Skip to main content

Management of Distant Metastases in Differentiated Thyroid Cancer

  • Chapter
Management of Thyroid Cancer

Part of the book series: Head and Neck Cancer Clinics ((HNCC))

  • 1264 Accesses

Abstract

Follicular cell-derived differentiated thyroid cancer (DTC) is a disease characterized by long-term survival and excellent prognosis. Large-scale studies have defined 10-year survival rates of 85 % in follicular thyroid cancer (FTC) and ~93 % in papillary thyroid cancer (PTC) [1–5]. Despite this, published series report that 6–20 % of patients will develop distant metastatic disease [3, 4, 6–16]. Outcomes in these patients with distant disease are significantly worse, with 10-year survival rates closely approximating 40 % [3, 4, 6, 7, 9, 10, 12–23]. Numerous risk factors have been linked to the development of both regional and distant disease. These include age, tumour size, extrathyroidal extension, multifocality and palpable lymphadenopathy [3, 8, 11, 24]. In 5–45 % of patients, distant disease will be discovered at the time of initial diagnosis on cross-sectional imaging or post-therapy radioactive iodine (RAI) scans [1, 6, 15, 18, 19, 22, 25, 26]. The remainder of patients will develop metastatic recurrence during follow-up. In this latter group, distant disease may be discovered more than 10 years after the initial treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper DS, Doherty GM, Haugen BR, et al. Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2009;19:1167–214.

    Google Scholar 

  2. Eustatia-Rutten CF, Corssmit EP, Biermasz NR, et al. Survival and death causes in differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2006;91:313–9.

    Article  CAS  PubMed  Google Scholar 

  3. Hundahl SA, Fleming ID, Fremgen AM, et al. A national cancer database report on 53,856 cases of thyroid carcinoma treated in the US, 1985–1995. Cancer. 1998;83:2638–48.

    Article  CAS  PubMed  Google Scholar 

  4. Jonklaas J, Sarlis NJ, Litofsky D, et al. Outcomes of patients with differentiated thyroid carcinoma following initial therapy. Thyroid. 2006;16:1229–42.

    Article  PubMed  Google Scholar 

  5. McConahey WM, Hay ID, Woolner LB, et al. Papillary thyroid cancer treated at the Mayo Clinic, 1946 through 1970: initial manifestations, pathologic findings, therapy, and outcome. Mayo Clin Proc. 1986;61:978–96.

    Article  CAS  PubMed  Google Scholar 

  6. Benbassat CA, Mechlis-Frish S, Hirsch D. Clinicopathological characteristics and long-term outcome in patients with distant metastases from differentiated thyroid cancer. World J Surg. 2006;30:1088–95.

    Article  PubMed  Google Scholar 

  7. Casara D, Rubello D, Saladini G, et al. Distant metastases in differentiated thyroid cancer: long-term results of radioiodine treatment and statistical analysis of prognostic factors in 214 patients. Tumori. 1991;77:432–6.

    CAS  PubMed  Google Scholar 

  8. Clark JR, Lai P, Hall F, et al. Variables predicting distant metastases in thyroid cancer. Laryngoscope. 2005;115:661–7.

    Article  PubMed  Google Scholar 

  9. Hoie J, Stenwig AE, Kullmann G, et al. Distant metastases in papillary thyroid cancer. A review of 91 patients. Cancer. 1988;61:1–6.

    Article  CAS  PubMed  Google Scholar 

  10. Lin JD, Huang MJ, Juang JH, et al. Factors related to the survival of papillary and follicular thyroid carcinoma patients with distant metastases. Thyroid. 1999;9:1227–35.

    Article  CAS  PubMed  Google Scholar 

  11. Machens A, Holzhausen HJ, Lautenschlager C, et al. Enhancement of lymph node metastasis and distant metastasis of thyroid carcinoma. Cancer. 2003;98:712–9.

    Article  PubMed  Google Scholar 

  12. O’Neill CJ, Oucharek J, Learoyd D, et al. Standard and emerging therapies for metastatic differentiated thyroid cancer. Oncologist. 2010;15:146–56.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Ruegemer JJ, Hay ID, Bergstralh EJ, et al. Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables. J Clin Endocrinol Metab. 1988;67:501–8.

    Article  CAS  PubMed  Google Scholar 

  14. Samaan NA, Schultz PN, Haynie TP, et al. Pulmonary metastasis of differentiated thyroid carcinoma: treatment results in 101 patients. J Clin Endocrinol Metab. 1985;60:376–80.

    Article  CAS  PubMed  Google Scholar 

  15. Sampson E, Brierley JD, Le LW, et al. Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis. Cancer. 2007;110:1451–6.

    Article  PubMed  Google Scholar 

  16. Showalter TN, Siegel BA, Moley JF, et al. Prognostic factors in patients with well-differentiated thyroid cancer presenting with pulmonary metastasis. Cancer Biother Radiopharm. 2008;23:655–9.

    Article  PubMed  Google Scholar 

  17. Casara D, Rubello D, Saladini G, et al. Different features of pulmonary metastases in differentiated thyroid cancer: natural history and multivariate statistical analysis of prognostic variables. J Nucl Med. 1993;34:1626–31.

    CAS  PubMed  Google Scholar 

  18. Durante C, Haddy N, Baudin E, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab. 2006;91:2892–9.

    Article  CAS  PubMed  Google Scholar 

  19. Haq M, Harmer C. Differentiated thyroid carcinoma with distant metastases at presentation: prognostic factors and outcome. Clin Endocrinol (Oxf). 2005;63:87–93.

    Article  CAS  Google Scholar 

  20. Lin JD, Chao TC, Chou SC, et al. Papillary thyroid carcinomas with lung metastases. Thyroid. 2004;14:1091–6.

    Article  PubMed  Google Scholar 

  21. Shaha AR, Ferlito A, Rinaldo A. Distant metastases from thyroid and parathyroid cancer. ORL J Otorhinolaryngol Relat Spec. 2001;63:243–9.

    Article  CAS  PubMed  Google Scholar 

  22. Shoup M, Stojadinovic A, Nissan A, et al. Prognostic indicators of outcomes in patients with distant metastases from differentiated thyroid carcinoma. J Am Coll Surg. 2003;197:191–7.

    Article  PubMed  Google Scholar 

  23. Zettinig G, Fueger BJ, Passler C, et al. Long-term follow-up of patients with bone metastases from differentiated thyroid carcinoma—surgery or conventional therapy? Clin Endocrinol (Oxf). 2002;56:377–82.

    Article  Google Scholar 

  24. Welch Dinauer CA, Tuttle RM, Robie DK, et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin Endocrinol (Oxf). 1998;49:619–28.

    Article  CAS  Google Scholar 

  25. Beasley NJ, Walfish PG, Witterick I, et al. Cause of death in patients with well-differentiated thyroid carcinoma. Laryngoscope. 2001;111:989–91.

    Article  CAS  PubMed  Google Scholar 

  26. Harness JK, McLeod MK, Thompson NW, et al. Deaths due to differentiated thyroid cancer: a 46-year perspective. World J Surg. 1988;12:623–9.

    Article  CAS  PubMed  Google Scholar 

  27. Klubo-Gwiezdzinska J, Morowitz D, Van Nostrand D, et al. Metastases of well-differentiated thyroid cancer to the gastrointestinal system. Thyroid. 2010;20:381–7.

    Article  PubMed  Google Scholar 

  28. Lo CY, van Heerden JA, Soreide JA, et al. Adrenalectomy for metastatic disease to the adrenal glands. Br J Surg. 1996;83:528–31.

    Article  CAS  PubMed  Google Scholar 

  29. McWilliams RR, Giannini C, Hay ID, et al. Management of brain metastases from thyroid carcinoma: a study of 16 pathologically confirmed cases over 25 years. Cancer. 2003;98:356–62.

    Article  PubMed  Google Scholar 

  30. Hindie E, Melliere D, Lange F, et al. Functioning pulmonary metastases of thyroid cancer: does radioiodine influence the prognosis? Eur J Nucl Med Mol Imaging. 2003;30:974–81.

    Article  CAS  PubMed  Google Scholar 

  31. Nixon IJ, Whitcher MM, Palmer FL, et al. The impact of distant metastases at presentation on prognosis in patients with differentiated carcinoma of the thyroid gland. Thyroid. 2012;22:884–9.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Kitamura Y, Shimizu K, Nagahama M, et al. Immediate causes of death in thyroid carcinoma: clinicopathological analysis of 161 fatal cases. J Clin Endocrinol Metab. 1999;84:4043–9.

    Article  CAS  PubMed  Google Scholar 

  33. Bernier MO, Leenhardt L, Hoang C, et al. Survival and therapeutic modalities in patients with bone metastases of differentiated thyroid carcinomas. J Clin Endocrinol Metab. 2001;86:1568–73.

    Article  CAS  PubMed  Google Scholar 

  34. Schlumberger M, Challeton C, De Vathaire F, et al. Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma. J Nucl Med. 1996;37:598–605.

    CAS  PubMed  Google Scholar 

  35. Pittas AG, Adler M, Fazzari M, et al. Bone metastases from thyroid carcinoma: clinical characteristics and prognostic variables in one hundred forty-six patients. Thyroid. 2000;10:261–8.

    Article  CAS  PubMed  Google Scholar 

  36. Toubert ME, Hindie E, Rampin L, et al. Distant metastases of differentiated thyroid cancer: diagnosis, treatment and outcome. Nucl Med Rev Cent East Eur. 2007;10:106–9.

    PubMed  Google Scholar 

  37. Fatourechi V, Hay ID, Mullan BP, et al. Are posttherapy radioiodine scans informative and do they influence subsequent therapy of patients with differentiated thyroid cancer? Thyroid. 2000;10:573–7.

    Article  CAS  PubMed  Google Scholar 

  38. Fatourechi V, Hay ID, Javedan H, et al. Lack of impact of radioiodine therapy in Tg-positive, diagnostic whole-body scan-negative patients with follicular cell-derived thyroid cancer. J Clin Endocrinol Metab. 2002;87:1521–6.

    Article  CAS  PubMed  Google Scholar 

  39. Galligan JP, Winship J, van Doorn T, et al. A comparison of serum thyroglobulin measurements and whole body 131I scanning in the management of treated differentiated thyroid carcinoma. Aust N Z J Med. 1982;12:248–54.

    Google Scholar 

  40. Ma C, Kuang A, Xie J. Radioiodine therapy for differentiated thyroid carcinoma with thyroglobulin positive and radioactive iodine negative metastases. Cochrane Database Syst Rev. 2009;(1):CD006988.

    Google Scholar 

  41. Pacini F, Lippi F, Formica N, et al. Therapeutic doses of iodine-131 reveal undiagnosed metastases in thyroid cancer patients with detectable serum thyroglobulin levels. J Nucl Med. 1987;28:1888–91.

    CAS  PubMed  Google Scholar 

  42. Pacini F, Agate L, Elisei R, et al. Outcome of differentiated thyroid cancer with detectable serum Tg and negative diagnostic 131I whole body scan: comparison of patients treated with high 131I activities versus untreated patients. J Clin Endocrinol Metab. 2001;86:4092–7.

    Google Scholar 

  43. Courbon F, Zerdoud S, Bastie D, et al. Defective efficacy of retinoic acid treatment in patients with metastatic thyroid carcinoma. Thyroid. 2006;16:1025–31.

    Article  CAS  PubMed  Google Scholar 

  44. Kebebew E, Peng M, Reiff E, et al. A phase II trial of rosiglitazone in patients with thyroglobulin-positive and radioiodine-negative differentiated thyroid cancer. Surgery. 2006;140:960–6; discussion 966–7.

    Article  PubMed  Google Scholar 

  45. Kebebew E, Lindsay S, Clark OH, et al. Results of rosiglitazone therapy in patients with thyroglobulin-positive and radioiodine-negative advanced differentiated thyroid cancer. Thyroid. 2009;19:953–6.

    Article  CAS  PubMed  Google Scholar 

  46. Tepmongkol S, Keelawat S, Honsawek S, et al. Rosiglitazone effect on radioiodine uptake in thyroid carcinoma patients with high thyroglobulin but negative total body scan: a correlation with the expression of peroxisome proliferator-activated receptor-gamma. Thyroid. 2008;18:697–704.

    Article  CAS  PubMed  Google Scholar 

  47. Zhang Y, Jia S, Liu Y, et al. A clinical study of all-trans-retinoid-induced differentiation therapy of advanced thyroid cancer. Nucl Med Commun. 2007;28:251–5.

    Article  PubMed  Google Scholar 

  48. Pineda JD, Lee T, Ain K, et al. Iodine-131 therapy for thyroid cancer patients with elevated thyroglobulin and negative diagnostic scan. J Clin Endocrinol Metab. 1995;80:1488–92.

    CAS  PubMed  Google Scholar 

  49. Grunwald F, Schomburg A, Bender H, et al. Fluorine-18 fluorodeoxyglucose positron emission tomography in the follow-up of differentiated thyroid cancer. Eur J Nucl Med. 1996;23:312–9.

    Article  CAS  PubMed  Google Scholar 

  50. Ito S, Kato K, Ikeda M, et al. Comparison of 18 F-FDG PET and bone scintigraphy in detection of bone metastases of thyroid cancer. J Nucl Med. 2007;48:889–95.

    Article  CAS  PubMed  Google Scholar 

  51. Larson SM, Robbins R. Positron emission tomography in thyroid cancer management. Semin Roentgenol. 2002;37:169–74.

    Article  PubMed  Google Scholar 

  52. Nanni C, Rubello D, Fanti S, et al. Role of 18 F-FDG-PET and PET/CT imaging in thyroid cancer. Biomed Pharmacother. 2006;60:409–13.

    Article  CAS  PubMed  Google Scholar 

  53. Schluter B, Bohuslavizki KH, Beyer W, et al. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med. 2001;42:71–6.

    Google Scholar 

  54. Wang H, Fu HL, Li JN, et al. Comparison of whole-body 18 F-FDG SPECT and post-therapeutic 131I scintigraphy in the detection of metastatic thyroid cancer. Clin Imaging. 2008;32:32–7.

    Google Scholar 

  55. Wang W, Macapinlac H, Larson SM, et al. [18 F]-2-fluoro-2-deoxy-D-glucose positron emission tomography localizes residual thyroid cancer in patients with negative diagnostic 131I whole body scans and elevated serum thyroglobulin levels. J Clin Endocrinol Metab. 1999;84:2291–302.

    Article  CAS  PubMed  Google Scholar 

  56. Wang W, Larson SM, Tuttle RM, et al. Resistance of [18f]fluorodeoxyglucose-avid metastatic thyroid cancer lesions to treatment with high-dose radioactive iodine. Thyroid. 2001;11:1169–75.

    Article  CAS  PubMed  Google Scholar 

  57. Feine U, Lietzenmayer R, Hanke JP, et al. Fluorine-18-FDG and iodine-131-iodide uptake in thyroid cancer. J Nucl Med. 1996;37:1468–72.

    CAS  PubMed  Google Scholar 

  58. Coburn M, Teates D, Wanebo HJ. Recurrent thyroid cancer. Role of surgery versus radioactive iodine (131I). Ann Surg. 1994;219:587–93; discussion 593–5.

    Google Scholar 

  59. Hindie E, Zanotti-Fregonara P, Keller I, et al. Bone metastases of differentiated thyroid cancer: Impact of early 131I-based detection on outcome. Endocr Relat Cancer. 2007;14:799–807.

    Google Scholar 

  60. Ilgan S, Karacalioglu AO, Pabuscu Y, et al. Iodine-131 treatment and high-resolution CT: results in patients with lung metastases from differentiated thyroid carcinoma. Eur J Nucl Med Mol Imaging. 2004;31:825–30.

    Article  CAS  PubMed  Google Scholar 

  61. Pacini F, Cetani F, Miccoli P, et al. Outcome of 309 patients with metastatic differentiated thyroid carcinoma treated with radioiodine. World J Surg. 1994;18:600–4.

    Article  CAS  PubMed  Google Scholar 

  62. Liu YY, van der Pluijm G, Karperien M, et al. Lithium as adjuvant to radioiodine therapy in differentiated thyroid carcinoma: clinical and in vitro studies. Clin Endocrinol (Oxf). 2006;64:617–24.

    Article  CAS  Google Scholar 

  63. Spitzweg C, Morris JC. Gene therapy for thyroid cancer: current status and future prospects. Thyroid. 2004;14:424–34.

    Article  CAS  PubMed  Google Scholar 

  64. Kurebayashi J, Tanaka K, Otsuki T, et al. All-trans-retinoic acid modulates expression levels of thyroglobulin and cytokines in a new human poorly differentiated papillary thyroid carcinoma cell line, KTC-1. J Clin Endocrinol Metab. 2000;85:2889–96.

    CAS  PubMed  Google Scholar 

  65. Schmutzler C, Brtko J, Bienert K, et al. Effects of retinoids and role of retinoic acid receptors in human thyroid carcinomas and cell lines derived therefrom. Exp Clin Endocrinol Diabetes. 1996;104 Suppl 4:16–9.

    Article  CAS  PubMed  Google Scholar 

  66. Boland A, Ricard M, Opolon P, et al. Adenovirus-mediated transfer of the thyroid sodium/iodide symporter gene into tumors for a targeted radiotherapy. Cancer Res. 2000;60:3484–92.

    CAS  PubMed  Google Scholar 

  67. Brown AP, Chen J, Hitchcock YJ, et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93:504–15.

    Article  CAS  PubMed  Google Scholar 

  68. Rubino C, de Vathaire F, Dottorini ME, et al. Second primary malignancies in thyroid cancer patients. Br J Cancer. 2003;89:1638–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Sawka AM, Thabane L, Parlea L, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and metaanalysis. Thyroid. 2009;19:451–7.

    Article  CAS  PubMed  Google Scholar 

  70. Subramanian S, Goldstein DP, Parlea L, et al. Second primary malignancy risk in thyroid cancer survivors: a systematic review and meta-analysis. Thyroid. 2007;17:1277–88.

    Article  PubMed  Google Scholar 

  71. Porterfield JR, Cassivi SD, Wigle DA, et al. Thoracic metastasectomy for thyroid malignancies. Eur J Cardiothorac Surg. 2009;36:155–8.

    Article  PubMed Central  PubMed  Google Scholar 

  72. Protopapas AD, Nicholson AG, Vini L, et al. Thoracic metastasectomy in thyroid malignancies. Ann Thorac Surg. 2001;72:1906–8.

    Article  CAS  PubMed  Google Scholar 

  73. Chiu AC, Delpassand ES, Sherman SI. Prognosis and treatment of brain metastases in thyroid carcinoma. J Clin Endocrinol Metab. 1997;82:3637–42.

    Article  CAS  PubMed  Google Scholar 

  74. Dahl PR, Brodland DG, Goellner JR, et al. Thyroid carcinoma metastatic to the skin: a cutaneous manifestation of a widely disseminated malignancy. J Am Acad Dermatol. 1997;36:531–7.

    Article  CAS  PubMed  Google Scholar 

  75. Koutkia P, Safer JD. Adrenal metastasis secondary to papillary thyroid carcinoma. Thyroid. 2001;11:1077–9.

    Article  CAS  PubMed  Google Scholar 

  76. Bukowski RM, Brown L, Weick JK, et al. Combination chemotherapy of metastatic thyroid cancer. Phase II study. Am J Clin Oncol. 1983;6:579–81.

    Article  CAS  PubMed  Google Scholar 

  77. Gottlieb JA, Hill Jr CS, Ibanez ML, et al. Chemotherapy of thyroid cancer. An evaluation of experience with 37 patients. Cancer. 1972;30:848–53.

    Article  CAS  PubMed  Google Scholar 

  78. Gottlieb JA, Hill Jr CS. Chemotherapy of thyroid cancer with adriamycin. Experience with 30 patients. N Engl J Med. 1974;290:193–7.

    Article  CAS  PubMed  Google Scholar 

  79. Hoskin PJ, Harmer C. Chemotherapy for thyroid cancer. Radiother Oncol. 1987;10:187–94.

    Article  CAS  PubMed  Google Scholar 

  80. Shimaoka K, Schoenfeld DA, DeWys WD, et al. A randomized trial of doxorubicin versus doxorubicin plus cisplatin in patients with advanced thyroid carcinoma. Cancer. 1985;56:2155–60.

    Article  CAS  PubMed  Google Scholar 

  81. Williams SD, Birch R, Einhorn LH. Phase II evaluation of doxorubicin plus cisplatin in advanced thyroid cancer: a Southeastern Cancer Study Group Trial. Cancer Treat Rep. 1986;70:405–7.

    CAS  PubMed  Google Scholar 

  82. Ford D, Giridharan S, McConkey C, et al. External beam radiotherapy in the management of differentiated thyroid cancer. Clin Oncol (R Coll Radiol). 2003;15:337–41.

    Article  CAS  Google Scholar 

  83. Eustatia-Rutten CF, Romijn JA, Guijt MJ, et al. Outcome of palliative embolization of bone metastases in differentiated thyroid carcinoma. J Clin Endocrinol Metab. 2003;88:3184–9.

    Article  CAS  PubMed  Google Scholar 

  84. Vitale G, Fonderico F, Martignetti A, et al. Pamidronate improves the quality of life and induces clinical remission of bone metastases in patients with thyroid cancer. Br J Cancer. 2001;84:1586–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  85. Gupta-Abramson V, Troxel AB, Nellore A, et al. Phase II trial of sorafenib in advanced thyroid cancer. J Clin Oncol. 2008;26:4714–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Kloos RT, Ringel MD, Knopp MV, et al. Phase II trial of sorafenib in metastatic thyroid cancer. J Clin Oncol. 2009;27:1675–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Pennell NA, Daniels GH, Haddad RI, et al. A phase II study of gefitinib in patients with advanced thyroid cancer. Thyroid. 2008;18:317–23.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian Harvey .

Editor information

Editors and Affiliations

Commentary

Commentary

Richard W. Nason

Well-differentiated thyroid cancer (WDTC) has a prolonged natural history and a relatively low mortality rate. Recurrence rates approximate 20 % and are most frequently identified in the neck, followed by distant metastases. The most frequent sites of distant metastases are lung and bone. The overall mortality rate for WDTC in North America approximates 10 %. Disease-specific mortality is distributed between local recurrence and distant metastases. The surgeon has some control over the first cause of morbidity and mortality with an adequate initial operation. As emphasized years ago by Dr Crile, the battle of the thyroid is won or lost in the central compartment. Unfortunately, we have less control over this disease in the presence of distant metastases.

As detailed in this chapter, long-term surveillance of patients with WDTC is important to identify both locoregional recurrence and distant metastases. It should be emphasized that follow-up, in my opinion, needs to be directed to the central compartment, as viable treatment options are often available. As indicated in this chapter, young patients with micronodular radioactive iodine (RAI) avid pulmonary metastases do well with treatment. In my experience, older patients with distant metastases are not cured and this does represent a significant source of morbidity and mortality. In our centre, RAI is the treatment if the disease is radio-avid. An important aspect of care in this subset of patients is clinical follow-up with active assessment of symptoms and signs of bone metastases with effective intervention with surgery with or without external beam radiation to minimize pathological fractures or neurological compromise.

The management of patients with distant metastases from WDTC must be individualized and should be based on the circumstances and the experience of a multidisciplinary treatment team. The future for this subset of patients will lie in the development of effective and personalized systemic treatment, as discussed elsewhere in this monograph.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 K. Alok Pathak, Richard W. Nason, Janice L. Pasieka, Rehan Kazi, Raghav C. Dwivedi

About this chapter

Cite this chapter

Harvey, A. (2015). Management of Distant Metastases in Differentiated Thyroid Cancer. In: Pathak, K., Nason, R., Pasieka, J. (eds) Management of Thyroid Cancer. Head and Neck Cancer Clinics. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2434-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-81-322-2434-1_6

  • Publisher Name: Springer, New Delhi

  • Print ISBN: 978-81-322-2433-4

  • Online ISBN: 978-81-322-2434-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics