Skip to main content

Small Molecule Osmolytes Can Modulate Proteostasis

  • Chapter
Proteostasis and Chaperone Surveillance

Abstract

Organisms are subjected to several harsh extreme environmental conditions and stresses that normally hamper growth and their physiological function. In response, nature has developed certain mechanisms to counteract these extreme stress conditions and one such mechanism is the accumulation of certain small molecular weight organic solutes called osmolytes. These osmolytes protect intracellular proteins and other macromolecules against the deleterious effects induced by these stress conditions. In addition to these protecting roles of these solutes against stress, they have also been shown to correct protein misfolding, relieve aggregation and amyloidogenic progression in various proteopathies related proteins. The present chapter discusses the significant advances made in the field of mechanisms of the osmolytes-induced protein folding/stabilization. The chapter has been designed so as to include all aspects of osmolytes actions on proteins stability and functions. Later sections also highlight the possible use of these organic osmolytes as pharmaceutical drugs in preventing aggregation/amyloidogenesis related human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anfinsen CB (1973) Principles that govern the folding of protein chains. Science 181(4096):223–230

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1982) Preferential interactions of proteins with salts in concentrated solutions. Biochemistry 21(25):6545–6552

    Article  CAS  PubMed  Google Scholar 

  • Arakawa T, Timasheff SN (1985) The stabilization of proteins by osmolytes. Biophys J 47(3):411–414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Arakawa T, Ejima D, Kita Y, Tsumoto K (2006) Small molecule pharmacological chaperones: from thermodynamic stabilization to pharmaceutical drugs. Biochim Biophys Acta 1764(11):1677–1687

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Ha C, Park CB (2004) Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett 564(1–2):121–125

    Article  CAS  PubMed  Google Scholar 

  • Athawale MV, Dordick JS, Garde S (2005) Osmolyte trimethylamine-n-oxide does not affect the strength of hydrophobic interactions: origin of osmolyte compatibility. Biophys J 89(2):858–866

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Auton M, Bolen DW, Rösgen J (2008) Structural thermodynamics of protein preferential solvation: Osmolyte solvation of proteins, aminoacids, and peptides. Proteins 73(4):802–813

    Article  CAS  PubMed  Google Scholar 

  • Bagnasco S, Balaban R, Fales HM, Yang YM, Burg M (1986) Predominant osmotically active organic solutes in rat and rabbit renal medullas. J Biol Chem 261(13):5872–5877

    CAS  PubMed  Google Scholar 

  • Balakumar S, Arasaratnam V (2012) Osmo-, thermo- and ethanol- tolerance of Saccharomyces cerevisiae s1. Braz J Microbiol 43:157–166

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baskakov I, Bolen DW (1998) Forcing thermodynamically unfolded proteins to fold. J Biol Chem 273(9):4831–4834

    Article  CAS  PubMed  Google Scholar 

  • Baskakov I, Wang A, Bolen DW (1998) Trimethylamine-N-oxide counteracts urea effects on rabbit muscle lactate dehydrogenase function: a test of the counteraction hypothesis. Biophys J 74(5):2666–2673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baskakov IV, Kumar R, Srinivasan G, Ji YS, Bolen DW, Thompson EB (1999) Trimethylamine n-oxide-induced cooperative folding of an intrinsically unfolded transcription-activating fragment of human glucocorticoid receptor. J Biol Chem 274(16):10693–10696

    Article  CAS  PubMed  Google Scholar 

  • Berg OG (1990) The influence of macromolecular crowding on thermodynamic activity: solubility and dimerization constants for spherical and dumbbell-shaped molecules in a hard-sphere mixture. Biopolymers 30(11–12):1027–1037

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7(7):1099–1111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bolen DW, Baskakov IV (2001) The osmophobic effect: natural selection of a thermodynamic force in protein folding. J Mol Biol 310(5):955–963

    Article  CAS  PubMed  Google Scholar 

  • Bolen DW, Fisher JR (1969) Kinetic properties of adenosine deaminase in mixed aqueous solvents. Biochemistry 8:4239–4246

    Article  CAS  PubMed  Google Scholar 

  • Borowitzka LJ, Brown AD (1974) The salt relations of marine and halophilic species of the unicellular green alga, dunaliella. The role of glycerol as a compatible solute. Arch Microbiol 96(1):37–52

    Article  CAS  Google Scholar 

  • Borwankar T, Rothlein C, Zhang G, Techen A, Dosche C, Ignatova Z (2011) Natural osmolytes remodel the aggregation pathway of mutant huntingtin exon 1. Biochemistry 50(12):2048–2060

    Article  CAS  PubMed  Google Scholar 

  • Bowlus RD, Somero GN (1979) Solute compatibility with enzyme function and structure: rationales for the selection of osmotic agents and end-products of anaerobic metabolism in marine invertebrates. J Exp Zool 208(2):137–151

    Article  CAS  PubMed  Google Scholar 

  • Burg MB (1995) Molecular basis of osmotic regulation. Am J Physiol 268(6 Pt 2):F983–F996

    CAS  PubMed  Google Scholar 

  • Burg MB, Peters EM (1997) Urea and methylamines have similar effects on aldose reductase activity. Am J Physiol 273:F1048–F1053

    CAS  PubMed  Google Scholar 

  • Burg MB, Kwon ED, Peters EM (1996) Glycerophosphocholine and betaine counteract the effect of urea on pyruvate kinase. Kidney Int Suppl 57:S100–S104

    CAS  PubMed  Google Scholar 

  • Burrows JAJ, Willis LK, Perlmutter H (2000) Chemical chaperones mediate increased secretion of mutant a1-antitrypsin (a1-at) z: a potential pharmacological strategy for prevention of liver injury and emphysema in a1-at deficiency. Proc Natl Acad Sci U S A 97:1796–1801

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  • Chrunyk BA, Matthews CR (1990) Role of diffusion in the folding of the alpha subunit of tryptophan synthase from escherichia coli. Biochemistry 29(8):2149–2154

    Article  CAS  PubMed  Google Scholar 

  • Cioni P, Bramanti E, Strambini GB (2005) Effects of sucrose on the internal dynamics of azurin. Biophys J 88(6):4213–4222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Creighton TE (1991) Stability of folded conformations. Curr Opin Struct Biol 1:5–16

    Article  CAS  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53(1):121–147

    PubMed Central  CAS  PubMed  Google Scholar 

  • Davis-Searles PR, Morar AS, Saunders AJ, Erie DA, Pielak GJ (1998) Sugar-induced molten-globule model. Biochemistry 37(48):17048–17053

    Article  CAS  PubMed  Google Scholar 

  • Davis-Searles PR, Saunders AJ, Erie DA, Winzor DJ, Pielak GJ (2001) Interpreting the effects of small uncharged solutes on protein-folding equilibria. Annu Rev Biophys Biomol Struct 30:271–306

    Article  CAS  PubMed  Google Scholar 

  • De Meis L, Inesi G (1988) Effects of organic solvents, methylamines, and urea on the affinity for pi of the ca2+ atpase of sarcoplasmic reticulum. J Biol Chem 263:157–161

    PubMed  Google Scholar 

  • Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol 158:455–463

    Article  CAS  Google Scholar 

  • Fields PA, Wahlstrand BD, Somero GN (2001) Intrinsic versus extrinsic stabilization of enzymes: the interaction of solutes and temperature on a4-lactate dehydrogenase orthologs from warm-adapted and cold-adapted marine fishes. Eur J Biochem 268(16):4497–4505

    Article  CAS  PubMed  Google Scholar 

  • Foord RL, Leatherbarrow RJ (1998) Effect of osmolytes on the exchange rates of backbone amide protons in proteins. Biochemistry 37(9):2969–2978

    Article  CAS  PubMed  Google Scholar 

  • Frauenfelder H, Petsko GA, Tsernoglou D (1979) Temperature-dependent x-ray diffraction as a probe of protein structural dynamics. Nature 280(5723):558–563

    Article  CAS  PubMed  Google Scholar 

  • Fung J, Darabie AA, McLaurin J (2005) Contribution of simple saccharides to the stabilization of amyloid structure. Biochem Biophys Res Commun 328(4):1067–1072

    Article  CAS  PubMed  Google Scholar 

  • Gerlsma SY (1968) Reversible denaturation of ribonuclease in aqueous solutions as influenced by polyhydric alcohols and some other additives. J Biol Chem 243(5):957–961

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Baldwin RL (1998) Kinetic mechanism of a partial folding reaction. Biochemistry 37(8):2556–2563

    Article  CAS  PubMed  Google Scholar 

  • Gonnelli M, Strambini GB (1995) Phosphorescence lifetime of tryptophan in proteins. Biochemistry 34(42):13847–13857

    Article  CAS  PubMed  Google Scholar 

  • Gonnelli M, Strambini GB (2001) No effect of trimethylamine n-oxide on the internal dynamics of the protein native fold. Biophys Chem 89(1):77–85

    Article  CAS  PubMed  Google Scholar 

  • Gonnelli M, Strambini GB (2005) Intramolecular quenching of tryptophan phosphorescence in short peptides and proteins. Photochem Photobiol 81(3):614–622

    Article  CAS  PubMed  Google Scholar 

  • Haque I, Singh R, Ahmad F, Moosavi-Movahedi AA (2005a) Testing polyols’ compatibility with gibbs energy of stabilization of proteins under conditions in which they behave as compatible osmolytes. FEBS Lett 579(18):3891–3898

    Article  CAS  PubMed  Google Scholar 

  • Haque I, Singh R, Moosavi-Movahedi AA, Ahmad F (2005b) Effect of polyol osmolytes on deltag(d), the gibbs energy of stabilisation of proteins at different ph values. Biophys Chem 117(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Haque I, Islam A, Singh R, Moosavi-Movahedi AA, Ahmad F (2006) Stability of proteins in the presence of polyols estimated from their guanidinium chloride-induced transition curves at different ph values and 25 degrees c. Biophys Chem 119(3):224–233

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • Harries D, Rosgen J (2008) A practical guide on how osmolytes modulate macromolecular properties. Methods Cell Biol 84:679–735

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann T, Bremer E (2011) Protection of bacillus subtilis against cold stress via compatible-solute acquisition. J Bacteriol 193(7):552–1562

    Article  CAS  Google Scholar 

  • Howard M, Welch WJ (2002) Manipulating the folding pathway of delta f508 cftr using chemical chaperones. Methods Mol Med 70:267–275

    CAS  PubMed  Google Scholar 

  • Ignatova Z, Gierasch LMI (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci 103:13357–13361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishii S, Kase R, Sakuraba H, Suzuki Y (1993) Characterization of a mutant alpha-galactosidase gene product for the late-onset cardiac form of fabry disease. Biochem Biophys Res Commun 197(3):1585–1589

    Article  CAS  PubMed  Google Scholar 

  • Jacob M, Schmid FX (1999) Protein folding as a diffusional process. Biochemistry 38(42):13773–13779

    Article  CAS  PubMed  Google Scholar 

  • Jacob M, Schindler T, Balbach J, Schmid FX (1997) Diffusion control in an elementary protein folding reaction. Proc Natl Acad Sci U S A 94(11):5622–5627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jamal S, Poddar NK, Singh LR, Dar TA, Rishi V, Ahmad F (2009) Relationship between functional activity and protein stability in the presence of all classes of stabilizing osmolytes. FEBS J 276(20):6024–6032

    Article  CAS  PubMed  Google Scholar 

  • Kauzmann W, Schachman HK, Lauffer MA (1949) The hydration, size and shape of tobacco mosaic virus. J Am Chem Soc 71(2):536–541

    Article  Google Scholar 

  • Kim YS, Jones LS, Dong A, Kendrick BS, Chang BS, Manning MC, Randolph TW, Carpenter JF (2003) Effects of sucrose on conformational equilibria and fluctuations within the native-state ensemble of proteins. Protein Sci 12(6):1252–1261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim HY, Kim Y, Han G, Kim DJR (2010) Regulation of in vitro aβ 1–40 aggregation mediated by small molecules. J Alzheimers Dis 22:73–85

    CAS  PubMed  Google Scholar 

  • Knoll D, Hermans J (1983) Polymer-protein interactions. Comparison of experiment and excluded volume theory. J Biol Chem 258(9):5710–5715

    CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617

    Article  Google Scholar 

  • Kraus ML, Kraus APJ (2001) Carbomylation of amino acids and proteins in uremia. Kidney Int 78:102–107

    Article  Google Scholar 

  • Kurz M (2008) Compatible solute influence on nucleic acids: many questions but few answers. Saline Syst 4:1–14

    Article  CAS  Google Scholar 

  • Ladurner AG, Fersht AR (1999) Upper limit of the time scale for diffusion and chain collapse in chymotrypsin inhibitor 2. Nat Struct Biol 6(1):28–31

    Article  CAS  PubMed  Google Scholar 

  • Lambert D, Draper DE (2007) Effects of osmolytes on RNA secondary and tertiary structure stabilities and RNA-Mg2+ interactions. J Mol Biol 370:993–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leandro P, Lechner MC, Tavares de Almeida I, Konecki D (2001) Glycerol increases the yield and activity of human phenylalanine hydroxylase mutant enzymes produced in a prokaryotic expression system. Mol Genet Metab 73(2):173–178

    Article  CAS  PubMed  Google Scholar 

  • Lebowitz JL, Helfland E, Praestgaard E (1965) Scaled particle theory of fluid mixtures. J Chem Phys 43(3):774–779

    Article  CAS  Google Scholar 

  • Lin TY, Timasheff SN (1994) Why do some organisms use a urea-methylamine mixture as osmolyte? Thermodynamic compensation of urea and trimethylamine n-oxide interactions with protein. Biochemistry 33(42):12695–12701

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Bolen DW (1995) The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry 34(39):12884–12891

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Barkhordarian H, Emadi S, Park CB, Sierks MR (2005) Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol Dis 20:74–81

    Article  PubMed  CAS  Google Scholar 

  • Loo TW, Clarke DM (1997) Correction of defective protein kinesis of human p-glycoprotein mutants by substrates and modulators. J Biol Chem 272(2):709–712

    Article  CAS  PubMed  Google Scholar 

  • Macchi F, Eisenkolb M, Kiefer H, Otzen DE (2012) The effect of osmolytes on protein fibrillation. Int J Mol Sci 13(3):3801–3819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • MacMillen RE, Lee AK (1967) Australian desert mice: independence of exogenous water. Science 158:383–385

    Article  CAS  PubMed  Google Scholar 

  • Mandal AK, Samaddar S, Banerjee R, Lahiri S, Bhattacharyya A, Roy S (2003) Glutamate counteracts the denaturing effect of urea through its effect on the denatured state. J Biol Chem 278(38):36077–36084

    Article  CAS  PubMed  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Env Microbiol 65:1815–1825

    CAS  Google Scholar 

  • Mashino T, Fridovich I (1987) Effects of urea and trimethylamine-n-oxide on enzyme activity and stability. Arch Biochem Biophys 258:356–360

    Article  CAS  PubMed  Google Scholar 

  • Meury J (1988) Glycine betaine reverses the effects of osmotic stress on DNA replication and cellular division in Escherichia coli. Arch Microbiol 149(3):232–239

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (1997) Influence of excluded volume upon macromolecular structure and associations in crowded media. Curr Opin Biot 8:65–69

    Article  CAS  Google Scholar 

  • Moeckel GW, Zhang L, Fogo AB, Hao CM, Pozzi A, Breyer MD (2003) Cox2 activity promotes organic osmolyte accumulation and adaptation of renal medullary interstitial cells to hypertonic stress. J Biol Chem 278(21):19352–19357

    Article  CAS  PubMed  Google Scholar 

  • Myers JS, Jakoby WB (1973) Effect of polyhydric alcohols on kinetic parameters of enzymes. Biochem Biophy Res Comm 51(3):631–636

    Article  CAS  Google Scholar 

  • Natalello A, Liu J, Ami D, Doglia SM, Marco AD (2008) The osmolyte betaine promotes protein misfolding and disruption of protein aggregates. Proteins 75:509–517

    Article  CAS  Google Scholar 

  • Neufeld DS, Leader LP (1998) Freezing survival by isolated malpighian tubules of the New Zealand alpine weta Hemideina maori. J Exp Biol 201(Pt 2):227–236

    CAS  PubMed  Google Scholar 

  • Nozaki Y, Tanford C (1963) The solubility of amino acids and related compounds in aqueous urea solutions. J Biol Chem 238:4074–4081

    CAS  PubMed  Google Scholar 

  • Nystrom T (2005) Role of oxidative carbonylation in protein quality control and senescence. EMBO J 24:1311–1317

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • O’Connor TF, Debenedetti PG, Carbeck JD (2007) Stability of proteins in the presence of carbohydrates; experiments and modeling using scaled particle theory. Biophys Chem 127:51–63

    Article  PubMed  CAS  Google Scholar 

  • Oyaas K, Ellingsen TE, Dyrset N, Levine DW (1994) Utilization of osmoprotective compounds by hybridoma cells exposed to hyperosmotic stress. Biotechnol Bioeng 43(1):77–89

    Article  CAS  PubMed  Google Scholar 

  • Plaxco KW, Baker D (1998) Limited internal friction in the rate-limiting step of a two-state protein folding reaction. Proc Natl Acad Sci U S A 95(23):13591–13596

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Poddar NK, Ansari ZA, Singh RK, Moosavi-Movahedi AA, Ahmad F (2008) Effect of monomeric and oligomeric sugar osmolytes on DeltaGD, the Gibbs energy of stabilization of the protein at different ph values: is the sum effect of monosaccharide individually additive in a mixture? Biophys Chem 138(3):120–129

    Article  CAS  PubMed  Google Scholar 

  • Poddar NK, Ansari ZA, Singh RK, Moosavi-Movahedi AA, Ahmad F (2010) Effect of oligosaccharides and their monosaccharide mixtures on the stability of proteins: a scaled particle study. J Biomol Struct Dyn 28:331–341

    Article  CAS  PubMed  Google Scholar 

  • Pollard A, Wyn Jones RG (1979) Enzyme activities in concentrated solution of glycinebetaine and other solutes. Planta 144:291–298

    Article  CAS  PubMed  Google Scholar 

  • Powell K, Zeitlin PL (2002) Therapeutic approaches to repair defects in DeltaF508 CFTR folding and cellular targeting. Adv Drug Deliv Rev 54(11):1395–1408

    Article  CAS  PubMed  Google Scholar 

  • Pradeep L, Udgaonkar JB (2004) Osmolytes induce structure in an early intermediate on the folding pathway of barstar. J Biol Chem 279(39):40303–40313

    Article  CAS  PubMed  Google Scholar 

  • Pul U, Wurm R, Wagner R (2007) The role of LRP and H-NS in transcription regulation: involvement of synergism, allostery and macromolecular crowding. J Mol Biol 366:900–915

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Zhang A, Good TA, Fernandez EJ (2009) Two disaccharides and trimethylamine N-oxide affect Aβ aggregation differently, but all attenuate oligomer-induced membrane permeability. Biochemistry 48:8908–8919

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qu Y, Bolen DW (2003) Hydrogen exchange kinetics of RNase A and the urea: TMAO paradigm. Biochemistry 42:5837–5849

    Article  CAS  PubMed  Google Scholar 

  • Qu Y, Bolen CL, Bolen DW (1998) Osmolyte-driven contraction of a random coil protein. Proc Natl Acad Sci U S A 95(16):9268–9273

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rajendrakumar CSV, Suryanarayana T, Reddy AR (1997) DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett 410(2–3):201–205

    Article  CAS  PubMed  Google Scholar 

  • Ratnaparkhi GS, Varadarajan R (2001) Osmolytes stabilize ribonuclease S by stabilizing its fragments S protein and S peptide to compact folding-competent states. J Biol Chem 276(31):28789–28798

    Article  CAS  PubMed  Google Scholar 

  • Rees WA, Yager TD, Korte J, von Hippel PH (1993) Betaine can eliminate the base pair composition dependence of DNA melting. Biochemistry 32(1):137–144

    Article  CAS  PubMed  Google Scholar 

  • Reiss H, Frisch HL, Lebowitz JL (1959) Statistical mechanics of rigid spheres. J Chem Phys 31(2):369–380

    Article  CAS  Google Scholar 

  • Reiss H, Frisch HL, Helfland E, Lebowitz JL (1960) Aspects of the statistical thermodynamics of real fluids. J Chem Phys 32:119–124

    Article  CAS  Google Scholar 

  • Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384

    Article  CAS  Google Scholar 

  • Rösgen J (2009) Molecular crowding and solvation: direct and indirect impact on protein reactions. Methods Mol Biol 490:195–225

    Article  PubMed  CAS  Google Scholar 

  • Rudulier LD, Strom AR, Dandekar AM, Smith LT, Valentine RC (1984) Molecular biology of osmoregulation. Science 224(4653):1064–1068

    Article  PubMed  Google Scholar 

  • Samuel D, Ganesh G, Yang P-W, Chang M-M, Wang S-L, Hwang K-C, Yu C, Jayaraman G, Kumar TKS, Trivedi VD, Chang D-K (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Santoro MM, Liu Y, Khan SM, Hou LX, Bolen DW (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 31(23):5278–5283

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271(2):635–638

    Article  CAS  PubMed  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404(6779):770–774

    Article  CAS  PubMed  Google Scholar 

  • Siebenaller JF, Somero GN (1989) Biochemical adaptation to the deep sea. CRC Crit Rev Aq Sci 1:1–25

    CAS  Google Scholar 

  • Singh R, Haque I, Ahmad F (2005) Counteracting osmolyte trimethylamine N-oxide destabilizes proteins at pH below its pKa. Measurements of thermodynamic parameters of proteins in the presence and absence of trimethylamine N-oxide. J Biol Chem 280(12):11035–11042

    Article  CAS  PubMed  Google Scholar 

  • Singh LR, Ali Dar T, Haque I, Anjum F, Moosavi-Movahedi AA, Ahmad F (2007a) Testing the paradigm that the denaturing effect of urea on protein stability is offset by methylamines at the physiological concentration ratio of 2:1 (urea:Methylamines). Biochim Biophys Acta 1774(12):1555–1562

    Article  CAS  PubMed  Google Scholar 

  • Singh LR, Chen X, Kozich V, Kruger WD (2007b) Chemical chaperone rescue of mutant human cystathionine beta-synthase. Mol Genet Metab 91(4):335–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singh R, Ali Dar T, Ahmad S, Moosavi-Movahedi AA, Ahmad F (2008) A new method for determining the constant-pressure heat capacity change associated with the protein denaturation induced by guanidinium chloride (or urea). Biophys Chem 133:81–89

    Article  CAS  PubMed  Google Scholar 

  • Singh LR, Dar TA, Ahmad F (2009) Living with urea stress. J Biosci 34(2):321–331

    Article  CAS  PubMed  Google Scholar 

  • Singh LR, Poddar NK, Dar TA, Rahman S, Kumar R, Ahmad F (2011) Forty years of research on osmolyte-induced protein folding and stability. J Iran Chem Soc 8(1):1–23

    Article  CAS  Google Scholar 

  • Sola-Penna M, Meyer-Fernandes JR (1998) Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: why is trehalose more effective than other sugars? Arch Biochem Biophys 360(1):10–14

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (1986) Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol 251(2 Pt 2):R197–R213

    CAS  PubMed  Google Scholar 

  • Soto C (2001) Protein misfolding and disease; protein refolding and therapy. FEBS Lett 498(2–3):204–207

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis K, Gavalas NA, Manetas Y (1988) Effects of phosphate on the activity, stability and regulatory properties of phosphoenolpyruvate carboxylase from the C4 plant Cynodon dactylon. Aust J Plant Physiol 33(2):189–197

    Google Scholar 

  • Storey KB, Storey JM (1996) Natural freezing survival in animals. Annu Rev Ecol Syst 27:365–386

    Google Scholar 

  • Talibart R, Jebbar M, Gouffi K, Pichereau V, Gouesbet G, Blanco C, Bernard T, Pocard J (1997) Transient accumulation of glycine betaine and dynamics of endogenous osmolytes in salt-stressed cultures of sinorhizobium meliloti. Appl Environ Microbiol 63(12):4657–4663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tamarappoo BK, Yang B, Verkman AS (1999) Misfolding of mutant aquaporin-2 water channels in nephrogenic diabetes insipidus. J Biol Chem 274(49):34825–34831

    Article  CAS  PubMed  Google Scholar 

  • Tanaka M, Machida Y, Nukina N (2005) A novel therapeutic strategy for polyglutamine diseases by stabilizing aggregation-prone proteins with small molecules. J Mol Med (Berl) 83(5):343–352

    Article  CAS  Google Scholar 

  • Timasheff SN (2002a) Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41(46):13473–13482

    Article  CAS  PubMed  Google Scholar 

  • Timasheff SN (2002b) Thermodynamic binding and site occupancy in the light of the Schellman exchange concept. Biophys Chem 101–102:99–111

    Article  PubMed  Google Scholar 

  • Tsumoto K, Umetsu M, Kumagai I, Ejima D, Philo JS, Arakawa T (2004) Role of arginine in protein refolding, solubilization, and purification. Biotechnol Prog 20(5):1301–1308

    Article  CAS  PubMed  Google Scholar 

  • Uemura M, Warren G, Steponkus PL (2003) Freezing sensitivity in the sfr4 mutant of Arabidopsis is due to low sugar content and is manifested by loss of osmotic responsiveness. Plant Physiol 131(4):1800–1807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uversky VN, Li J, Fink AL (2001) Trimethylamine-N-oxide-induced folding of α-synuclein. FEBS Lett 509:31–35

    Article  CAS  PubMed  Google Scholar 

  • Vilasi S, Iannuzzi C, Portaccio M, Irace G, Sirangelo I (2008) Effect of trehalose on W7FW14F apomyoglobin and insulin fibrillization: new insight into inhibition activity. Biochemistry 47:1789–1796

    Article  CAS  PubMed  Google Scholar 

  • Waldburger CD, Jonsson T, Sauer RT (1996) Barriers to protein folding: formation of buried polar interactions is a slow step in acquisition of structure. Proc Natl Acad Sci U S A 93(7):2629–2634

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang A, Bolen DW (1997) A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36(30):9101–9108

    Article  CAS  PubMed  Google Scholar 

  • Welch WJ, Brown CR (1996) Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones 1(2):109–115

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolfe GV (2000) The chemical defense ecology of marine unicellular plankton: constraints, mechanisms, and impacts. Biol Bull 198(2):225–244

    Article  CAS  PubMed  Google Scholar 

  • Woltjer RL, Nghiem W, Maezawa I, Milatovic D, Vaisar T, Montine KS, Montine TJ (2005) Role of glutathione in intracellular amyloid-alpha precursor protein/carboxy-terminal fragment aggregation and associated cytotoxicity. J Neurochem 93(4):1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Wu JW, Wang ZX (1999) New evidence for the denaturant binding model. Protein Sci 8:2090–2097

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xin Z, Browse J (2000) Cold comfort farm: the acclimation of plants to freezing temperatures. Plant Cell Environ 23:893–902

    Article  Google Scholar 

  • Yancey PH (1994) Compatible and counteracting solutes. In: Strange K (ed) Cellular and molecular physiology of cell volume regulation. CRC Press, Boca Raton

    Google Scholar 

  • Yancey PH (2001) Water stress, osmolytes and proteins. Am Zool 41:699–709

    CAS  Google Scholar 

  • Yancey PH (2003) Proteins and counteracting osmolytes. Biologist 50(3):126–131

    Google Scholar 

  • Yancey PH (2004) Compatible and counteracting solutes: protecting cells from the dead sea to the deep sea. Sci Prog 87(Pt 1):1–24

    Article  CAS  PubMed  Google Scholar 

  • Yancey PH, Siebenaller JF (1999) Trimethylamine oxide stabilizes teleost and mammalian lactate dehydrogenases against inactivation by hydrostatic pressure and trypsinolysis. J Exp Biol 202(Pt 24):3597–3603

    CAS  PubMed  Google Scholar 

  • Yancey PH, Somero GN (1978) Urea-requiring lactate dehydrogenases of marine elasmobranch fishes. J Comp Physiol 125:135–141

    Article  CAS  Google Scholar 

  • Yancey PH, Somero GN (1979) Counteraction of urea destabilization of protein structure by methylamine osmoregulatory compounds of elasmobranch fishes. Biochem J 183(2):317–323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yancey PH, Somero GN (1980a) Methylamine osmoregulatory compounds in elasmobranch fishes reverse urea inhibition of enzymes. J Exp Zool 212:205–213

    Article  CAS  Google Scholar 

  • Yancey PH, Somero GN (1980b) Methylamine osmoregulatory solutes of elasmobranch fishes counteract urea inhibition of enzymes. J Exp Zool 212:205–213

    Article  CAS  Google Scholar 

  • Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water stress: evolution of osmolyte systems. Science 217(4566):1214–1222

    Article  CAS  PubMed  Google Scholar 

  • Yang DS, Yip CM, Huang TH, Chakrabartty A, Fraser PE (1999) Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J Biol Chem 274(46):32970–32974

    Article  CAS  PubMed  Google Scholar 

  • Yin M, Palmer HR, Fyfe-Johnson AL, Bedford JJ, Smith RA, Yancey PH (2000) Hypotaurine, N-methyltaurine, taurine, and glycine betaine as dominant osmolytes of vestimentiferan tubeworms from hydrothermal vents and cold seeps. Phys Biochem Zool 73:629–637

    Article  CAS  Google Scholar 

  • Yoshida H, Yoshizawa TS, Shibasaki F, Shoji S, Kanazawa I (2002) Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado–Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol Dis 10:88–99

    Article  CAS  PubMed  Google Scholar 

  • Zou Q, Habermann-Rottinghaus SM, Murphy KP (1998) Urea effects on protein stability: hydrogen bonding and the hydrophobic effect. Proteins 31:107–115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tanveer Ali Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Sharma, G.S., Warepam, M., Singh, L.R., Dar, T.A. (2015). Small Molecule Osmolytes Can Modulate Proteostasis. In: Singh, L.R., Dar, T.A., Ahmad, P. (eds) Proteostasis and Chaperone Surveillance. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2467-9_3

Download citation

Publish with us

Policies and ethics