Skip to main content

ZnO Nanostructures for Alternate Energy Generation

  • Chapter
  • First Online:
Advances in Communication and Computing

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 347))

  • 730 Accesses

Abstract

Extensive use of fossil fuel in industries and automobiles has severely polluted the environment, adversely affecting the ecosystem. The fossil fuel reserves are also dwindling, creating a serious concern in the area of energy generation. With rapid advances in nanotechnology, researchers are putting in their efforts to exploit unique properties of nanomaterials to come up with environmentally friendly energy solutions. The abundantly freely available solar energy is undoubtedly the least utilized form of natural energy. Efficient tapping of solar energy can resolve the energy crisis that our world is currently going through. Solar cells developed using nanomaterials, though still at the infancy stage, will be able to harness solar energy quite efficiently and most importantly, will be able to do it very cheaply. Piezoenergy resulting from physical deformation of near-elastic crystals shows promise as energy source for self-powering of low energy consuming devices. This article discusses the possibility of using nanostructures of a very promising material, zinc oxide (ZnO), for energy generation. ZnO is a wide bandgap semiconductor (3.37 eV) and the absence of a central symmetry in its crystal endows it with piezoelectric property. This material has been successfully used for energy generation and tapping schemes like solar cells, hydrogen generators and piezogenerators, among others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emanetoglu, N.W., Gorla, C., Liu, Y., Liang, S., Lu, Y.: Epitaxial ZnO piezoelectric thin films for saw filters. Mater. Sci. Semicond. Process. 2, 247–252 (1999)

    Article  Google Scholar 

  2. Chen, Y., Bagnall, D., Yao, T.: ZnO as a novel photonic material for the UV region. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 75, 190–198 (2000)

    Article  Google Scholar 

  3. Liang, S., Sheng, H., Liu, Y., Huo, Z., Lu, Y., Shen, H.: ZnO Schottky ultraviolet photodetectors. J. Cryst. Growth 225, 110–113 (2001)

    Article  Google Scholar 

  4. Saito, N., Haneda, H., Sekiguchi, T., Ohashi, N., Sakaguchi, I., Koumoto, K.: Low-temperature fabrication of light-emitting zinc oxide micropatterns using self-assembled monolayers. Adv. Mater. 14, 418–420 (2002)

    Article  Google Scholar 

  5. Lee, J.Y., Choi, Y.S., Kim, J.H., Park, M.O., Im, S.: Optimizing n-ZnO/p-Si heterojunctions for photodiode applications. Thin Solid Films 403–404, 553–557 (2002)

    Article  Google Scholar 

  6. Mitra, P., Chatterjee, A.P., Maiti, H.S.: ZnO thin film sensor. Mater. Lett. 35, 33–38 (1998)

    Article  Google Scholar 

  7. Koch, M.H., Timbrell, P.Y., Lamb, R.N.: The influence of film crystallinity on the coupling efficiency of ZnO optical modulator waveguides. Semicond. Sci. Technol. 10, 1523–1527 (1995)

    Article  Google Scholar 

  8. Gratzel, M.: Dye-sensitized solid-state heterojunction solar cells. MRS Bull. 30, 23–27 (2005)

    Article  Google Scholar 

  9. Baxter, J.B., Walker, A.M., Van Ommering, K., Aydil, E.S.: Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells. Nanotechnology 17, (2006)

    Google Scholar 

  10. Lin, Y., Zhang, Z., Tang, Z., Yuan, F., Li, J.: Characterisation of ZnO-based varistors prepared from nanometre precursor powders. Adv. Mater. Opt. Electron. 9, 205–209 (1999)

    Article  Google Scholar 

  11. Padmavathy, N., Vijayaraghavan, R.: Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci. Technol. Adv. Mater. 9, (2008)

    Google Scholar 

  12. Baruah, S., Thanachayanont, C., Dutta, J.: Growth of ZnO nanowires on nonwoven polyethylene fibers. Sci. Technol. Adv. Mater. 9, (2008)

    Google Scholar 

  13. Wang, Z.L.: Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, (2004)

    Google Scholar 

  14. Huang, Y., Zhang, Y., Bai, X., He, J., Liu, J., Zhang, X.: Bicrystalline zinc oxide nanocombs. J. Nanosci. Nanotechnol. 6, 2566–2570 (2006)

    Article  Google Scholar 

  15. Hughes, W.L., Wang, Z.L.: Controlled synthesis and manipulation of ZnO nanorings and nanobows. Appl. Phys. Lett. 86, (2005)

    Google Scholar 

  16. Kong, X.Y., Wang, Z.L.: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625–1631 (2003)

    Article  Google Scholar 

  17. Hughes, W.L., Wang, Z.L.: Formation of piezoelectric single-crystal nanorings and nanobows. J. Am. Chem. Soc. 126, 6703–6709 (2004)

    Article  Google Scholar 

  18. Sun, T., Qui, J., Liang, C.: Controllable fabrication and photocatalytic activity of ZnO nanobelt arrays. J. Phys. Chem. C 112, 715–721 (2008)

    Article  Google Scholar 

  19. Snure, M., Tiwari, A.: Synthesis, characterization, and green luminescence in ZnO nanocages. J. Nanosci. Nanotechnol. 7, 481–485 (2007)

    Article  Google Scholar 

  20. Gratzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol. A: Chem. 164, 3–14 (2004)

    Article  Google Scholar 

  21. http://www.observatorynano.eu/project/document/2013/ (2013)

  22. Bora, T.: Studies on zinc oxide nanorod dye sensitized solar cell. Master thesis AIT (2009)

    Google Scholar 

  23. Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Mller, E., Liska, P., Vlachopoulos, N., Grtzel, M.: Conversion of light to electricity by cis-X2bis(2,2-bipyridyl-4,4-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO\(_2\) electrodes. J. Am. Chem. Soc. 115, 6382–6390 (1993)

    Article  Google Scholar 

  24. Nazeeruddin, M.K., Humphry-Baker, R., Liska, P., Grtzel, M.: Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO\(_2\) solar cell. J. Phys. Chem. B 107, 8981–8987 (2003)

    Article  Google Scholar 

  25. Aiga, F., Tada, T.: Molecular and electronic structures of black dye; an efficient sensitizing dye for nanocrystalline TiO\(_2\) solar cells. J. Mol. Struct. 658, 25–32 (2003)

    Article  Google Scholar 

  26. Hagberg, D.P., Edvinsson, T., Marinado, T., Boschloo, G., Hagfeldt, A., Sun, L.: A novel organic chromophore for dye-sensitized nanostructured solar cells. In: Chemical Communications, pp. 2245–2247 (2006)

    Google Scholar 

  27. Ito, S., Zakeeruddin, S.M., Humphry-Baker, R., Liska, P., Charvet, R., Comte, P., Nazeeruddin, M.K., Pchy, P., Takata, M., Miura, H., Uchida, S., Grtzel, M.: High-efficiency organic-dye-sensitized solar cells controlled by nanocrystalline-TiO2 electrode thickness. Adv. Mater. 18, 1202–1205 (2006)

    Article  Google Scholar 

  28. Suri, P., Mehra, R.M.: Effect of electrolytes on the photovoltaic performance of a hybrid dye sensitized ZnO solar cell. Sol. Ener. Mater. Sol. Cells 91, 518–524 (2007)

    Article  Google Scholar 

  29. Law, M., Greene, L.E., Johnson, J.C., Saykally, R., Yang, P.: Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)

    Article  Google Scholar 

  30. Yang, P., Yan, H., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R., Choi, H.J.: Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12, 323–331 (2002)

    Article  Google Scholar 

  31. Xia, J.B., Zhang, X.W.: Electronic structure of ZnO Wurtzite quantum wires. Eur. Phys. J. B 49, 415–420 (2006)

    Article  Google Scholar 

  32. Quintana, M., Edvinsson, T., Hagfeldt, A., Boschloo, G.: Comparison of dye-sensitized ZnO and TiO\(_2\) solar cells: studies of charge transport and carrier lifetime. J. Phys. Chem. C 111, 1035–1041 (2007)

    Article  Google Scholar 

  33. Akhtar, M.S., Khan, M.A., Jeon, M.S., Yang, O.B.: Controlled synthesis of various ZnO nanostructured materials by capping agents-assisted hydrothermal method for dye-sensitized solar cells. Electrochim. Acta 53, 7869–7874 (2008)

    Article  Google Scholar 

  34. Pradhan, B., Batabyal, S.K., Pal, A.J.: Vertically aligned ZnO nanowire arrays in Rose Bengal-based dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 91, 769–773 (2007)

    Article  Google Scholar 

  35. Chen, J., Li, C., Song, J.L., Sun, X.W., Lei, W., Deng, W.Q.: Bilayer ZnO nanostructure fabricated by chemical bath and its application in quantum dot sensitized solar cell. Appl. Surf. Sci. 255, 7508–7511 (2009)

    Article  Google Scholar 

  36. Baxter, J.B., Aydil, E.S.: Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires. Sol. Energy Mater. Sol. Cells 90, 607–622 (2006)

    Article  Google Scholar 

  37. Gerischer, H., Tributsch, H.: Ber. Bunsen-Ges. Phys. Chem. 73, 850–854 (1969)

    Google Scholar 

  38. Matsumura, M., Matsudaira, S., Tsubomura, H., Takata, M., Yanagida, H.: Dye sensitization and surface structures of semiconductor electrodes. Ind. Eng. Chem. Prod. Res. Dev. 19, 415–421 (1980)

    Article  Google Scholar 

  39. Boschloo, G., Edvinsson, T., Hagfeldt, A.: Dye-sensitized nanostructured ZnO Electrodes for solar cell applications. In: Nanostructured Materials for Solar Energy Conversion, pp. 227–254 (2007)

    Google Scholar 

  40. Ku, C.H., Wu, J.J.: Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells. Nanotechnology 18 (2007)

    Google Scholar 

  41. Keis, K., Bauer, C., Boschloo, G., Hagfeldt, A., Westermark, K., Rensmo, H., Siegbahn, H.: Nanostructured ZnO electrodes for dye-sensitized solar cell applications. J. Photochem. Photobiol. A: Chem. 148, 57–64 (2002)

    Article  Google Scholar 

  42. Baruah, S., Dutta, J.: Hydrothermal growth of ZnO nanostructures. Sci. Technol. Adv. Mater. 10, 013001 (2009)

    Article  Google Scholar 

  43. Makhal, A., Sarkar, S., Bora, T., Baruah, S., Dutta, J., Raychaudhuri, A.K., Pal, S.K.: Role of resonance energy transfer in light harvesting of zinc oxide-based dye-sensitized solar cells. J. Phys. Chem. C 114, 10390–10395

    Google Scholar 

  44. Desai, A.V., Haque, M.A.: Mechanical properties of ZnO nanowires. Sens. Actuators 134, 169–174 (2007)

    Article  Google Scholar 

  45. Kou L.Z., Guo, W.L., Li, C.: In: Proceedings of IEEE Symposium on Piezoelectricity, Acoustic Waves, and Device Applications, pp. 354–359 (2008)

    Google Scholar 

  46. Song, J.H., Zhou, J., Liu, J., Wang, Z.L.: Nano Lett. 6, 1652–1656 (2006)

    Article  Google Scholar 

  47. Wang, Z.L., Song, J.H.: Science 312, 242–246 (2006)

    Article  Google Scholar 

  48. Hutson, A.R., White, D.L.: Elastic wave propagation in piezoelectric semiconductors. J. Appl. Phys. 33, 40–47 (1962)

    Article  Google Scholar 

  49. Corso, A.D., Pastemak, M., Resta, R., Balderschi, A.: Phys. Rev. B 50, 10715–10721 (1994)

    Article  Google Scholar 

  50. Fan, Z., Lu, J.G.: J. Nanosci. Nanotechnol. 5, 1561–1573 (2005)

    Article  Google Scholar 

  51. Zhao, M.H., Wang, Z.L., Mao, S.X.: Nano Lett. 4, 587–590 (2004)

    Article  Google Scholar 

  52. Mantini, G., Gao, Y., DAmico, A., Falconi, C., Wang, Z.L.: Nano Res. 2, 624–629 (2009)

    Google Scholar 

  53. Mantini, G., Gao, Y., Wang, D.Z.L., Falconi, A.C.: Procedia Chem. 1, 1403–1406 (2009)

    Google Scholar 

  54. Wang, Z.L.: Adv. Mater. 21, 1311–1315 (2009)

    Article  Google Scholar 

  55. Gao, Y., Wang, Z.L.: Nano Lett. 9, 1103–1110 (2009)

    Article  Google Scholar 

  56. Xu, F., Qin, Q., Mishra, A., Gu, Y., Zhu, Y.N.R.: Nano Res. 3, 271–280 (2010)

    Article  Google Scholar 

  57. Park, W.I., Yi, G.C., Kim, J.W., Park, S.M.: Appl. Phys. Lett. 82, 4358–4360 (2003)

    Article  Google Scholar 

  58. Park, W.I., Yi, G.C.: Ohmic and Schottky nanocontacts. In: IEEE Proceedings, pp. 410–414 (2003)

    Google Scholar 

  59. Wang, X., Song, J., Liu, J., Wang, Z.L.S.: Science 316, 102–105 (2007)

    Google Scholar 

  60. Qin, Y., Wang, X., Wang, Z.L.: Nature 451, 809–813 (2008)

    Article  Google Scholar 

  61. Xu, Q.Y.S., Xu, C., Wei, Y., Yang, R., Wang, Z.L.N.N.: Nat. Nanotechnol. 5, 366–373 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunandan Baruah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Baruah, S. (2015). ZnO Nanostructures for Alternate Energy Generation. In: Bora, P., Prasanna, S., Sarma, K., Saikia, N. (eds) Advances in Communication and Computing. Lecture Notes in Electrical Engineering, vol 347. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2464-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2464-8_3

  • Published:

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2463-1

  • Online ISBN: 978-81-322-2464-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics