Skip to main content

Eco-friendly Polymer Nanocomposite—Properties and Processing

  • Chapter
  • First Online:
Eco-friendly Polymer Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 75))

Abstract

This chapter mainly reviews the concept, properties and processing, and design method of the eco-friendly polymer nanocomposite (EPN), which is generally biodegradable and renewable. The major attractions of EPN are that they are environmentally friendly, sustainable, and degradable. These polymer composites can be easily composted or disposed without harming the environment. Some efforts have been made on attaining biodegradable reinforcing fillers giving improved performance of composites. Another concern is focused on employing recyclable synthetic fibers with thermoplastic composites to reduce the waste of fillers, and also some research is devoted to reusing or recycling the whole composites for the similar purpose. Simultaneously, people also would like to make composites manufactured with traditional production process become eco-friendly by extra reprocessing. Throughout the stages of development––design, appraisal, manufacture, use, reuse–recycling, and disposal––researchers are supposed to be fully engaged in reducing waste as much as possible, keeping in mind the environment all the time. A series of natural or synthetic materials have been used, such as cellulose, thermoplastic starch, etc. The challenge posed by eco-friendly composites also needs considerable attention in terms of poor bonding between matrix and fillers, loose control of fiber orientation, and difficulty in shaping nanoscale particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EPN:

Eco-friendly polymer nanocomposite

PLA:

Polylactic acid

PHB:

Polyhydroxylbutyrate

EPC:

Eco-friendly polymer composites

PEG:

Polyethylene glycol

MC:

Methyl cellulose

MMT:

Montomorillionite

References

  • Adeosun, S.O., Lawal, G.I., Balogun, S.A. & Akpan, E.I. (2012) Review of green polymer nanocomposites. JMMC 11:385–416(2012)

    Google Scholar 

  • Amass W, Amass A, Tighe B (1998) A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47(2):89–144

    Article  CAS  Google Scholar 

  • Ashori A (2008) Wood-plastic composites as promising green-composites for automotive industries! Bioresour Technol 99(11):4661–4667

    Article  CAS  Google Scholar 

  • Averous L, Boquillon N (2004) Biocomposites based on plasticized starch: thermal and mechanical behaviours. Carbohydr Polym 56(2):111–122

    Article  CAS  Google Scholar 

  • Averous L, Le Digabel F (2006) Properties of biocomposites based on lignocellulosic fillers. Carbohydr Polym 66(4):480–493

    Article  CAS  Google Scholar 

  • Baillie, C. (2004) Green composites. Polymer composites and the environment. (Woodhead Publishing Limited & CRC Press LLC)

    Google Scholar 

  • Bodros E, Pillin I, Montrelay N, Baley C (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Tech 67(3–4):462–470

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630

    Article  CAS  Google Scholar 

  • Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23(7):1273–1335

    Article  CAS  Google Scholar 

  • de Carvalho AJF, Curvelo AAS, Agnelli JAM (2001) A first insight on composites of thermoplastic starch and kaolin. Carbohydr Polym 45(2):189–194

    Article  Google Scholar 

  • DeKesel C, VanderWauven C, David C (1997) Biodegradation of polycaprolactone and its blends with poly(vinylalcohol) by microorganisms from a compost of house-hold refuse. Polym Degrad Stab 55(1):107–113

    Article  CAS  Google Scholar 

  • Fama L, Gerschenson L, Goyanes S (2009) Starch-vegetable fibre composites to protect food products. Carbohydr Polym 75(2):230–235

    Article  CAS  Google Scholar 

  • Guan JJ, Hanna MA (2006) Selected morphological and functional properties of extruded acetylated starch-cellulose foams. Bioresour Technol 97(14):1716–1726

    Article  CAS  Google Scholar 

  • Guimaraes JL, Wypych F, Saul CK, Ramos LP, Satyanarayana KG (2010) Studies of the processing and characterization of corn starch and its composites with banana and sugarcane fibers from Brazil. Carbohydr Polym 80(1):130–138

    Article  CAS  Google Scholar 

  • Huskic M, Zigon M (2007) PMMA/MMT nanocomposites prepared by one-step in situ intercalative solution polymerization. Eur Polymer J 43(12):4891–4897

    Article  CAS  Google Scholar 

  • Jamshidian M, Tehrany EA, Imran M, Jacquot M, Desobry S (2010) Polylactic acid: production, applications, nanocomposites, and release studies. Compr Rev Food Sci Food Saf 9(5):552–571

    Article  CAS  Google Scholar 

  • John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71(3):343–364

    Article  CAS  Google Scholar 

  • Kaith BS, Jindal R, Jana AK, Maiti M (2010) Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers—evaluation of thermal, physico-chemical and mechanical properties. Bioresour Technol 101(17):6843–6851

    Article  CAS  Google Scholar 

  • Kaushik A, Singh M, Verma G (2010) Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydr Polym 82(2):337–345

    Article  CAS  Google Scholar 

  • Ke TY, Sun XZ (2001) Effects of moisture content and heat treatment on the physical properties of starch and poly(lactic acid) blends. J Appl Polym Sci 81(12):3069–3082

    Article  CAS  Google Scholar 

  • Kim JP, Yoon TH, Mun SP, Rhee JM, Lee JS (2006) Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresour Technol 97(3):494–499

    Article  CAS  Google Scholar 

  • Kumar AP, Singh RP (2008) Biocomposites of cellulose reinforced starch: improvement of properties by photo-induced crosslinking. Bioresour Technol 99(18):8803–8809

    Article  CAS  Google Scholar 

  • Lee SY, Kang IA, Doh GH, Yoon HG, Park BD, Wu QL (2008) Thermal and mechanical properties of wood flour/talc-filled polylactic acid composites: effect of filler content and coupling treatment. J Thermoplast Compos Mater 21(3):209–223

    Article  CAS  Google Scholar 

  • Lei Y, Wu QL, Yao F, Xu YJ (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos Part a-Appl Sci Manuf 38(7):1664–1674

    Article  Google Scholar 

  • Leja K, Lewandowicz G (2010) Polymer biodegradation and biodegradable polymers—a review. Pol J Environ Stud 19(2):255–266

    Google Scholar 

  • Liu DG, Zhong TH, Chang PR, Li KF, Wu QL (2010) Starch composites reinforced by bamboo cellulosic crystals. Bioresour Technol 101(7):2529–2536

    Article  CAS  Google Scholar 

  • Lu YS, Weng LH, Cao XD (2006) Morphological, thermal and mechanical properties of ramie crystallites—reinforced plasticized starch biocomposites. Carbohydr Polym 63(2):198–204

    Article  CAS  Google Scholar 

  • Ma XF, Yu JG, Wang N (2007) Fly ash-reinforced thermoplastic starch composites. Carbohydr Polym 67(1):32–39

    Article  CAS  Google Scholar 

  • Maiti P, Batt CA, Giannelis EP (2003) Renewable plastics: synthesis and properties of PHB nanocomposites. Abs Pap Am Chem Soc 225:U665–U665

    Google Scholar 

  • Majdzadeh-Ardakani K, Sadeghi-Ardakani S (2010) Experimental investigation of mechanical properties of starch/natural rubber/clay nanocomposites. Dig J Nanomater Biostruct 5(2):307–316

    Google Scholar 

  • Martin O, Averous L (2001) Polylactic acid: plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  • Misra M, Mohanty AK, Drzal LT (2004) Injection molded ‘Green’ nanocomposite materials from renewable resources. Global plastics environmental conference

    Google Scholar 

  • Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci Part B-Polym Phys 35(2):389–396

    Article  CAS  Google Scholar 

  • Okamoto M (2004) Biodegradable polymer/layered silicate nanocomposites: a review. J Ind Eng Chem 10(7):1156–1181

    CAS  Google Scholar 

  • Pandey JK, Singh RP (2005) Green nanocomposites from renewable resources: effect of plasticizer on the structure and material properties of clay-filled starch. Starch-Starke 57(1):8–15

    Article  CAS  Google Scholar 

  • Qin C, Soykeabkaew N, Xiuyuan N, Peijs T (2008) The effect of fibre volume fraction and mercerization on the properties of all-cellulose composites. Carbohydr Polym 71(3):458–467

    Article  CAS  Google Scholar 

  • Qu P, Gao YA, Wu GF, Zhang LP (2010) Nanocomposites of polylactic acid) reinforced with cellulose nanofibrils. Bioresources 5(3):1811–1823

    CAS  Google Scholar 

  • Reddy N, Yang YQ (2009a) Extraction and characterization of natural cellulose fibers from common milkweed stems. Polym Eng Sci 49(11):2212–2217

    Article  CAS  Google Scholar 

  • Reddy N, Yang YQ (2009b) Properties of natural cellulose fibers from hop stems. Carbohydr Polym 77(4):898–902

    Article  CAS  Google Scholar 

  • Rong MZ, Zhang MQ, Liu Y, Yang GC, Zeng HM (2001) The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos Sci Technol 61(10):1437–1447

    Article  CAS  Google Scholar 

  • Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49(2):599–609

    Article  CAS  Google Scholar 

  • Saska S, Barud HS, Gaspar AMM, Marchetto R, Ribeiro SJL, Messaddeq Y (2011) Int. J. Biomater. Article ID 175362:8

    Google Scholar 

  • Takegawa A, Murakami M, Kaneko Y, Kadokawa J (2010) Preparation of chitin/cellulose composite gels and films with ionic liquids. Carbohydr Polym 79(1):85–90

    Article  CAS  Google Scholar 

  • Teixeira ED, Pasquini D, Curvelo AAS, Corradini E, Belgacem MN, Dufresne A (2009) Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch. Carbohydr Polym 78(3):422–431

    Article  CAS  Google Scholar 

  • Tunc S, Duman O (2011) Preparation of active antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release. Lwt-Food Sci Technol 44(2):465–472

    Article  CAS  Google Scholar 

  • Uesaka T, Nakane K, Maeda S, Ogihara T, Ogata N (2000) Structure and physical properties of poly(butylene succinate)/cellulose acetate blends. Polymer 41(23):8449–8454

    Article  CAS  Google Scholar 

  • Vignon MR, Dupeyre D, GarciaJaldon C (1996) Morphological characterization of steam-exploded hemp fibers and their utilization in polypropylene-based composites. Bioresour Technol 58(2):203–215

    Article  CAS  Google Scholar 

  • Wei LM, Hu NT, Zhang YF (2010) Synthesis of polymer-mesoporous silica nanocomposites. Materials 3(7):4066–4079

    Article  CAS  Google Scholar 

  • Willett JL, Shogren RL (2002) Processing and properties of extruded starch/polymer foams. Polymer 43(22):5935–5947

    Article  CAS  Google Scholar 

  • Zabihzadeh SM (2010) Water uptake and flexural properties of natural filler/hdpe composites. Bioresources 5(1):316–323

    CAS  Google Scholar 

  • Zadegan S, Hosainalipour M, Rezaie HR, Ghassai H, Shokrgozar MA (2011) Synthesis and biocompatibility evaluation of cellulose/hydroxyapatite nanocomposite scaffold in 1-n-allyl-3-methylimidazolium chloride. Mater Sci Eng C-Mater Biol Appl 31(5):954–961

    Article  CAS  Google Scholar 

  • Zheng JP, Li P, Ma YL, De Yao K (2002) Gelatin/montmorillonite hybrid nanocomposite. I. preparation and properties. J Appl Polym Sci 86(5):1189–1194

    Article  CAS  Google Scholar 

  • Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C-Mater Biol Appl 31(1):43–49

    Article  CAS  Google Scholar 

  • Zou H, Wu SS, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108(9):3893–3957

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raghavan Prasanth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Dong, P., Prasanth, R., Xu, F., Wang, X., Li, B., Shankar, R. (2015). Eco-friendly Polymer Nanocomposite—Properties and Processing. In: Thakur, V., Thakur, M. (eds) Eco-friendly Polymer Nanocomposites. Advanced Structured Materials, vol 75. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2470-9_1

Download citation

Publish with us

Policies and ethics