Advertisement

Eco-friendly Polymer Nanocomposite—Properties and Processing

  • Pei Dong
  • Raghavan PrasanthEmail author
  • Fangbo Xu
  • Xifan Wang
  • Bo Li
  • Ravi Shankar
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 75)

Abstract

This chapter mainly reviews the concept, properties and processing, and design method of the eco-friendly polymer nanocomposite (EPN), which is generally biodegradable and renewable. The major attractions of EPN are that they are environmentally friendly, sustainable, and degradable. These polymer composites can be easily composted or disposed without harming the environment. Some efforts have been made on attaining biodegradable reinforcing fillers giving improved performance of composites. Another concern is focused on employing recyclable synthetic fibers with thermoplastic composites to reduce the waste of fillers, and also some research is devoted to reusing or recycling the whole composites for the similar purpose. Simultaneously, people also would like to make composites manufactured with traditional production process become eco-friendly by extra reprocessing. Throughout the stages of development––design, appraisal, manufacture, use, reuse–recycling, and disposal––researchers are supposed to be fully engaged in reducing waste as much as possible, keeping in mind the environment all the time. A series of natural or synthetic materials have been used, such as cellulose, thermoplastic starch, etc. The challenge posed by eco-friendly composites also needs considerable attention in terms of poor bonding between matrix and fillers, loose control of fiber orientation, and difficulty in shaping nanoscale particles.

Keywords

Eco-friendly Polymer Nanocomposite Nanoclay Montomorillionite 

Abbreviations

EPN

Eco-friendly polymer nanocomposite

PLA

Polylactic acid

PHB

Polyhydroxylbutyrate

EPC

Eco-friendly polymer composites

PEG

Polyethylene glycol

MC

Methyl cellulose

MMT

Montomorillionite

References

  1. Adeosun, S.O., Lawal, G.I., Balogun, S.A. & Akpan, E.I. (2012) Review of green polymer nanocomposites. JMMC 11:385–416(2012)Google Scholar
  2. Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144CrossRefGoogle Scholar
  3. Ashori A (2008) Wood-plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661–4667CrossRefGoogle Scholar
  4. Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56(2):111–122CrossRefGoogle Scholar
  5. Averous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym 66(4):480–493CrossRefGoogle Scholar
  6. Baillie, C. (2004) Green composites. Polymer composites and the environment. (Woodhead Publishing Limited & CRC Press LLC)Google Scholar
  7. Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Tech 67(3–4):462–470CrossRefGoogle Scholar
  8. Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630CrossRefGoogle Scholar
  9. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335CrossRefGoogle Scholar
  10. de Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) A first insight on composites of thermoplastic starch and kaolin. Carbohydr Polym 45(2):189–194CrossRefGoogle Scholar
  11. DeKesel C, VanderWauven C, David C (1997) Biodegradation of polycaprolactone and its blends with poly(vinylalcohol) by microorganisms from a compost of house-hold refuse. Polym Degrad Stab 55(1):107–113CrossRefGoogle Scholar
  12. Fama L, Gerschenson L, Goyanes S (2009) Starch-vegetable fibre composites to protect food products. Carbohydr Polym 75(2):230–235CrossRefGoogle Scholar
  13. Guan JJ, Hanna MA (2006) Selected morphological and functional properties of extruded acetylated starch-cellulose foams. Bioresour Technol 97(14):1716–1726CrossRefGoogle Scholar
  14. Guimaraes JL, Wypych F, Saul CK, Ramos LP, Satyanarayana KG (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydr Polym 80(1):130–138CrossRefGoogle Scholar
  15. Huskic M, Zigon M (2007) PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur Polymer J 43(12):4891–4897CrossRefGoogle Scholar
  16. Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Polylactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571CrossRefGoogle Scholar
  17. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364CrossRefGoogle Scholar
  18. Kaith BS, Jindal R, Jana AK, Maiti M (2010) Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers—evaluation of thermal, physico-chemical and mechanical properties. Bioresour Technol 101(17):6843–6851CrossRefGoogle Scholar
  19. Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82(2):337–345CrossRefGoogle Scholar
  20. Ke TY, Sun XZ (2001) Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J Appl Polym Sci 81(12):3069–3082CrossRefGoogle Scholar
  21. Kim JP, Yoon TH, Mun SP, Rhee JM, Lee JS (2006) Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresour Technol 97(3):494–499CrossRefGoogle Scholar
  22. Kumar AP, Singh RP (2008) Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. Bioresour Technol 99(18):8803–8809CrossRefGoogle Scholar
  23. Lee SY, Kang IA, Doh GH, Yoon HG, Park BD, Wu QL (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21(3):209–223CrossRefGoogle Scholar
  24. Lei Y, Wu QL, Yao F, Xu YJ (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part a-Appl Sci Manuf 38(7):1664–1674CrossRefGoogle Scholar
  25. Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Pol J Environ Stud 19(2):255–266Google Scholar
  26. Liu DG, Zhong TH, Chang PR, Li KF, Wu QL (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101(7):2529–2536CrossRefGoogle Scholar
  27. Lu YS, Weng LH, Cao XD (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 63(2):198–204CrossRefGoogle Scholar
  28. Ma XF, Yu JG, Wang N (2007) Fly ash-reinforced thermoplastic starch composites. Carbohydr Polym 67(1):32–39CrossRefGoogle Scholar
  29. Maiti P, Batt CA, Giannelis EP (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Abs Pap Am Chem Soc 225:U665–U665Google Scholar
  30. Majdzadeh-Ardakani K, Sadeghi-Ardakani S (2010) Experimental investigation of mechanical properties of starch/natural rubber/clay nanocomposites. Dig J Nanomater Biostruct 5(2):307–316Google Scholar
  31. Martin O, Averous L (2001) Polylactic acid: plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219CrossRefGoogle Scholar
  32. Misra M, Mohanty AK, Drzal LT (2004) Injection molded ‘Green’ nanocomposite materials from renewable resources. Global plastics environmental conferenceGoogle Scholar
  33. Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci Part B-Polym Phys 35(2):389–396CrossRefGoogle Scholar
  34. Okamoto M (2004) Biodegradable polymer/layered silicate nanocomposites: a review. J Ind Eng Chem 10(7):1156–1181Google Scholar
  35. Pandey JK, Singh RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch-Starke 57(1):8–15CrossRefGoogle Scholar
  36. Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71(3):458–467CrossRefGoogle Scholar
  37. Qu P, Gao YA, Wu GF, Zhang LP (2010) Nanocomposites of polylactic acid) reinforced with cellulose nanofibrils. Bioresources 5(3):1811–1823Google Scholar
  38. Reddy N, Yang YQ (2009a) Extraction and characterization of natural cellulose fibers from common milkweed stems. Polym Eng Sci 49(11):2212–2217CrossRefGoogle Scholar
  39. Reddy N, Yang YQ (2009b) Properties of natural cellulose fibers from hop stems. Carbohydr Polym 77(4):898–902CrossRefGoogle Scholar
  40. Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447CrossRefGoogle Scholar
  41. Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49(2):599–609CrossRefGoogle Scholar
  42. Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Int. J. Biomater. Article ID 175362:8Google Scholar
  43. Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79(1):85–90CrossRefGoogle Scholar
  44. Teixeira ED, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78(3):422–431CrossRefGoogle Scholar
  45. Tunc S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. Lwt-Food Sci Technol 44(2):465–472CrossRefGoogle Scholar
  46. Uesaka T, Nakane K, Maeda S, Ogihara T, Ogata N (2000) Structure and physical properties of poly(butylene succinate)/cellulose acetate blends. Polymer 41(23):8449–8454CrossRefGoogle Scholar
  47. Vignon MR, Dupeyre D, GarciaJaldon C (1996) Morphological characterization of steam-exploded hemp fibers and their utilization in polypropylene-based composites. Bioresour Technol 58(2):203–215CrossRefGoogle Scholar
  48. Wei LM, Hu NT, Zhang YF (2010) Synthesis of polymer-mesoporous silica nanocomposites. Materials 3(7):4066–4079CrossRefGoogle Scholar
  49. Willett JL, Shogren RL (2002) Processing and properties of extruded starch/polymer foams. Polymer 43(22):5935–5947CrossRefGoogle Scholar
  50. Zabihzadeh SM (2010) Water uptake and flexural properties of natural filler/hdpe composites. Bioresources 5(1):316–323Google Scholar
  51. Zadegan S, Hosainalipour M, Rezaie HR, Ghassai H, Shokrgozar MA (2011) Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Mater Sci Eng C-Mater Biol Appl 31(5):954–961CrossRefGoogle Scholar
  52. Zheng JP, Li P, Ma YL, De Yao K (2002) Gelatin/montmorillonite hybrid nanocomposite. I. preparation and properties. J Appl Polym Sci 86(5):1189–1194CrossRefGoogle Scholar
  53. Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C-Mater Biol Appl 31(1):43–49CrossRefGoogle Scholar
  54. Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957CrossRefGoogle Scholar

Copyright information

© Springer India 2015

Authors and Affiliations

  • Pei Dong
    • 1
  • Raghavan Prasanth
    • 1
    • 2
    Email author
  • Fangbo Xu
    • 1
  • Xifan Wang
    • 1
  • Bo Li
    • 1
  • Ravi Shankar
    • 3
  1. 1.Department of Materials Science and NanoEngineeringRice UniversityHoustonUSA
  2. 2.Department of Mechanical Engineering and Materials ScienceRice UniversityHoustonUSA
  3. 3.Fujifilm Imaging Colorants, Inc.New CastleUSA

Personalised recommendations