Skip to main content

OCDs in Randomized Block Design Set-Up

  • Chapter
  • First Online:
  • 599 Accesses

Abstract

We have already mentioned in Chap. 2 that the question of optimal estimation of the covariate parameters under the covariate model was first studied by Troya Lopes, J Stat Plan Inference 6:373–419, (1982a); 7:49–75, (1982b) in Completely Randomized Design (CRD) set-up. Later, Das et al., J Stat Plan Inference 115:273–285, (2003) extended her work to the construction of optimum covariate designs in the set-up of Randomized Block Designs (RBD). Also, Rao et al., Electron Notes Discret Math 15:157–160, (2003) established a relationship between mixed orthogonal arrays (MOAs) and OCDs in CRD and RBD set-ups. In this chapter we discuss the construction procedures of OCDs in RBD set-up as considered by Das et al., J Stat Plan Inference 115:273–285, (2003) and Rao et al., Electron Notes Discret Math 15:157–160, (2003).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Das K, Mandal NK, Sinha BK (2003) Optimal experimental designs with covariates. J Stat Plan Inference 115:273–285

    Article  MathSciNet  MATH  Google Scholar 

  • Dey A, Mukerjee R (1999) Fractional factorial plans. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Hedayat AS, Sloane NJA, Stufken J (1999) Orthogonal arrays: theory and applications. Springer, New York

    Book  MATH  Google Scholar 

  • Rao CR (1947) Factorial experiments derivable from combinatorial arrangements of arrays. J R Stat Soc (Suppl) 9:128–139

    Article  MATH  Google Scholar 

  • Rao CR (1973) Some combinatorial problems of arrays and applications to design of experiments. In: Srivastava JN (ed) A survey of combinatorial theory. University of North Carolina Press, Chapel Hill, pp 349–359

    Google Scholar 

  • Rao PSSNVP, Rao SB, Saha GM, Sinha BK (2003) Optimal designs for covariates’ models and mixed orthogonal arrays. Electron Notes Discret Math 15:157–160

    MathSciNet  MATH  Google Scholar 

  • Troya Lopes J (1982a) Optimal designs for covariate models. J Stat Plan Inference 6:373–419

    Google Scholar 

  • Troya Lopes J (1982b) Cyclic designs for a covariate model. J Stat Plan Inference 7:49–75

    Google Scholar 

  • Wallis WD, Street AP, Wallis JS (1972) Combinatorics: room squares, sum-free sets, Hadamard matrices. Lecture notes in mathematics, vol 292. Springer, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Premadhis Das .

Appendix

Appendix

Proof of Theorem 3.4.3 It is observed that X is a symmetric matrix. Now \((i,i)\mathrm{th}\) block matrix of X X \(^\prime \) is

\(\begin{array}{rll} (\mathbf{X}\mathbf{X}^\prime )_{ii} &{}=\displaystyle \sum _{k=1,~k\ne i}^p(a_{ik}\mathbf{A}-\mathbf{I}_p)(a_{ki}\mathbf{A}-\mathbf{I}_p)+(a_{ii}\mathbf{A}+\mathbf{J}_p-\mathbf{I}_p)(a_{ii}\mathbf{A}+\mathbf{J}_p-\mathbf{I}_p)&{} \\ &{}=\displaystyle \sum _{k=1~k\ne i}^p(a_{ik}^2\mathbf{A}^2-2a_{ik}\mathbf{A}+\mathbf{I})+(\mathbf{J}_p-\mathbf{I}_p)(\mathbf{J}_p-\mathbf{I}_p)\,\mathrm{since}~a_{ij}=a_{ji}\,\text {and}\,a_{ii}=0~\forall i \\ &{} =(p\mathbf{I}_p-\mathbf{J}_p)\displaystyle \sum _{k=1}^pa_{ik}^2-2\mathbf{A}\displaystyle \sum _{k=1}^pa_{ik}+(p-1)\mathbf{I}_p+p\mathbf{J}_p-2\mathbf{J}_p+\mathbf{I}_p\\ &{}=(p\mathbf{I}_p-\mathbf{J}_p)(p-1) -2\mathbf{A}.0+(p-1)\mathbf{I}_p+(p-2)\mathbf{J}_p+\mathbf{I}_p&{}\\ &{}=(p(p-1)+p)\mathbf{I}_p+(p-2)\mathbf{J}_p-(p-1)\mathbf{J}_p&{} \\ &{}=p^2\mathbf{I}_p-\mathbf{J}_p&{} \end{array}\)

\((i,j)\mathrm{th}\) block matrix of X X \(^\prime \) is

\(\begin{array}{rl} (\mathbf{X}\mathbf{X}^\prime )_{ij} &{}=\displaystyle \sum _{k=1,~k\ne i,j}^p(a_{ik}\mathbf{A}-\mathbf{I}_p)(a_{kj}\mathbf{A}-\mathbf{I}_p)+(a_{ii}\mathbf{A}+\mathbf{J}_p-\mathbf{I}_p)(a_{ji}\mathbf{A}-\mathbf{I}_p)\\ &{}~~~~~~~~~~~~~~+(a_{ij}\mathbf{A}-\mathbf{I}_p)(a_{jj}\mathbf{A}+\mathbf{J}_p-\mathbf{I}_p)\\ &{}=\displaystyle \sum _{k=1,~k\ne i,j}^p(a_{ik}a_{jk}\mathbf{A}^2-a_{ik}\mathbf{A}-a_{jk}\mathbf{A}+\mathbf{I}_p+(\mathbf{J}_p-\mathbf{I}_p)(a_{ji}\mathbf{A}-\mathbf{I}_p)\\ {} &{}\quad +(a_{ij}\mathbf{A}-\mathbf{I}_p)(\mathbf{J}_p-\mathbf{I}_p)\\ &{}=-(p\mathbf{I}_p-\mathbf{J}_p)+a_{ij}\mathbf{A}+a_{ij}\mathbf{A}+(p-2)\mathbf{I}_p-\mathbf{J}_p-a_{ij}\mathbf{A}-\mathbf{I}_p-\mathbf{J}_p-a_{ij}\mathbf{A}+\mathbf{I}_p\\ &{}=-\mathbf{J}_p\\ \mathrm{{Thus}}\,\mathbf{X}\mathbf{X}^\prime &{}=p^2\mathbf{I}_{p^2}-\mathbf{J}_{p^2}. \end{array}\)

\(\square \)

Theorem 3.4.5

The columns of the matrix D are orthogonal.

Proof

The cross product of \(i\mathrm{th}\) and \(j\mathrm{th}\) elements of B,

\(\begin{array}{rl} \displaystyle \sum _{k=1}^pb_{ki}b_{kj} &{}= \displaystyle \sum _{k=1,~k\ne i,j}^pb_{ki}b_{kj}+b_{ii}b_{ij}+b_{ji}b_{jj}+b_{(p+1),i}b_{(p+1),j} \\ &{}=\displaystyle \sum _{k=1,~k\ne i,j}^{p}(a_{ki}\alpha )(a_{kj}\alpha )+(-\beta )(a_{ij}\alpha )+(a_{ji}\alpha )(-\beta )+\beta .\beta \\ &{}=\displaystyle \sum _{k=1,~k\ne i,j}^{p}a_{ki}a_{kj}(\alpha .\alpha )+a_{ij}((-\beta ).\alpha )+a_{ji}(\alpha .(-\beta ))+c \\ &{}=c\displaystyle \sum _{k=1}^{p}a_{ki}a_{kj}+0+0+c \\ &{} =-c+c=0. \end{array}\)

Similarly, it can be shown that the columns of C are also orthogonal. Now we want to show that any column of B is orthogonal to any column of C. For this, we consider the cross product of \(i\mathrm{th}\) column of B and \(j\mathrm{th}\) column of C: \(\begin{array}{rl} \displaystyle \sum _{k=1}^pb_{ki}c_{kj} &{}= \displaystyle \sum _{k=1,~k\ne i,j}^pb_{ki}c_{kj}+b_{ii}c_{ij}+b_{ji}c_{jj}+b_{(p+1),i}c_{(p+1),j} \\ &{}=\displaystyle \sum _{k=1,~k\ne i,j}^{p}(a_{ki}\alpha )(a_{kj}\beta )+(-\beta )(a_{ij}\beta )+(a_{ji}\alpha )(\alpha )+\beta .(-\alpha ) \\ &{}=\displaystyle \sum _{k=1,~k\ne i,j}^{p}a_{ki}b_{kj}(\alpha .\beta )+a_{ij}((-\beta ).\beta )+a_{ji}(\alpha .(-\alpha ))+0=0-c+c+0=0 \end{array}\)

\(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Das, P., Dutta, G., Mandal, N.K., Sinha, B.K. (2015). OCDs in Randomized Block Design Set-Up. In: Optimal Covariate Designs. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2461-7_3

Download citation

Publish with us

Policies and ethics