):1–5CrossRefGoogle Scholar
  15. Fink HP, Weigel P, Purz HJ, Ganster J (2001) Structure formation of regenerated cellulose materials from NMMO-solutions. Prog Polym Sci 26(9):1473–1524CrossRefGoogle Scholar
  16. Graenacher C, Sallmann R (1939) Cellulose solutions and process of making same. Google PatentsGoogle Scholar
  17. Gross RA, Kalra B (2002) Biodegradable polymers for the environment. Science 297(5582):803–807CrossRefGoogle Scholar
  18. Guo B, Chen F, Lei Y, Liu X, Wan J, Jia D (2009) Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by sorbic acid. Appl Surf Sci 255(16):7329–7336CrossRefGoogle Scholar
  19. Gutowski KE, Broker GA, Willauer HD, Huddleston JG, Swatloski RP, Holbrey JD, Rogers RD (2003) Controlling the aqueous miscibility of ionic liquids: aqueous biphasic systems of water-miscible ionic liquids and water-structuring salts for recycle, metathesis, and separations. J Am Chem Soc 125(22):6632–6633CrossRefGoogle Scholar
  20. Han J, Zhou C, French AD, Han G, Wu Q (2013) Characterization of cellulose II nanoparticles regenerated from 1-butyl-3-methylimidazolium chloride. Carbohydr Polym 94(2):773–781CrossRefGoogle Scholar
  21. Han S, Li J, Zhu S, Chen R, Wu Y, Zhang X, Yu Z (2009) sotential applications of ionic liquids in wood related industriesGoogle Scholar
  22. Hanid NA, Wahit MU, Guo Q, Mahmoodian S, Soheilmoghaddam M (2014) Development of regenerated cellulose/halloysites nanocomposites via ionic liquids. Carbohydr Polym 99:91–97CrossRefGoogle Scholar
  23. Hashemifard SA, Ismail AF, Matsuura T (2011) Mixed matrix membrane incorporated with large pore size halloysite nanotubes (HNT) as filler for gas separation: experimental. J Colloid Interf Sci 359(2):359–370CrossRefGoogle Scholar
  24. Hatui G, Bhattacharya P, Sahoo S, Dhibar S, Das CK (2014) Combined effect of expanded graphite and multiwall carbon nanotubes on the thermo mechanical, morphological as well as electrical conductivity of in situ bulk polymerized polystyrene composites. Compos A Appl Sci Manuf 56:181–191CrossRefGoogle Scholar
  25. Hedicke-Höchstötter K, Lim GT, Altstädt V (2009) Novel polyamide nanocomposites based on silicate nanotubes of the mineral halloysite. Compos Sci Technol 69(3–4):330–334CrossRefGoogle Scholar
  26. Hermanutz F, Gähr F, Uerdingen E, Meister F, Kosan B (2008) New developments in dissolving and processing of cellulose in ionic liquids. Macromol Symp 262(1):23–27CrossRefGoogle Scholar
  27. Hyden WL (1929) Manufacture and properties of regenerated cellulose films. Ind Eng Chem 21(5):405–410CrossRefGoogle Scholar
  28. Ioelovich M (2008) Cellulose as a nanostructured polymer: a short reviewGoogle Scholar
  29. Ismail H, Pasbakhsh P, Fauzi MNA, Abu Bakar A (2008) Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test 27(7):841–850CrossRefGoogle Scholar
  30. Johnson DL (1970) Method of preparing polymers from a mixture of cyclic amine oxides and polymers. Google PatentsGoogle Scholar
  31. Joussein E, Petit S, Churchman J, Theng B, Righi D, Delvaux B (2005) Halloysite clay minerals: a review. Clay Miner 40(4):383–426CrossRefGoogle Scholar
  32. Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45(7):1446–1452CrossRefGoogle Scholar
  33. Klemm D, Heublein B, Fink H-P, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRefGoogle Scholar
  34. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (2004) General considerations on structure and reactivity of cellulose: section 2.1–2.1.4. Comprehensive cellulose chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 9–29Google Scholar
  35. Koel M (2005) Ionic liquids in chemical analysis. Crit Rev Anal Chem 35(3):177–192CrossRefGoogle Scholar
  36. Krassig HA (1996) Cellulose, structure, accessibility and reactivity: polymer monographs. Gordan and Breach Science Publishers, Netherlands, p 361Google Scholar
  37. Kubisa P (2005) Ionic liquids in the synthesis and modification of polymers. J Polym Sci Part A Polym Chem 43(20):4675–4683CrossRefGoogle Scholar
  38. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  39. Lee SH, Doherty TV, Linhardt RJ, Dordick JS (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102(5):1368–1376CrossRefGoogle Scholar
  40. Liu D-T, Xia K-F, Cai W-H, Yang R-D, Wang L-Q, Wang B (2012) Investigations about dissolution of cellulose in the 1-allyl-3-alkylimidazolium chloride ionic liquids. Carbohydr Polym 87(2):1058–1064CrossRefGoogle Scholar
  41. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011a) Dopant induced hollow BaTiO3 nanostructures for application in high performance capacitors. J Mater Chem 21:16500–16504CrossRefGoogle Scholar
  42. Lin M-F, Thakur VK, Tan EJ, Lee PS (2011b) Surface functionalization of BaTiO3 nanoparticles and improved electrical properties of BaTiO3/polyvinylidene fluoride composite. RSC Adv 1:576–578CrossRefGoogle Scholar
  43. Mahmoudian S, Wahit MU, Imran M, Ismail AF, Balakrishnan H (2012) A facile approach to prepare regenerated cellulose/graphene nanoplatelets nanocomposite using room-temperature ionic liquid. J Nanosci Nanotechnol 12(7):5233–5239CrossRefGoogle Scholar
  44. McCorsley CC (1979) Process for making amine oxide solution of cellulose. Google PatentsGoogle Scholar
  45. McCorsley CC (1981) Extrusion, molecular orientation. Google PatentsGoogle Scholar
  46. Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994CrossRefGoogle Scholar
  47. Nishio Y (2006) Material functionalization of cellulose and related polysaccharides via diverse microcompositions. In: Klemm D (ed) Polysaccharides II, vol 205. Springer, Berlin, pp 97–151Google Scholar
  48. Nishiyama Y (2009) Structure and properties of the cellulose microfibril. J Wood Sci 55(4):241–249CrossRefGoogle Scholar
  49. Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRefGoogle Scholar
  50. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  51. Olivier-Bourbigou H, Magna L, Morvan D (2010) Ionic liquids and catalysis: recent progress from knowledge to applications. Appl Catal A 373(1–2):1–56CrossRefGoogle Scholar
  52. Oyefusi A, Olanipekun O, Neelgund GM, Peterson D, Stone JM, Williams E, Carson L, Regisford G, Oki A (2014) Hydroxyapatite grafted carbon nanotubes and graphene nanosheets: promising bone implant materials. Spectrochim Acta Part A Mol Biomol Spectrosc 132:410–416CrossRefGoogle Scholar
  53. Prashantha K, Schmitt H, Lacrampe MF, Krawczak P (2011) Mechanical behaviour and essential work of fracture of halloysite nanotubes filled polyamide 6 nanocomposites. Compos Sci Technol 71(16):1859–1866CrossRefGoogle Scholar
  54. Rahatekar SS, Rasheed A, Jain R, Zammarano M, Koziol KK, Windle AH, Gilman JW, Kumar S (2009) Solution spinning of cellulose carbon nanotube composites using room temperature ionic liquids. Polymer 50(19):4577–4583CrossRefGoogle Scholar
  55. Rath T, Li Y (2011) Nanocomposites based on polystyrene-b-poly(ethylene-r-butylene)-b-polystyrene and exfoliated graphite nanoplates: effect of nanoplatelet loading on morphology and mechanical properties. Compos A Appl Sci Manuf 42(12):1995–2002CrossRefGoogle Scholar
  56. Rinaldi R, Schüth F (2009) Acid hydrolysis of cellulose as the entry point into biorefinery schemes. ChemSusChem 2(12):1096–1107CrossRefGoogle Scholar
  57. Rogers RD, Seddon KR (2003) Ionic liquids: solvents of the future? Science 302(5646):792–793CrossRefGoogle Scholar
  58. Rosenau T, Hofinger A, Potthast A, Kosma P (2003) On the conformation of the cellulose solvent N-methylmorpholine-N-oxide (NMMO) in solution. Polymer 44(20):6153–6158CrossRefGoogle Scholar
  59. Rosenau T, Potthast A, Sixta H, Kosma P (2001) The chemistry of side reactions and byproduct formation in the system NMMO/cellulose (Lyocell process). Prog Polym Sci 26(9):1763–1837CrossRefGoogle Scholar
  60. Schaefer DW, Justice RS (2007) How nano are nanocomposites? Macromolecules 40(24):8501–8517CrossRefGoogle Scholar
  61. Schüth F, Rinaldi R, Meine N, Käldström M, Hilgert J, Rechulski MDK (2014) Mechanocatalytic depolymerization of cellulose and raw biomass and downstream processing of the products. Catal Today 234:24–30CrossRefGoogle Scholar
  62. Singh B (1996) Why does halloysite roll? A new model. Clays Clay Miner 44(2):191–196CrossRefGoogle Scholar
  63. Singha AS, Thakur VK, Mehta IK, Shama A, Khanna AJ, Rana RK, Rana AK (2009a) Surface-modified Hibiscus sabdariffa fibers: physicochemical, thermal, and morphological properties evaluation. Int J Polym Anal Charact 14(8):695–711CrossRefGoogle Scholar
  64. Singha AS, Thakur VK, Mishra BN (2009b) Study of Grewia Optiva fiber reinforced urea-formaldehyde composites. J Polym Mater 26:81–90Google Scholar
  65. Singha AS, Thakur VK (2009a) Grewia optiva fiber reinforced novel, low cost polymer composites. J Chem 6:71–76Google Scholar
  66. Singha AS, Thakur VK (2009b) Synthesis, characterisation and analysis of Hibiscus Sabdariffa fibre reinforced polymer matrix based composites. Polym Polym Compos 17:189–194Google Scholar
  67. Singha AS, Thakur VK (2009c) Fabrication and characterization of H. sabdariffa fiber-reinforced green polymer composites. Polym Plast Technol Eng 48:482–487CrossRefGoogle Scholar
  68. Sinha Ray S, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50(8):962–1079CrossRefGoogle Scholar
  69. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28(11):1539–1641CrossRefGoogle Scholar
  70. Soheilmoghaddam M, Pasbakhsh P, Wahit MU, Bidsorkhi HC, Pour RH, Whye WT, De Silva RT (2014a) Regenerated cellulose nanocomposites reinforced with exfoliated graphite nanosheets using BMIMCL ionic liquid. Polymer 55(14):3130–3138CrossRefGoogle Scholar
  71. Soheilmoghaddam M, Sharifzadeh G, Pour RH, Wahit MU, Whye WT, Lee XY (2014b) Regenerated cellulose/β-cyclodextrin scaffold prepared using ionic liquid. Mater Lett 135:210–213CrossRefGoogle Scholar
  72. Soheilmoghaddam M, Wahit MU (2013) Development of regenerated cellulose/halloysite nanotube bionanocomposite films with ionic liquid. Int J Biol Macromol 58:133–139CrossRefGoogle Scholar
  73. Soheilmoghaddam M, Wahit MU, Mahmoudian S, Hanid NA (2013) Regenerated cellulose/halloysite nanotube nanocomposite films prepared with an ionic liquid. Mater Chem Phys 141(2–3):936–943CrossRefGoogle Scholar
  74. Stoller MD, Park S, Zhu Y, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8(10):3498–3502CrossRefGoogle Scholar
  75. Swatloski RP, Spear SK, Holbrey JD, Rogers RD (2002) Dissolution of cellose with ionic liquids. J Am Chem Soc 124(18):4974–4975CrossRefGoogle Scholar
  76. Tang Y, Deng S, Ye L, Yang C, Yuan Q, Zhang J, Zhao C (2011) Effects of unfolded and intercalated halloysites on mechanical properties of halloysite–epoxy nanocomposites. Compos A Appl Sci Manuf 42(4):345–354CrossRefGoogle Scholar
  77. Thakur VK, Singha AS, Thakur MK (2012a) Rapid synthesis of MMA grafted pine needles using microwave radiation. Polym-Plast Technol Eng 51:1598–1604CrossRefGoogle Scholar
  78. Thakur VK, Singha AS, Thakur MK (2012b) Biopolymers based green composites: mechanical, thermal and physico-chemical characterization. J Polym Environ 20:412–421CrossRefGoogle Scholar
  79. Thakur VK, Singha AS, Thakur MK (2012c) Graft copolymerization of methyl acrylate onto cellulosic biofibers: synthesis, characterization and applications. J Polym Environ 20:164–174CrossRefGoogle Scholar
  80. Thakur VK, Thakur MK, Gupta RK (2013a) Development of functionalized cellulosic biopolymers by graft copolymerization. Int J Biol Macromol 62:44–51CrossRefGoogle Scholar
  81. Thakur VK, Thakur MK, Gupta RK (2013b) Rapid synthesis of graft copolymers from natural cellulose fibers. Carbohydr Polym 98:820–828CrossRefGoogle Scholar
  82. Thakur VK, Thakur MK, Gupta RK (2013c) Synthesis of lignocellulosic polymer with improved chemical resistance through free radical polymerization. Int J Biol Macromol 61:121–126CrossRefGoogle Scholar
  83. Thakur VK, Thakur MK, Gupta RK (2013d) Graft copolymers from natural polymers using free radical polymerization. Int J Polym Anal Charact 18:495–503CrossRefGoogle Scholar
  84. Thakur VK, Thakur MK, Gupta RK (2013e) Graft copolymers from cellulose: synthesis, characterization and evaluation. Carbohydr Polym 97:18–25CrossRefGoogle Scholar
  85. Thakur VK, Thakur MK (2014a) Processing and characterization of natural cellulose fibers/thermoset polymer composites. Carbohydr Polym 109:102–117CrossRefGoogle Scholar
  86. Thakur VK, Thakur MK (2014b) Recent trends in hydrogels based on psyllium polysaccharide: a review. J Clean Prod 82:1–15CrossRefGoogle Scholar
  87. Thakur VK, Thakur MK (2014c) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRefGoogle Scholar
  88. Thakur VK, Thakur MK, Gupta RK (2014a) Review: raw natural fiber-based polymer composites. Int J Polym Anal Charact 19(3):256–271CrossRefGoogle Scholar
  89. Thakur VK, Thakur MK, Raghavan P, Kessler MR (2014b) Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain Chem Eng 2(5):1072–1092CrossRefGoogle Scholar
  90. Thakur VK, Vennerberg D, Kessler MR (2014c) Green aqueous surface modification of polypropylene for novel polymer nanocomposites. ACS Appl Mater Interf 6:9349–9356CrossRefGoogle Scholar
  91. Thakur VK, Vennerberg D, Madbouly SA, Kessler MR (2014d) Bio-inspired green surface functionalization of PMMA for multifunctional capacitors. RSC Adv 4:6677–6684CrossRefGoogle Scholar
  92. Tian M, Qu L, Zhang X, Zhang K, Zhu S, Guo X, Han G, Tang X, Sun Y (2014) Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Carbohydr Polym 111:456–462CrossRefGoogle Scholar
  93. Urszula D (2008) General review of ionic liquids and their properties. Ionic liquids in chemical analysis. CRC Press, Boca Raton, pp 1–71Google Scholar
  94. Vadukumpully S, Paul J, Mahanta N, Valiyaveettil S (2011) Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49(1):198–205CrossRefGoogle Scholar
  95. Visser AE, Swatloski RP, Rogers RD (2000) pH-dependent partitioning in room temperature ionic liquids provides a link to traditional solvent extraction behavior. Green Chem 2(1):1–4CrossRefGoogle Scholar
  96. Vitz J, Erdmenger T, Haensch C, Schubert US (2009) Extended dissolution studies of cellulose in imidazolium based ionic liquids. Green Chem 11(3):417–424CrossRefGoogle Scholar
  97. Wang R, Wang L (2014) Substituted cyclic compounds and methods of use. Google PatentsGoogle Scholar
  98. Wang X, Jin J, Song M (2012) Cyanate ester resin/graphene nanocomposite: curing dynamics and network formation. Eur Polymer J 48(6):1034–1041CrossRefGoogle Scholar
  99. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99(8):2071–2084CrossRefGoogle Scholar
  100. Wilkes J, Wasserscheid S, Welton T (2008) Ionic liquids in synthesis, vol 1. Willey-VCH Verlags Gmbh & Co KgaA, New DelhiGoogle Scholar
  101. Wilkes JS (2002) A short history of ionic liquids-from molten salts to neoteric solvents. Green Chem 4(2):73–80CrossRefGoogle Scholar
  102. Wu RL, Wang XL, Wang YZ, Bian XC, Li F (2009) Cellulose/soy protein isolate blend films prepared via room-temperature ionic liquid. Ind Eng Chem Res 48(15):7132–7136CrossRefGoogle Scholar
  103. Yamamoto H, Horii F (1993) CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26(6):1313–1317CrossRefGoogle Scholar
  104. Yamamoto H, Horn F (1994) In situ crystallization of bacterial cellulose I. Influences of polymeric additives, stirring and temperature on the formation celluloses I α and I β as revealed by cross polarization/magic angle spinning (CP/MAS)13C NMR spectroscopy. Cellulose 1(1):57–66CrossRefGoogle Scholar
  105. Yuan P, Southon PD, Liu Z, Green MER, Hook JM, Antill SJ, Kepert CJ (2008) Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane. J Phys Chem C 112(40):15742–15751CrossRefGoogle Scholar
  106. Zavrel M, Bross D, Funke M, Büchs J, Spiess AC (2009) High-throughput screening for ionic liquids dissolving (ligno-) cellulose. Bioresour Technol 100(9):2580–2587CrossRefGoogle Scholar
  107. Zhang X, Liu X, Zheng W, Zhu J (2012) Regenerated cellulose/graphene nanocomposite films prepared in DMAC/LiCl solution. Carbohydr Polym 88(1):26–30CrossRefGoogle Scholar
  108. Zhang Y, Ouyang J, Yang H (2014) Metal oxide nanoparticles deposited onto carbon-coated halloysite nanotubes. Appl Clay Sci 95:252–259CrossRefGoogle Scholar
  109. Zhang YH, Hu DJ, Song W (2005) Study on CCD online system for monitoring a grinding wheel in process of point grinding on curve surface. Binggong Xuebao/Acta Armamentarii 26(2):201–204Google Scholar
  110. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8(4):325–327CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Mohammad Soheilmoghaddam
    • 1
  • Raheleh Heidar Pour
    • 1
  • Mat Uzir Wahit
    • 1
    • 2
    Email author
  • Harintharavimal Balakrishnan
    • 2
  1. 1.Enhanced Polymer Research Group (EnPRO), Department of Polymer Engineering, Faculty of Chemical EngineeringUniversiti Teknologi Malaysia (UTM)JohorMalaysia
  2. 2.Centre for Composites (CfC)Universiti Teknologi Malaysia (UTM)Johor BahruMalaysia

Personalised recommendations